51
|
Wah Tan Z, Tee WV, Berezovsky IN. Learning about allosteric drugs and ways to design them. J Mol Biol 2022; 434:167692. [PMID: 35738428 DOI: 10.1016/j.jmb.2022.167692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
While the accelerating quest for precision medicine requires new individually targeting and selective drugs, and the ability to work with so-called undruggable targets, the realm of allosteric drugs meeting this need remains largely uncharted. Generalizing the observations on two major drug targets with widely observed inherent allostery, GPCRs and kinases, we describe and discuss basic allosteric modes of action that are universally applicable in all types of structures and functions. Using examples of Class A GPCRs and CMGC protein kinases, we show how Allosteric Signalling and Probing Fingerprints can be used to identify potential allosteric sites and reveal effector-leads that may serve as a starting point for the development of allosteric drugs targeting these regulatory sites. A set of distinct characteristics of allosteric ligands was established, which highlights the versatility of their design and make them advantageous before their orthosteric counterparts in personalized medicine. We argue that rational design of allosteric drugs should begin with the search for latent sites or design of non-natural binding sites followed by fragment-based design of allosteric ligands and by the mutual adjustment of the site-ligand pair in order to achieve required effects. On the basis of the perturbative nature and reversibility of allosteric communication, we propose a generic protocol for computational design of allosteric effectors, enabling also the allosteric tuning of biologics, in obtaining allosteric control over protein functions.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
52
|
Oken AC, Krishnamurthy I, Savage JC, Lisi NE, Godsey MH, Mansoor SE. Molecular Pharmacology of P2X Receptors: Exploring Druggable Domains Revealed by Structural Biology. Front Pharmacol 2022; 13:925880. [PMID: 35784697 PMCID: PMC9248971 DOI: 10.3389/fphar.2022.925880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular ATP is a critical signaling molecule that is found in a wide range of concentrations across cellular environments. The family of nonselective cation channels that sense extracellular ATP, termed P2X receptors (P2XRs), is composed of seven subtypes (P2X1-P2X7) that assemble as functional homotrimeric and heterotrimeric ion channels. Each P2XR is activated by a distinct concentration of extracellular ATP, spanning from high nanomolar to low millimolar. P2XRs are implicated in a variety of physiological and pathophysiological processes in the cardiovascular, immune, and central nervous systems, corresponding to the spatiotemporal expression, regulation, and activation of each subtype. The therapeutic potential of P2XRs is an emerging area of research in which structural biology has seemingly exceeded medicinal chemistry, as there are several published P2XR structures but currently no FDA-approved drugs targeting these ion channels. Cryogenic electron microscopy is ideally suited to facilitate structure-based drug design for P2XRs by revealing and characterizing novel ligand-binding sites. This review covers structural elements in P2XRs including the extracellular orthosteric ATP-binding site, extracellular allosteric modulator sites, channel pore, and cytoplasmic substructures, with an emphasis on potential therapeutic ligand development.
Collapse
Affiliation(s)
- Adam C. Oken
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan C. Savage
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Nicolas E. Lisi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Michael H. Godsey
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Steven E. Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
53
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
54
|
Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics (Basel) 2022; 11:antibiotics11050675. [PMID: 35625318 PMCID: PMC9137983 DOI: 10.3390/antibiotics11050675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes belonging to the shikimate pathway have long been considered promising targets for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial growth and virulence. However, despite decades of research, there are currently no clinically relevant antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and druggability are performed to determine whether these enzymes are candidates for broad-spectrum antibacterial therapy. The results presented here indicate that the substrate-binding sites of most enzymes in this pathway are suitable drug targets because of their reasonable conservation and druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which was found to be undruggable because of its high content of charged residues and extremely high overall polarity. Although the presented study was designed from the perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research also contributes to a deeper understanding of these enzymes and provides valuable insights into their properties.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
55
|
Zhang H, Daněk O, Makarov D, Rádl S, Kim D, Ledvinka J, Vychodilová K, Hlaváč J, Lefèbre J, Denis M, Rademacher C, Ménová P. Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Med Chem Lett 2022; 13:935-942. [DOI: 10.1021/acsmedchemlett.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Ondřej Daněk
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Dmytro Makarov
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Stanislav Rádl
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
- Zentiva a.s., U Kabelovny 130, 10237 Prague 10, Czech Republic
| | - Dongyoon Kim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Jiří Ledvinka
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
56
|
Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12:3548-3566. [PMID: 36176907 PMCID: PMC9513498 DOI: 10.1016/j.apsb.2022.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
Collapse
|
57
|
Abstract
![]()
The coronavirus disease 2019 (COVID-19)
pandemic has a significant
impact on healthcare systems and our lives. Vaccines against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provide protection
against SARS-CoV-2. However, mutations in the viral genome are common,
raising concerns about the effectiveness of existing vaccines for
SARS-CoV-2. The receptor-binding domain (RBD) of SARS-CoV-2 uses angiotensin-converting
enzyme-2 (ACE-2) as a gateway to enter host cells. Therefore, the
ACE-2-RBD interaction may be targeted by antiviral drugs. In this
context, allosteric modulation of ACE-2 may offer a promising approach.
It may lead to allosteric inhibition of the interaction between ACE-2
and SARS-CoV-2.
Collapse
Affiliation(s)
- Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102 West Bengal, India
| |
Collapse
|
58
|
Lee JH, Kim S, Jin MS, Kim YC. Discovery of substituted indole derivatives as allosteric inhibitors of m 6 A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res 2022; 83:783-799. [PMID: 35040501 DOI: 10.1002/ddr.21910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
m6 A RNA methyltransferase (METTL3-14) catalyzes the methylation of adenosine in mRNA and plays important roles in mRNA functions, and it has been implicated in the progression of multiple cancers, including acute myeloid leukemia (AML). In this study, we describe the discovery of the first allosteric inhibitor of the METTL3-14 complex based on structure-activity relationship (SAR) and optimization studies of the hit compound, 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Compound 43n was optimized throughout the modifications of 4 different regions of the structure, and it displayed potent enzyme inhibitory activity of the METTL3-14 complex (IC50 = 2.81 μM) and an antiproliferative effect in the AML cell lines by suppressing the m6 A level of mRNA. The inhibition mechanism and binding mode of 43n were based on the interaction of the reversible and noncompetitive inhibitory profile at the allosteric site along with selectivity for the METTL3-14 complex relative to each subunit enzyme or truncated complex enzyme.
