51
|
Gálvez-Peralta M, Flatten KS, Loegering DA, Peterson KL, Schneider PA, Erlichman C, Kaufmann SH. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons. Mol Pharmacol 2014; 85:723-34. [PMID: 24569089 PMCID: PMC3990016 DOI: 10.1124/mol.113.088674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more complicated than previously recognized.
Collapse
Affiliation(s)
- Marina Gálvez-Peralta
- Divisions of Oncology Research (M.G.-P., K.S.F., D.A.L., K.L.P., P.A.S., S.H.K.) and Medical Oncology (C.E.), Department of Oncology and Department of Molecular Pharmacology & Experimental Therapeutics (S.H.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | |
Collapse
|
52
|
Martell RE, Brooks DG, Wang Y, Wilcoxen K. Discovery of novel drugs for promising targets. Clin Ther 2014; 35:1271-81. [PMID: 24054704 DOI: 10.1016/j.clinthera.2013.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/27/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Once a promising drug target is identified, the steps to actually discover and optimize a drug are diverse and challenging. OBJECTIVE The goal of this study was to provide a road map to navigate drug discovery. METHODS Review general steps for drug discovery and provide illustrating references. RESULTS A number of approaches are available to enhance and accelerate target identification and validation. Consideration of a variety of potential mechanisms of action of potential drugs can guide discovery efforts. The hit to lead stage may involve techniques such as high-throughput screening, fragment-based screening, and structure-based design, with informatics playing an ever-increasing role. Biologically relevant screening models are discussed, including cell lines, 3-dimensional culture, and in vivo screening. The process of enabling human studies for an investigational drug is also discussed. CONCLUSIONS Drug discovery is a complex process that has significantly evolved in recent years.
Collapse
Affiliation(s)
- Robert E Martell
- TESARO Inc, Waltham, Massachusetts; Tufts Medical Center, Boston, Massachusetts.
| | | | | | | |
Collapse
|
53
|
Jacq X, Kemp M, Martin NMB, Jackson SP. Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem Biophys 2014; 67:25-43. [PMID: 23712866 PMCID: PMC3756857 DOI: 10.1007/s12013-013-9635-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalent post-translational modification of proteins by ubiquitin and ubiquitin-like factors has emerged as a general mechanism to regulate myriad intra-cellular processes. The addition and removal of ubiquitin or ubiquitin-like proteins from factors has recently been demonstrated as a key mechanism to modulate DNA damage response (DDR) pathways. It is thus, timely to evaluate the potential for ubiquitin pathway enzymes as DDR drug targets for therapeutic intervention. The synthetic lethal approach provides exciting opportunities for the development of targeted therapies to treat cancer: most tumours have lost critical DDR pathways, and thus rely more heavily on the remaining pathways, while normal tissues are still equipped with all DDR pathways. Here, we review key deubiquitylating enzymes (DUBs) involved in DDR pathways, and describe how targeting DUBs may lead to selective therapies to treat cancer patients.
Collapse
Affiliation(s)
- Xavier Jacq
- MISSION Therapeutics Ltd, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | | | | | | |
Collapse
|
54
|
Abstract
Approximately one third of patients with non-small cell lung cancer have unresectable stage IIIA or stage IIIB disease; combined cytotoxic chemotherapy and radiation therapy delivered concurrently has been established as the standard treatment for such patients. Despite many clinical trials that tested several different radiochemotherapy combinations, it seems that a plateau of efficiencies at the acceptable risk of complications has been reached. Clinical studies indicate that the improved efficacy of radiochemotherapy is associated with the radiosensitizing effects of chemotherapy. Improvement of outcomes of this combined modality by developing novel radiosensitizers is a viable therapeutic strategy. In addition to causing cell death, ionizing radiation also induces a many-faceted signaling response, which activates numerous prosurvival pathways that lead to enhanced proliferation in the endothelial cells and increased vascularization in tumors. Radiation at doses used in the clinic activates cytoplasmic phospholipase A2, leading to increased production of arachidonic acid and lysophosphatidylcholine. The former is the initial step in the generation of eicosanoids, while the later is the initial step in the formation of lysophosphatidic acid, leading to the activation of inflammatory pathways. The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) is member of the insulin superfamily of receptor tyrosine kinases. The EML4-ALK fusion gene appears unique to lung cancer and signals through extracellular signal regulated kinase and phosphoinositide 3-kinase. Heat shock protein 90 (Hsp90) is often overexpressed and present in an activated multichaperone complex in cancer cells, and it is now regarded as essential for malignant transformation and progression. In this review we focus on radiosensitizing strategies involving the targeting of membrane phospholipids, EML4-ALK, and Hsp90 with specific inhibitors and briefly discuss the combination of radiation with antivascular agents.
Collapse
|
55
|
Fierro-Monti I, Echeverria P, Racle J, Hernandez C, Picard D, Quadroni M. Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy. PLoS One 2013; 8:e80425. [PMID: 24312219 PMCID: PMC3842317 DOI: 10.1371/journal.pone.0080425] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Collapse
Affiliation(s)
- Ivo Fierro-Monti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pablo Echeverria
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Julien Racle
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Celine Hernandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Manfredo Quadroni
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
56
|
Zhang M, Yogesha SD, Mayfield JE, Gill GN, Zhang Y. Viewing serine/threonine protein phosphatases through the eyes of drug designers. FEBS J 2013; 280:4739-60. [PMID: 23937612 DOI: 10.1111/febs.12481] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/03/2013] [Accepted: 08/02/2013] [Indexed: 01/04/2023]
Abstract
Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we discuss for each family of serine/threonine protein phosphatases their involvement in biological processes and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for the phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry, University of Texas at Austin, TX, USA
| | | | | | | | | |
Collapse
|
57
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
58
|
Yap TA, Popat S. The role of afatinib in the management of non-small cell lung carcinoma. Expert Opin Drug Metab Toxicol 2013; 9:1529-39. [PMID: 23985030 DOI: 10.1517/17425255.2013.832755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite initial patient benefit, drug resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) is inevitable. One of the key mechanisms responsible for the development of acquired drug resistance is the secondary T790M missense mutation in exon 20 of the EGFR kinase domain. Afatinib is an ATP-competitive small molecule inhibitor that potently and irreversibly inhibits EGFR and mutated EGFR including the T790M variant, as well as other members of the ErbB family in preclinical studies. AREAS COVERED The authors describe the rationale and provide the preclinical background to afatinib and its potential as a NSCLC therapy. Specifically, the authors detail the drug's pharmaco-kinetic profile and review its clinical efficacy and toxicity profile. EXPERT OPINION Afatinib is an effective treatment option for therapy-naive advanced NSCLC harboring an activating EGFR mutation. Furthermore, it is also of potential benefit to patients with acquired resistance to EGFR kinase inhibitors. In the future, the authors envision the clinical development of third-generation EGFR mutation-specific inhibitors in NSCLC, which may potentially spare normal tissue toxicity. Nevertheless, afatinib currently represents a bona fide treatment option in the NSCLC therapeutic armamentarium.
Collapse
Affiliation(s)
- Timothy A Yap
- Royal Marsden NHS Foundation Trust , London , UK +44 20 7352 8171 ;
| | | |
Collapse
|
59
|
Abstract
In this issue of Cancer Discovery, Guagnano and colleagues use a large and diverse annotated collection of cancer cell lines, the Cancer Cell Line Encyclopedia, to correlate whole-genome expression and genomic alteration datasets with cell line sensitivity data to the novel pan-fibroblast growth factor receptor (FGFR) inhibitor NVP-BGJ398. Their findings underscore not only the preclinical use of such cell line panels in identifying predictive biomarkers, but also the emergence of the FGFRs as valid therapeutic targets, across an increasingly broad range of malignancies.
Collapse
Affiliation(s)
- David C Loch
- Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
60
|
Workman P, Al-Lazikani B, Clarke PA. Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Curr Opin Pharmacol 2013; 13:486-96. [DOI: 10.1016/j.coph.2013.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 01/09/2023]
|
61
|
Chen C, Yang RL. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells. Braz J Med Biol Res 2013; 46:643-9. [PMID: 23903687 PMCID: PMC3854414 DOI: 10.1590/1414-431x20132979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/15/2013] [Indexed: 02/26/2023] Open
Abstract
MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid
culture of Pestalotiopsis photiniae isolated from the Chinese
Podocarpaceae plant Podocarpus macrophyllus. MP significantly
inhibited the proliferation of HeLa tumor cell lines. After treatment with MP,
characteristic apoptotic features such as DNA fragmentation and chromatin
condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP
induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western
blotting and real-time reverse transcription-polymerase chain reaction were used to
investigate protein and mRNA expression. MP caused significant cell cycle arrest by
upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and
p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was
increased after treatment with various MP concentrations. mRNA expression of the cell
cycle-related genes, p21CIP1, p16INK4a and Gadd45α, was significantly upregulated and mRNA levels
demonstrated significantly increased translation of p73,
JunB, FKHR, and Bim. The
results indicate that MP may be a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- C Chen
- College of Life Science, Hebei University, Baoding, China
| | | |
Collapse
|
62
|
Abstract
Selecting the best targets is a key challenge for drug discovery, and achieving this effectively, efficiently and systematically is particularly important for prioritizing candidates from the sizeable lists of potential therapeutic targets that are now emerging from large-scale multi-omics initiatives, such as those in oncology. Here, we describe an objective, systematic, multifaceted computational assessment of biological and chemical space that can be applied to any human gene set to prioritize targets for therapeutic exploration. We use this approach to evaluate an exemplar set of 479 cancer-associated genes, reveal the tension between biological relevance and chemical tractability, and describe major gaps in available knowledge that could be addressed to aid objective decision-making. We also propose drug repurposing opportunities and identify potentially druggable cancer-associated proteins that have been poorly explored with regard to the discovery of small-molecule modulators, despite their biological relevance.