Collapse
Affiliation(s)
- Je-Heon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.,Center for AI-Applied High Efficiency Drug Discovery (AHEDD), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
59
|
Wu N, Strömich L, Yaliraki SN. Prediction of allosteric sites and signaling: Insights from benchmarking datasets. PATTERNS (NEW YORK, N.Y.) 2022; 3:100408. [PMID: 35079717 PMCID: PMC8767309 DOI: 10.1016/j.patter.2021.100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Allostery is a pervasive mechanism that regulates protein activity through ligand binding at a site different from the orthosteric site. The universality of allosteric regulation complemented by the benefits of highly specific and potentially non-toxic allosteric drugs makes uncovering allosteric sites invaluable. However, there are few computational methods to effectively predict them. Bond-to-bond propensity analysis has successfully predicted allosteric sites in 19 of 20 cases using an energy-weighted atomistic graph. We here extended the analysis onto 432 structures of 146 proteins from two benchmarking datasets for allosteric proteins: ASBench and CASBench. We further introduced two statistical measures to account for the cumulative effect of high-propensity residues and the crucial residues in a given site. The allosteric site is recovered for 127 of 146 proteins (407 of 432 structures) knowing only the orthosteric sites or ligands. The quantitative analysis using a range of statistical measures enables better characterization of potential allosteric sites and mechanisms involved.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | | |
Collapse
|
60
|
Yuan J, Jiang C, Wang J, Chen CJ, Hao Y, Zhao G, Feng Z, Xie XQ. In Silico Prediction and Validation of CB2 Allosteric Binding Sites to Aid the Design of Allosteric Modulators. Molecules 2022; 27:molecules27020453. [PMID: 35056767 PMCID: PMC8781014 DOI: 10.3390/molecules27020453] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-β-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future.
Collapse
Affiliation(s)
- Jiayi Yuan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chen Jiang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chih-Jung Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixuan Hao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guangyi Zhao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (Z.F.); (X.-Q.X.)
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.Y.); (C.J.); (J.W.); (C.-J.C.); (Y.H.); (G.Z.)
- Department of Pharmaceutical Sciences and National Center of Excellence for Computational Drug Abuse Research, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (Z.F.); (X.-Q.X.)
| |
Collapse
|
61
|
Xie J, Wang S, Xu Y, Deng M, Lai L. Uncovering the Dominant Motion Modes of Allosteric Regulation Improves Allosteric Site Prediction. J Chem Inf Model 2021; 62:187-195. [PMID: 34964625 DOI: 10.1021/acs.jcim.1c01267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allostery is an important mechanism that biological systems use to regulate function at a distant site. Allosteric drugs have attracted much attention in recent years due to their high specificity and the possibility of overcoming existing drug-resistant mutations. However, the discovery of allosteric drugs remains challenging as allosteric regulation mechanisms are not clearly understood and allosteric sites cannot be accurately predicted. In this study, we analyzed the dominant modes that determine motion correlations between allosteric and orthosteric sites using the Gaussian network model and found that motion correlations between allosteric and orthosteric sites are dominated by either fast or slow vibrational modes. This dependence of modes results from the relative locations of the two sites and local secondary structures. Based on these analyses, we developed CorrSite2.0 to predict allosteric sites by taking the maximum of the Z-scores calculated from using either slow or fast modes. The prediction accuracy of CorrSite2.0 outperformed other commonly used allosteric site prediction methods with prediction accuracy over 90.0%. Our study uncovers the relationship of protein structure, dynamics, and allosteric regulation and demonstrates that using the dominant motion modes greatly improves allosteric site prediction accuracy. CorrSite2.0 has been integrated into the CavityPlus web server, which can be accessed at http://www.pkumdl.cn/cavityplus. CorrSite2.0 provides a powerful and user-friendly tool for allosteric drug and protein design.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shiwei Wang
- PTN Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Youjun Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,School of Mathematical Sciences, Peking University, Beijing 100871, China.,Center for Statistical Science, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
62
|
Hernández González JE, Alberca LN, Masforrol González Y, Reyes Acosta O, Talevi A, Salas-Sarduy E. Tetracycline Derivatives Inhibit Plasmodial Cysteine Protease Falcipain-2 through Binding to a Distal Allosteric Site. J Chem Inf Model 2021; 62:159-175. [PMID: 34962803 DOI: 10.1021/acs.jcim.1c01189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric inhibitors regulate enzyme activity from remote and usually specific pockets. As they promise an avenue for less toxic and safer drugs, the identification and characterization of allosteric inhibitors has gained great academic and biomedical interest in recent years. Research on falcipain-2 (FP-2), the major papain-like cysteine hemoglobinase of Plasmodium falciparum, might benefit from this strategy to overcome the low selectivity against human cathepsins shown by active site-directed inhibitors. Encouraged by our previous finding that methacycline inhibits FP-2 noncompetitively, here we assessed other five tetracycline derivatives against this target and characterized their inhibition mechanism. As previously shown for methacycline, tetracycline derivatives inhibited FP-2 in a noncompetitive fashion, with Ki values ranging from 121 to 190 μM. A possible binding to the S' side of the FP-2 active site, similar to that described by X-ray crystallography (PDB: 6SSZ) for the noncompetitive inhibitor E-chalcone 48 (EC48), was experimentally discarded by kinetic analysis using a large peptidyl substrate spanning the whole active site. By combining lengthy molecular dynamics (MD) simulations that allowed methacycline to diffuse from solution to different FP-2 surface regions and free energy calculations, we predicted the most likely binding mode of the ligand. Of note, the proposed binding pose explains the low differences in Ki values observed for the tested tetracycline derivatives and the calculated binding free energies match the experimental values. Overall, this study has implications for the design of novel allosteric inhibitors against FP-2 and sets the basis for further optimization of the tetracycline scaffold to produce more potent and selective inhibitors.
Collapse
Affiliation(s)
- Jorge Enrique Hernández González
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata B1900ADU, Argentina
| | | | - Osvaldo Reyes Acosta
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Exact Sciences College, Universidad Nacional de La Plata, La Plata B1900ADU, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"─Universidad Nacional de San Martín─CONICET, San Martín B1650HMP, Buenos Aires, Argentina
| |
Collapse
|
63
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
64
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Barbaro L, Rodriguez AL, Blevins AN, Dickerson JW, Billard N, Boutaud O, Rook JL, Niswender CM, Conn P, Engers DW, Lindsley CW. Discovery of "Molecular Switches" within a Series of mGlu 5 Allosteric Ligands Driven by a "Magic Methyl" Effect Affording Both PAMs and NAMs with In Vivo Activity, Derived from an M 1 PAM Chemotype. ACS BIO & MED CHEM AU 2021; 1:21-30. [PMID: 37101980 PMCID: PMC10114714 DOI: 10.1021/acsbiomedchemau.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In the course of optimizing an M1 PAM chemotype, introduction of an ether moiety unexpectedly abolished M1 PAM activity while engendering a "molecular switch" to afford a weak, pure mGlu5 PAM. Further optimization was able to deliver a potent (mGlu5 EC50 = 520 nM, 63% Glu Max), centrally penetrant (Kp = 0.83), MPEP-site binding mGlu5 PAM 17a (VU6036486) that reversed amphetamine-induced hyperlocomotion. A pronounced "magic methyl" effect was noted with a regioisomeric methyl congener, leading to a change in pharmacology to afford a potent (mGlu5 IC50 = 110 nM, 3% Glu Min), centrally penetrant (Kp = 0.94), MPEP-site binding NAM 28d (VU6044766) that displayed anxiolytic activity in a mouse marble burying assay. These data further support the growing body of literature concerning the existence of G protein-coupled receptor (GPCR) allosteric privileged structures, and the value and impact of subtle methyl group walks, as well as the highly productive fluorine walk, around allosteric ligand cores to stabilize unique GPCR conformations.
Collapse
Affiliation(s)
- Lisa Barbaro
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashlyn N. Blevins
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Natasha Billard
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jerri L. Rook
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - P.Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Phone: 615-322-8700. Fax: 615-343-3088.
| |
Collapse
|
66
|
Pham NTH, Létourneau M, Fortier M, Bégin G, Al-Abdul-Wahid MS, Pucci F, Folch B, Rooman M, Chatenet D, St-Pierre Y, Lagüe P, Calmettes C, Doucet N. Perturbing dimer interactions and allosteric communication modulates the immunosuppressive activity of human galectin-7. J Biol Chem 2021; 297:101308. [PMID: 34673030 PMCID: PMC8592873 DOI: 10.1016/j.jbc.2021.101308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The design of allosteric modulators to control protein function is a key objective in drug discovery programs. Altering functionally essential allosteric residue networks provides unique protein family subtype specificity, minimizes unwanted off-target effects, and helps avert resistance acquisition typically plaguing drugs that target orthosteric sites. In this work, we used protein engineering and dimer interface mutations to positively and negatively modulate the immunosuppressive activity of the proapoptotic human galectin-7 (GAL-7). Using the PoPMuSiC and BeAtMuSiC algorithms, mutational sites and residue identity were computationally probed and predicted to either alter or stabilize the GAL-7 dimer interface. By designing a covalent disulfide bridge between protomers to control homodimer strength and stability, we demonstrate the importance of dimer interface perturbations on the allosteric network bridging the two opposite glycan-binding sites on GAL-7, resulting in control of induced apoptosis in Jurkat T cells. Molecular investigation of G16X GAL-7 variants using X-ray crystallography, biophysical, and computational characterization illuminates residues involved in dimer stability and allosteric communication, along with discrete long-range dynamic behaviors involving loops 1, 3, and 5. We show that perturbing the protein-protein interface between GAL-7 protomers can modulate its biological function, even when the overall structure and ligand-binding affinity remains unaltered. This study highlights new avenues for the design of galectin-specific modulators influencing both glycan-dependent and glycan-independent interactions.
Collapse
Affiliation(s)
- N T Hang Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Marlène Fortier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Gabriel Bégin
- Département de Biochimie, de Microbiologie et de Bio-informatique and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | | | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Folch
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Yves St-Pierre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Charles Calmettes
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada.
| |
Collapse
|
67
|
Translocation of TMEM175 Lysosomal Potassium Channel to the Plasma Membrane by Dynasore Compounds. Int J Mol Sci 2021; 22:ijms221910515. [PMID: 34638858 PMCID: PMC8508992 DOI: 10.3390/ijms221910515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson’s disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.
Collapse
|
68
|
Balkrishna A, Solleti SK, Singh H, Singh R, Sharma N, Varshney A. Biotite-Calx Based Traditional Indian Medicine Sahastraputi-Abhrak-Bhasma Prophylactically Mitigates Allergic Airway Inflammation in a Mouse Model of Asthma by Amending Cytokine Responses. J Inflamm Res 2021; 14:4743-4760. [PMID: 34557016 PMCID: PMC8455516 DOI: 10.2147/jir.s313955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Asthma is a heterogeneous airway inflammatory disease with limited therapeutic options. Traditional medicine is extensively used for treating various ailments including asthma. Sahastraputi-Abhrak-Bhasma (SPAB) is a biotite-calx based Indian medicine. Methods We have tested for the anti-inflammatory and anti-asthmatic properties of SPAB, using a mouse model of ovalbumin-induced allergic asthma in-vivo and cell-based assays in-vitro. Histological analysis, qPCR and ELISA were performed to assess the pathology. SEM, EDX and XRD-analysis were performed to characterize the SPAB particles. Results SEM, EDX and XRD-analysis identified the presence of SPAB particle of 100 nm–~1µm diameter and contains annite-1M, aluminium silicate, kyanite, aluminium oxide, magnesium silicate, and maghemite in the samples. Ova-challenge resulted in severe inflammatory responses, airway remodelling and increased oxidative burden in lungs. Importantly, prophylactic treatment with SPAB significantly attenuated allergen induced leukocyte infiltration specifically eosinophils, lymphocytes, macrophages and neutrophils in BALF. Ova-induced mucus hypersecretion, peri-bronchial collagen deposition, inflammatory cell infiltration and bronchial epithelial thickening were significantly abrogated upon SPAB treatment. qPCR and ELISA analysis identified that allergen induced increases in IL-5, IL-13, IL-33, IFN-γ and IL-1β cytokines mRNA in whole lungs and the levels of IL-6, IL-1β and TNF-α proteins in BALF were significantly attenuated upon oral SPAB treatment. SPAB restored allergen induced decreases in anti-oxidant markers in lungs. In-vitro, SPAB attenuated the secretion of IL-6, and TNF-α from human bronchial epithelial cells and modestly inhibited NF-kB/AP-1 pathway in HEK cells. Conclusion Taken together, our results experimentally validated the prophylactic ameliorative potential of the Indian classical medicine Sahastraputi-Abhrak-Bhasma against asthma associated airway inflammation.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, Uttarakhand, India.,Patanjali UK Trust, Glasgow, UK
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, Uttarakhand, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
69
|
Raubenolt BA, Wong K, Rick SW. Molecular dynamics simulations of allosteric motions and competitive inhibition of the Zika virus helicase. J Mol Graph Model 2021; 108:108001. [PMID: 34388402 DOI: 10.1016/j.jmgm.2021.108001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The 2015 Zika outbreak sparked major global concern and emphasized the reality and dangers still posed by mosquito borne pathogens. While efforts have been made to develop a vaccine and other therapeutics, there is still a great demand for antiviral drugs targeting Zika and other flaviviruses. The non-structural protein 3 (NS3) helicase is a vital component of the viral replication complex, tasked with unwinding the viral dsRNA molecule into single strands. Given this critical function, the Zika virus helicase is a potential therapeutic target and the focus of many ongoing research efforts. Using a combination of drug docking and molecular dynamics simulations, we have identified a list of competitive helicase inhibitors targeting the ATP hydrolysis site and have discovered a potential allosteric site capable of distorting both of the protein's active sites.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| | - Katy Wong
- Department of Chemical and Biomolecular Engineering Tulane University, New Orleans, LA, 70118, USA.