Collapse
|
63
|
Monks NR, Cherba DM, Kamerling SG, Simpson H, Rusk AW, Carter D, Eugster E, Mooney M, Sigler R, Steensma M, Grabinski T, Marotti KR, Webb CP. A multi-site feasibility study for personalized medicine in canines with osteosarcoma. J Transl Med 2013; 11:158. [PMID: 23815880 PMCID: PMC3702405 DOI: 10.1186/1479-5876-11-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 01/06/2023] Open
Abstract
Background A successful therapeutic strategy, specifically tailored to the molecular constitution of an individual and their disease, is an ambitious objective of modern medicine. In this report, we highlight a feasibility study in canine osteosarcoma focused on refining the infrastructure and processes required for prospective clinical trials using a series of gene expression-based Personalized Medicine (PMed) algorithms to predict suitable therapies within 5 days of sample receipt. Methods Tumor tissue samples were collected immediately following limb amputation and shipped overnight from veterinary practices. Upon receipt (day 1), RNA was extracted from snap-frozen tissue, with an adjacent H&E section for pathological diagnosis. Samples passing RNA and pathology QC were shipped to a CLIA-certified laboratory for genomic profiling. After mapping of canine probe sets to human genes and normalization against a (normal) reference set, gene level Z-scores were submitted to the PMed algorithms. The resulting PMed report was immediately forwarded to the veterinarians. Upon receipt and review of the PMed report, feedback from the practicing veterinarians was captured. Results 20 subjects were enrolled over a 5 month period. Tissue from 13 subjects passed both histological and RNA QC and were submitted for genomic analysis and subsequent PMed analysis and report generation. 11 of the 13 samples for which PMed reports were produced were communicated to the veterinarian within the target 5 business days. Of the 7 samples that failed QC, 4 were due to poor RNA quality, whereas 2 were failed following pathological review. Comments from the practicing veterinarians were generally positive and constructive, highlighting a number of areas for improvement, including enhanced education regarding PMed report interpretation, drug availability, affordable pricing and suitable canine dosing. Conclusions This feasibility trial demonstrated that with the appropriate infrastructure and processes it is possible to perform an in-depth molecular analysis of a patient’s tumor in support of real time therapeutic decision making within 5 days of sample receipt. A number of areas for improvement have been identified that should reduce the level of sample attrition and support clinical decision making.
Collapse
|
64
|
Abstract
Large-scale, unbiased combinatorial drug screening has been used to identify effective genotype-selective therapeutic combinations that show promising activity in preclinical models of mutant BRAF andRAS melanoma that are resistant to the clinical BRAF inhibitor vemurafenib.
Collapse
Affiliation(s)
- Bissan Al-Lazikani
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom.
| | | |
Collapse
|
65
|
Ljubimova JY, Holler E. Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond) 2013; 7:1467-70. [PMID: 23148535 DOI: 10.2217/nnm.12.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
66
|
Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 2013; 31:1592-605. [PMID: 23509311 DOI: 10.1200/jco.2011.37.6418] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Signaling networks play key homeostatic processes in living organisms but are commonly hijacked in oncogenesis. Prominent examples include genetically altered receptor tyrosine kinases and dysregulated intracellular signaling molecules. The discovery and development of targeted therapies against such oncogenic proteins has imparted clinical benefit. Nevertheless, concerns remain about the limited single-agent efficacy and narrow therapeutic indices of many of these antitumor agents. Moreover, it is apparent that oncogenic proteins comprise complex signaling networks that interact through crosstalk and feedback loops, which modify therapeutic vulnerability. These complexities mandate the study of drug combinations, which will also become necessary to reverse tumor drug resistance. Here, we outline the challenges associated with rational drug codevelopment strategies, with a focus on the importance of analytically validated biomarkers for patient selection and pharmacokinetic-pharmacodynamic (PK-PD) studies. Overall, the most informative clinical studies of novel combinations will have the following characteristics: robust scientific hypotheses leading to their selection; supportive preclinical data from contextually appropriate preclinical model systems; sufficient preclinical PK data to inform on the risk of drug-drug interactions; and detailed PD studies to determine the biologically active dose range for each agent. Toward this end, several novel clinical trial designs may be envisioned to accelerate successful drug combination development while minimizing the risk of late drug combination attrition. Although considerable challenges remain, these efforts may enable important steps to be taken toward more durable therapeutic control of many cancers.