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
70
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
71
|
Mersmann S, Strömich L, Song FJ, Wu N, Vianello F, Barahona M, Yaliraki S. ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules. Nucleic Acids Res 2021; 49:W551-W558. [PMID: 33978752 PMCID: PMC8661402 DOI: 10.1093/nar/gkab350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.
Collapse
Affiliation(s)
- Sophia F Mersmann
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Florian J Song
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Nan Wu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Francesca Vianello
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Sophia N Yaliraki
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
72
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
73
|
Abstract
GPCRs remain the most important drug target comprising ~ 34% of the Food and Drug Administration (FDA)-approved drugs. In modern pharmacology of GPCRs, modulating receptor signaling based on requirement of a specific disorder is of immense interest. Classical drugs targeting orthosteric sites in GPCRs completely block the binding of endogenous ligand and consequently inhibit all important signals from a GPCR. Some of many signals elicited by the endogenous ligands may play vital role and inhibiting these may also cause severe side effects in the long run. However, allosteric drugs can modulate GPCR signaling without blocking the endogenous ligand binding. Therefore, allosteric drugs can maintain beneficial signaling of the receptor and prevent unwanted side effects. In this chapter, we will discuss GPCR crystal structures solved with allosteric ligands, advantages of allosteric drugs, and allosteric drugs which are in clinical use or trials.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sadashiva S Karnik
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
74
|
Tian H, Jiang X, Tao P. PASSer: Prediction of Allosteric Sites Server. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021; 2. [PMID: 34396127 DOI: 10.1088/2632-2153/abe6d6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Allostery is considered important in regulating protein's activity. Drug development depends on the understanding of allosteric mechanisms, especially the identification of allosteric sites, which is a prerequisite in drug discovery and design. Many computational methods have been developed for allosteric site prediction using pocket features and protein dynamics. Here, we present an ensemble learning method, consisting of eXtreme gradient boosting (XGBoost) and graph convolutional neural network (GCNN), to predict allosteric sites. Our model can learn physical properties and topology without any prior information, and shows good performance under multiple indicators. Prediction results showed that 84.9% of allosteric pockets in the test set appeared in the top 3 positions. The PASSer: Protein Allosteric Sites Server (https://passer.smu.edu), along with a command line interface (CLI, https://github.com/smutaogroup/passerCLI) provide insights for further analysis in drug discovery.
Collapse
Affiliation(s)
- Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| | - Xi Jiang
- Department of Statistical Science, Southern Methodist University, Dallas, Texas, United States of America
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
75
|
Nakhjavani M, Smith E, Yeo K, Palethorpe HM, Tomita Y, Price TJ, Townsend AR, Hardingham JE. Anti-Angiogenic Properties of Ginsenoside Rg3 Epimers: In Vitro Assessment of Single and Combination Treatments. Cancers (Basel) 2021; 13:cancers13092223. [PMID: 34066403 PMCID: PMC8125638 DOI: 10.3390/cancers13092223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Tumour angiogenesis plays a key role in tumour growth and progression. The application of current anti-angiogenic drugs is accompanied by adverse effects and drug resistance. Therefore, finding safer effective treatments is needed. Ginsenoside Rg3 (Rg3) has two epimers, 20(S)-Rg3 (SRg3) and 20(R)-Rg3 (RRg3), with stereoselective activities. Using response surface methodology, we optimised a combination of these two epimers for the loop formation of human umbilical vein endothelial cell (HUVEC). The optimised combination (C3) was tested on HUVEC and two murine endothelial cell lines. C3 significantly inhibited the loop formation, migration, and proliferation of these cells, inducing apoptosis in HUVEC and cell cycle arrest in all of the cell lines tested. Using molecular docking and vascular endothelial growth factor (VEGF) bioassay, we showed that Rg3 has an allosteric modulatory effect on vascular endothelial growth factor receptor 2 (VEGFR2). C3 also decreased the VEGF expression in hypoxic conditions, decreased the expression of aquaporin 1 and affected AKT signaling. The proteins that were mostly affected after C3 treatment were those related to mammalian target of rapamycin (mTOR). Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) was one of the important targets of C3, which was affected in both hypoxic and normoxic conditions. In conclusion, these results show the potential of C3 as a novel anti-angiogenic drug.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Correspondence: ; Tel.: +61-8-8222-6142
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Helen M. Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia;
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Tim J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (K.Y.); (Y.T.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| |
Collapse
|
76
|
Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IY, Perminova AA, Shpakov AO. Effect of Low-Molecular-Weight Allosteric
Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution
in Rat Testes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
77
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
78
|
Abdel-Halim M, Sigler S, Racheed NAS, Hefnawy A, Fathalla RK, Hammam MA, Maher A, Maxuitenko Y, Keeton AB, Hartmann RW, Engel M, Piazza GA, Abadi AH. From Celecoxib to a Novel Class of Phosphodiesterase 5 Inhibitors: Trisubstituted Pyrazolines as Novel Phosphodiesterase 5 Inhibitors with Extremely High Potency and Phosphodiesterase Isozyme Selectivity. J Med Chem 2021; 64:4462-4477. [PMID: 33793216 DOI: 10.1021/acs.jmedchem.0c01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A ligand-based approach involving systematic modifications of a trisubstituted pyrazoline scaffold derived from the COX2 inhibitor, celecoxib, was used to develop novel PDE5 inhibitors. Novel pyrazolines were identified with potent PDE5 inhibitory activity lacking COX2 inhibitory activity. Compound d12 was the most potent with an IC50 of 1 nM, which was three times more potent than sildenafil and more selective with a selectivity index of >10,000-fold against all other PDE isozymes. Sildenafil inhibited the full-length and catalytic fragment of PDE5, while compound d12 only inhibited the full-length enzyme, suggesting a mechanism of enzyme inhibition distinct from sildenafil. The PDE5 inhibitory activity of compound d12 was confirmed in cells using a cGMP biosensor assay. Oral administration of compound d12 achieved plasma levels >1000-fold higher than IC50 values and showed no discernable toxicity after repeated dosing. These results reveal a novel strategy to inhibit PDE5 with unprecedented potency and isozyme selectivity.
Collapse
Affiliation(s)
- Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sara Sigler
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Nora A S Racheed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Amr Hefnawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Mennatallah A Hammam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11266, Egypt
| | - Yulia Maxuitenko
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Adam B Keeton
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Gary A Piazza
- Departments of Oncologic Sciences and Pharmacology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
79
|
Tee WV, Tan ZW, Lee K, Guarnera E, Berezovsky IN. Exploring the Allosteric Territory of Protein Function. J Phys Chem B 2021; 125:3763-3780. [PMID: 33844527 DOI: 10.1021/acs.jpcb.1c00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the pervasiveness of allostery in proteins is commonly accepted, we further show the generic nature of allosteric mechanisms by analyzing here transmembrane ion-channel viroporin 3a and RNA-dependent RNA polymerase (RdRp) from SARS-CoV-2 along with metabolic enzymes isocitrate dehydrogenase 1 (IDH1) and fumarate hydratase (FH) implicated in cancers. Using the previously developed structure-based statistical mechanical model of allostery (SBSMMA), we share our experience in analyzing the allosteric signaling, predicting latent allosteric sites, inducing and tuning targeted allosteric response, and exploring the allosteric effects of mutations. This, yet incomplete list of phenomenology, forms a complex and unique allosteric territory of protein function, which should be thoroughly explored. We propose a generic computational framework, which not only allows one to obtain a comprehensive allosteric control over proteins but also provides an opportunity to approach the fragment-based design of allosteric effectors and drug candidates. The advantages of allosteric drugs over traditional orthosteric compounds, complemented by the emerging role of the allosteric effects of mutations in the expansion of the cancer mutational landscape and in the increased mutability of viral proteins, leave no choice besides further extensive studies of allosteric mechanisms and their biomedical implications.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Keene Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore
| |
Collapse
|
80
|
A novel class of selective non-nucleoside inhibitors of human DNA methyltransferase 3A. Bioorg Med Chem Lett 2021; 40:127908. [PMID: 33705897 DOI: 10.1016/j.bmcl.2021.127908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
Screening of a small chemical library (Medicines for Malaria Venture Pathogen Box) identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric mechanism, and thus are unlikely to bind to the enzyme's active site. Unlike the clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme active site, the inhibitors described here could lead to the development of more selective drugs. Both inhibitors show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial DNA cytosine methyltransferases. With further study, this could form the basis of preferential targeting of de novo DNA methylation over maintenance DNA methylation.
Collapse
|
81
|
Verma S, Pandey AK. Factual insights of the allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: an in silico analysis. 3 Biotech 2021; 11:67. [PMID: 33457176 PMCID: PMC7802979 DOI: 10.1007/s13205-020-02630-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023] Open
Abstract
SARS-CoV-2 main protease (Mpro) cleaves the viral polypeptide 1a and 1ab in a site-specific ((L-Q|(S, A, G)) manner and produce functional enzymes for mediating viral replication. Numerous studies have reported synthetic competitive inhibitors against this target enzyme but increase in substrate concentration often reduces the effectiveness of such inhibitors. Allosteric inhibition by natural compound can provide safe and effective treatment by alleviating this limitation. Present study deals with in silico allosteric inhibition analysis of quercetin, against SARS-CoV-2-Mpro. Molecular docking of quercetin with Mpro revealed consistent binding of quercetin at a site other than active site in multiple runs, with the highest binding energy of - 8.31 kcal/mol, forming 6 H-bonds with residues Gln127, Cys128, Lys137, Asp289 and Glu290. Molecular dynamic simulation of 50 ns revealed high stability of Mpro-quercetin complex with RMSD values ranging from 0.1 to 0.25 nm. Moreover, native-Mpro and Mpro-quercetin complex conformations extracted at different time points from simulation trajectories were subjected to active site-specific docking with modelled substrate peptide (AVLQSGFR) by ZDOCK server. Results displayed site-specific cleavage of peptide when docked with native-Mpro. While substrate peptide remained intact when docked with Mpro-quercetin complex, also the binding energy of peptide reduced from 785 to 86 from 1 to 50 ns as quercetin induced alterations in the active site cavity reducing its affinity for the substrate. Further, no interactions were noticed between peptide and active site residues of Mpro-quercetin complex conformations at 40 and 50 ns. Hence, quercetin displayed effective allosteric inhibition potential against SARS-CoV-2 Mpro, and can be developed into an efficient treatment for COVID-19.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh 284128 India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016 India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh 284128 India
| |
Collapse
|
82
|
Current and Future Challenges in Modern Drug Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2114:1-17. [PMID: 32016883 DOI: 10.1007/978-1-0716-0282-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug discovery is an expensive, time-consuming, and risky business. To avoid late-stage failure, learnings from past projects and the development of new approaches are crucial. New modalities and emerging new target spaces allow the exploration of unprecedented indications or to address so far undrugable targets. Late-stage attrition is usually attributed to the lack of efficacy or to compound-related safety issues. Efficacy has been shown to be related to a strong genetic link to human disease, a better understanding of the target biology, and the availability of biomarkers to bridge from animals to humans. Compound safety can be improved by ligand optimization, which is becoming increasingly demanding for difficult targets. Therefore, new strategies include the design of allosteric ligands, covalent binders, and other modalities. Design methods currently heavily rely on artificial intelligence and advanced computational methods such as free energy calculations and quantum chemistry. Especially for quantum chemical methods, a more detailed overview is given in this chapter.
Collapse
|
83
|
Sanchez TW, Owens A, Martinez NJ, Wallgren E, Simeonov A, Henderson MJ. High-Throughput Detection of Ligand-Protein Binding Using a SplitLuc Cellular Thermal Shift Assay. Methods Mol Biol 2021; 2365:21-41. [PMID: 34432237 PMCID: PMC9502016 DOI: 10.1007/978-1-0716-1665-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The confirmation of a small molecule binding to a protein target can be challenging when switching from biochemical assays to physiologically relevant cellular models. The cellular thermal shift assay (CETSA) is an approach to validate ligand-protein binding in a cellular environment by examining a protein's melting profile which can shift to a higher or lower temperature when bound by a small molecule. Traditional CETSA uses SDS-PAGE and Western blotting to quantify protein levels, a process that is both time consuming and low-throughput when screening multiple compounds and concentrations. Herein, we outline the reagents and methods to implement split Nano Luciferase (SplitLuc) CETSA, which is a reporter-based target engagement assay designed for high-throughput screening in 384- or 1536-well plate formats.
Collapse
Affiliation(s)
- Tino W Sanchez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ashley Owens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Natalia J Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Eric Wallgren
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
84
|
Rajapaksha H, Perera BT, Meepage J, Perera RT, Dissanayake C. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.4.351-363.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The novel corona virus 2019 (COVID 19) is growing at an increasing rate with high mortality. Meanwhile, the cytokine storm is the most dangerous and potentially life-threatening event related to COVID 19. Phyto-compounds found in existing Ayurveda drugs have the ability to inhibit the Interleukin 6 (IL-6R) and Interleukin 1 (IL-1R) receptors. IL-6R and IL-1R receptors involve in cytokine storm and recognition of phytochemicals with proven safety profiles could open a pathway to the development of the most effective drugs against cytokine storm. In this study, we intend to perform an in silico investigation of effective phyto compounds, which can be isolated from selected medicinal herbs to avoid cytokine storm, inhibiting the IL-6 and IL-1 receptor binding process. An extensive literature survey followed by virtual screening was carried out to identify phytochemicals with potential anti-hyper-inflammatory action. Flexible docking was conducted for validated models of IL-1R and IL-6R-α with the most promising phytochemicals at possible allosteric sites using AutoDock Vina. Molecular dynamics (MD) studies were conducted for selected protein-ligand complexes using LARMD server and conformational changes were evaluated. According to the results, taepeenin J had Gibbs energy (ΔG) of -10.85 kcal/mol towards IL-1R but had limited oral bioavailability. MD analysis revealed that taepeenin J can cause significant conformational movements in IL-1R. Nortaepeenin B showed a ΔG of -8.5 kcal/mol towards IL-6R-α with an excellent oral bioavailability. MD analysis predicted that it can cause significant conformational movements in IL-6R-α. Hence, the evaluated phytochemicals are potential candidates for further in vitro studies for the development of medicine against cytokine storm on behalf of SARS-COV-2 infected patients.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Bingun Tharusha Perera
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Jeewani Meepage
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Ruwan Tharanga Perera
- Graduate Studies Division, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| | - Chithramala Dissanayake
- Department of Cikitsa, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| |
Collapse
|
85
|
Srinivasan B. Explicit Treatment of Non-Michaelis-Menten and Atypical Kinetics in Early Drug Discovery*. ChemMedChem 2020; 16:899-918. [PMID: 33231926 DOI: 10.1002/cmdc.202000791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Biological systems are highly regulated. They are also highly resistant to sudden perturbations enabling them to maintain the dynamic equilibrium essential to sustain life. This robustness is conferred by regulatory mechanisms that influence the activity of enzymes/proteins within their cellular context to adapt to changing environmental conditions. However, the initial rules governing the study of enzyme kinetics were mostly tested and implemented for cytosolic enzyme systems that were easy to isolate and/or recombinantly express. Moreover, these enzymes lacked complex regulatory modalities. Now, with academic labs and pharmaceutical companies turning their attention to more-complex systems (for instance, multiprotein complexes, oligomeric assemblies, membrane proteins and post-translationally modified proteins), the initial axioms defined by Michaelis-Menten (MM) kinetics are rendered inadequate, and the development of a new kind of kinetic analysis to study these systems is required. This review strives to present an overview of enzyme kinetic mechanisms that are atypical and, oftentimes, do not conform to the classical MM kinetics. Further, it presents initial ideas on the design and analysis of experiments in early drug-discovery for such systems, to enable effective screening and characterisation of small-molecule inhibitors with desirable physiological outcomes.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling Discovery Sciences, R&D, AstraZeneca, 310, Milton Rd, Milton CB4 0WG, Cambridge, UK
| |
Collapse
|
86
|
Renault P, Giraldo J. Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Int J Mol Sci 2020; 22:ijms22010187. [PMID: 33375427 PMCID: PMC7795036 DOI: 10.3390/ijms22010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.
Collapse
Affiliation(s)
- Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
87
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
88
|
Liu Y, Vashisth H. Allosteric Pathways Originating at Cysteine Residues in Regulators of G-Protein Signaling Proteins. Biophys J 2020; 120:517-526. [PMID: 33347886 PMCID: PMC7895990 DOI: 10.1016/j.bpj.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins play a central role in modulating signaling via G-protein coupled receptors (GPCRs). Specifically, RGS proteins bind to activated Gα subunits in G-proteins, accelerate the GTP hydrolysis, and thereby rapidly dampen GPCR signaling. Therefore, covalent molecules targeting conserved cysteine residues among RGS proteins have emerged as potential candidates to inhibit the RGS/Gα protein-protein interaction and enhance GPCR signaling. Although these inhibitors bind to conserved cysteine residues among RGS proteins, we have previously suggested [J. Am. Chem. Soc. 2018;140:3454–3460] that their potencies and specificities are related to differential protein dynamics among RGS proteins. Using data from all-atom molecular dynamics simulations, we reveal these differences in dynamics of RGS proteins by partitioning the protein structural space into a network of communities that allow allosteric signals to propagate along unique pathways originating at inhibitor binding sites and terminating at the RGS/Gα protein-protein interface.
Collapse
Affiliation(s)
- Yong Liu
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
89
|
Wang Y, Yu Z, Xiao W, Lu S, Zhang J. Allosteric binding sites at the receptor-lipid bilayer interface: novel targets for GPCR drug discovery. Drug Discov Today 2020; 26:690-703. [PMID: 33301977 DOI: 10.1016/j.drudis.2020.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
As a superfamily of membrane receptors, G-protein-coupled receptors (GPCRs) have significant roles in human physiological processes, including cell proliferation, metabolism, and neuromodulation. GPCRs are vital targets of therapeutic drugs, and their allosteric regulation represents a novel direction for drug discovery. Given the numerous breakthroughs in structural biology, diverse allosteric sites on GPCRs have been identified within the extracellular and intracellular loops, and the seven core transmembrane helices. However, a unique type of allosteric site has also been discovered at the interface of the receptor-lipid bilayer, similar to the β2-adrenergic receptor. Here, we review recent identifications of these allosteric sites and the detailed modulator-target interactions within the interface for each modulator to highlight the role of lipids in GPCR allosteric drug discovery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Zhengtian Yu
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Wen Xiao
- Nutshell Biotechnology Co., Ltd., Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
90
|
Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam HJ, Mort M, Cooper DN, Sebat J, Iakoucheva LM, Mooney SD, Radivojac P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat Commun 2020; 11:5918. [PMID: 33219223 PMCID: PMC7680112 DOI: 10.1038/s41467-020-19669-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
Identifying pathogenic variants and underlying functional alterations is challenging. To this end, we introduce MutPred2, a tool that improves the prioritization of pathogenic amino acid substitutions over existing methods, generates molecular mechanisms potentially causative of disease, and returns interpretable pathogenicity score distributions on individual genomes. Whilst its prioritization performance is state-of-the-art, a distinguishing feature of MutPred2 is the probabilistic modeling of variant impact on specific aspects of protein structure and function that can serve to guide experimental studies of phenotype-altering variants. We demonstrate the utility of MutPred2 in the identification of the structural and functional mutational signatures relevant to Mendelian disorders and the prioritization of de novo mutations associated with complex neurodevelopmental disorders. We then experimentally validate the functional impact of several variants identified in patients with such disorders. We argue that mechanism-driven studies of human inherited disease have the potential to significantly accelerate the discovery of clinically actionable variants.
Collapse
Affiliation(s)
- Vikas Pejaver
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Jorge Urresti
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jose Lugo-Martinez
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Kymberleigh A Pagel
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Institute for Computational Medicine, Whiting School of Engineering, Johns Hopkins University, 220 Hackerman Hall, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Guan Ning Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Hyun-Jun Nam
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.
| | - Predrag Radivojac
- Department of Computer Science, Indiana University, Bloomington, IN, USA.
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
91
|
Bian Y, Jun JJ, Cuyler J, Xie XQ. Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Eur J Med Chem 2020; 206:112690. [PMID: 32818870 PMCID: PMC9948676 DOI: 10.1016/j.ejmech.2020.112690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Designing covalent allosteric modulators brings new opportunities to the field of drug discovery towards G-protein-coupled receptors (GPCRs). Targeting an allosteric binding pocket can allow a modulator to have protein subtype selectivity and low drug resistance. Utilizing covalent warheads further enables the modulator to increase the binding potency and extend the duration of action. This review starts with GPCR allosteric modulation to discuss the structural biology of allosteric binding pockets, the different types of allosteric modulators, as well as the advantages of employing allosteric modulation. This is followed by a discussion on covalent modulators to clarify how covalent ligands can benefit the receptor modulation and to illustrate moieties that can commonly be used as covalent warheads. Finally, case studies are presented on designing class A, B, and C GPCR covalent allosteric modulators to demonstrate successful stories on combining allosteric modulation and covalent binding. Limitations and future perspectives are also covered.
Collapse
Affiliation(s)
- Yuemin Bian
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Jaden Jungho Jun
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy,NIH National Center of Excellence for Computational Drug Abuse Research
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, Pittsburgh, PA, 15261, United States; NIH National Center of Excellence for Computational Drug Abuse Research, Pittsburgh, PA, 15261, United States; Drug Discovery Institute, Pittsburgh, PA, 15261, United States; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
92
|
Han B, Salituro FG, Blanco MJ. Impact of Allosteric Modulation in Drug Discovery: Innovation in Emerging Chemical Modalities. ACS Med Chem Lett 2020; 11:1810-1819. [PMID: 33062158 DOI: 10.1021/acsmedchemlett.9b00655] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Recent years have seen an unprecedented level of innovation in allosteric drug discovery and development, with multiple drug candidates advancing into clinical studies. From early examples of allosteric drugs like GABAA receptor modulators (benzodiazepines) in the 1960s to more recent GPCR negative allosteric modulators of CCR5 (maraviroc) approved in 2007, the opportunities for interrogating allosteric sites in drug discovery have expanded to other target classes such as protein-protein interactions, kinases, and nuclear hormone receptors. In this Innovation Letter, the authors highlight the latest advances of allosteric drug discovery from different target classes and novel emerging chemical modalities beyond small molecules.
Collapse
Affiliation(s)
- Bingsong Han
- Medicinal Chemistry. Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Francesco G. Salituro
- Medicinal Chemistry. Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Maria-Jesus Blanco
- Medicinal Chemistry. Sage Therapeutics, Inc., 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
93
|
Demissie R, Kabre P, Fung LWM. Nonactive-Site Mutations in S. aureus FabI That Induce Triclosan Resistance. ACS OMEGA 2020; 5:23175-23183. [PMID: 32954168 PMCID: PMC7495757 DOI: 10.1021/acsomega.0c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The wide use of the antimicrobial agent/biocide, triclosan, promotes triclosan-resistant bacterial strains, including Staphylococcus aureus, as well as leads to accumulation in the aquatic and terrestrial environments. Knowledge of the molecular actions of triclosan on S. aureus is needed to understand the consequence of triclosan resistance and environmental accumulation of triclosan on S. aureus resistant strains, as well as to develop biphenyl ether analogs as antibiotic candidates. Triclosan inhibits an essential enzyme in the fatty acid biosynthetic pathway, the reduced nicotinamide adenine dinucleotide (NADH)/reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enoyl-acyl carrier protein (enoyl-ACP) reductase, or FabI. In this study, we used error-prone polymerase chain reaction (epPCR) to generate mutations in the S. aureus FabI enzyme. Instead of using an elaborate FabI enzyme activity assay that involves ACP-linked substrates to determine whether triclosan inhibits the enzyme activities of individual FabI mutants, we used an efficient and economical assay that we developed, based on thermal shift principles, to screen for triclosan binding to FabI mutants in cells. We identified four active-site mutations. More interestingly, we also identified nine triclosan-resistant mutations distant from the active site (G113V, Y123H, S166N, N220I, G227C, A230T, V241I, F252I, and H253P) but located in disparate positions in the monomer-monomer and dimer-dimer interface regions in S. aureus FabI. We suggest that these sites may serve as potential allosteric sites for designing potential therapeutic inhibitors that offer advantages in selectivity since allosteric sites are less evolutionarily conserved.
Collapse
Affiliation(s)
- Robel Demissie
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Leslie W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
94
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
95
|
Frei R, Nordlohne J, Hüser U, Hild S, Schmidt J, Eitner F, Grundmann M. Allosteric targeting of the FFA2 receptor (GPR43) restores responsiveness of desensitized human neutrophils. J Leukoc Biol 2020; 109:741-751. [PMID: 32803826 PMCID: PMC8048482 DOI: 10.1002/jlb.2a0720-432r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The G protein‐coupled free fatty acid receptor 2 (FFA2R) is highly expressed on neutrophils and was previously described to regulate neutrophil activation. Allosteric targeting of G protein‐coupled receptors (GPCRs) is increasingly explored to create distinct pharmacology compared to endogenous, orthosteric ligands. The consequence of allosteric versus orthosteric FFA2R activation for neutrophil response, however, is currently largely elusive. Here, different FFA2R desensitization profiles in human neutrophils following allosteric or orthosteric activation are reported. Using a set of neutrophil functional assays to measure calcium flux, pERK1/2, chemotaxis, cellular degranulation, and oxidative burst together with holistic and pathway‐unbiased whole cell sensing based on dynamic mass redistribution, it is found that the synthetic positive allosteric modulator agonist 4‐CMTB potently activates neutrophils and simultaneously alters FFA2R responsiveness toward the endogenous, orthosteric agonist propionic acid (C3) after homologous and heterologous receptor desensitization. Stimulation with C3 or the hierarchically superior chemokine receptor activator IL‐8 led to strong FFA2R desensitization and rendered neutrophils unresponsive toward repeated stimulation with C3. In contrast, stimulation with allosteric 4‐CMTB engaged a distinct composition of signaling pathways as compared to orthosteric receptor activation and was able to activate neutrophils that underwent homologous and heterologous desensitization with C3 and IL‐8, respectively. Moreover, allosteric FFA2R activation could re‐sensitize FFA2 toward the endogenous agonist C3 after homologous and heterologous desensitization. Given the fact that receptor desensitization is critical in neutrophils to sense and adapt to their current environment, these findings are expected to be useful for the discovery of novel pharmacological mechanisms to modulate neutrophil responsiveness therapeutically.
Collapse
Affiliation(s)
- Robert Frei
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Johannes Nordlohne
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Ulrike Hüser
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Seda Hild
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Johannes Schmidt
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Frank Eitner
- Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| | - Manuel Grundmann
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,Bayer AG, Pharmaceuticals R&D, Preclinical Research, Pharma Research Center, Wuppertal, Germany
| |
Collapse
|
96
|
Bera I, Payghan PV. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery. Curr Pharm Des 2020; 25:3339-3349. [PMID: 31480998 DOI: 10.2174/1381612825666190903153043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. OBJECTIVE The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. METHOD This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. RESULTS This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. CONCLUSION The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.
Collapse
Affiliation(s)
- Indrani Bera
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, United States
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Department, CSIR-IICB, Kolkata, India.,Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| |
Collapse
|
97
|
Sogunmez N, Akten ED. Distinctive communication networks in inactive states of β 2 -adrenergic receptor: Mutual information and entropy transfer analysis. Proteins 2020; 88:1458-1471. [PMID: 32530095 DOI: 10.1002/prot.25965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/26/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
Mutual information and entropy transfer analysis employed on two inactive states of human beta-2 adrenergic receptor (β2 -AR) unraveled distinct communication pathways. Previously, a so-called "highly" inactive state of the receptor was observed during 1.5 microsecond long molecular dynamics simulation where the largest intracellular loop (ICL3) was swiftly packed onto the G-protein binding cavity, becoming entirely inaccessible. Mutual information quantifying the degree of correspondence between backbone-Cα fluctuations was mostly shared between intra- and extra-cellular loop regions in the original inactive state, but shifted to entirely different regions in this latest inactive state. Interestingly, the largest amount of mutual information was always shared among the mobile regions. Irrespective of the conformational state, polar residues always contributed more to mutual information than hydrophobic residues, and also the number of polar-polar residue pairs shared the highest degree of mutual information compared to those incorporating hydrophobic residues. Entropy transfer, quantifying the correspondence between backbone-Cα fluctuations at different timesteps, revealed a distinctive pathway directed from the extracellular site toward intracellular portions in this recently exposed inactive state for which the direction of information flow was the reverse of that observed in the original inactive state where the mobile ICL3 and its intracellular surroundings drove the future fluctuations of extracellular regions.
Collapse
Affiliation(s)
- Nuray Sogunmez
- Graduate Program of Bioinformatics and Genetics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
98
|
Maqsood B, Basit A, Khurshid M, Bashir Q. Characterization of a thermostable, allosteric L-asparaginase from Anoxybacillus flavithermus. Int J Biol Macromol 2020; 152:584-592. [DOI: 10.1016/j.ijbiomac.2020.02.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022]
|
99
|
Xie J, Lai L. Protein topology and allostery. Curr Opin Struct Biol 2020; 62:158-165. [DOI: 10.1016/j.sbi.2020.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/07/2023]
|
100
|
Allosteric drugs and mutations: chances, challenges, and necessity. Curr Opin Struct Biol 2020; 62:149-157. [DOI: 10.1016/j.sbi.2020.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|