Collapse
Affiliation(s)
- Timothy A Yap
- Royal Marsden National Health Service Foundation Trust and The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | |
Collapse
|
67
|
Gonzalez de Castro D, Clarke PA, Al-Lazikani B, Workman P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 2013; 93:252-9. [PMID: 23361103 PMCID: PMC3577635 DOI: 10.1038/clpt.2012.237] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 01/01/2023]
Abstract
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Collapse
Affiliation(s)
- D Gonzalez de Castro
- Molecular Diagnostics Department, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - P A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - B Al-Lazikani
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - P Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| |
Collapse
|
68
|
Krakstad C, Birkeland E, Seidel D, Kusonmano K, Petersen K, Mjøs S, Hoivik EA, Wik E, Halle MK, Øyan AM, Kalland KH, Werner HMJ, Trovik J, Salvesen H. High-throughput mutation profiling of primary and metastatic endometrial cancers identifies KRAS, FGFR2 and PIK3CA to be frequently mutated. PLoS One 2012; 7:e52795. [PMID: 23300780 PMCID: PMC3531332 DOI: 10.1371/journal.pone.0052795] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 11/22/2022] Open
Abstract
Background Despite being the most common pelvic gynecologic malignancy in industrialized countries, no targeted therapies are available for patients with metastatic endometrial carcinoma. In order to improve treatment, underlying molecular characteristics of primary and metastatic disease must be explored. Methodology/Principal Findings We utilized the mass spectrometric-based mutation detection technology OncoMap to define the types and frequency of point somatic mutations in endometrial cancer. 67 primary tumors, 15 metastases corresponding to 7 of the included primary tumors and 11 endometrial cancer cell lines were screened for point mutations in 28 known oncogenes. We found that 27 (40.3%) of 67 primary tumors harbored one or more mutations with no increase in metastatic lesions. FGFR2, KRAS and PIK3CA were consistently the most frequently mutated genes in primary tumors, metastatic lesions and cell lines. Conclusions/Significance Our results emphasize the potential for targeting FGFR2, KRAS and PIK3CA mutations in endometrial cancer for development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Camilla Krakstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin Pharmacol Ther 2012; 93:117-28. [PMID: 23212109 DOI: 10.1038/clpt.2012.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients.
Collapse
|
70
|
|
71
|
Abstract
A new generation of technologies commonly named omics permits assessment of the entirety of the components of biological systems and produces an explosion of data and a major shift in our concepts of disease. These technologies will likely shape the future of health care. One aspect of these advances is that the data generated document the uniqueness of each human being in regard to disease risk and treatment response. These developments have reemphasized the concept of personalized medicine. Here we review the impact of omics technologies on one key aspect of personalized medicine: the individual drug response. We describe how knowledge of different omics may affect treatment decisions, namely drug choice and drug dose, and how it can be used to improve clinical outcomes.
Collapse
Affiliation(s)
- Urs A Meyer
- Division of Pharmacology and Neurobiology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
72
|
Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:277-302. [PMID: 23092187 DOI: 10.1146/annurev-pathol-020712-163923] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intratumor heterogeneity represents a major obstacle to effective cancer treatment and personalized medicine. However, investigators are now elucidating intratumor heterogeneity at the single-cell level due to improvements in technologies. Better understanding of the composition of tumors, and monitoring changes in cell populations during disease progression and treatment, will improve cancer diagnosis and therapeutic design. Measurements of intratumor heterogeneity may also be used as biomarkers to predict the risk of progression and therapeutic resistance. We summarize important considerations related to intratumor heterogeneity during tumor evolution. We also discuss experimental approaches that are commonly used to infer intratumor heterogeneity and describe how these methodologies can be translated into clinical practice.
Collapse
Affiliation(s)
- Vanessa Almendro
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
73
|
Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-l-malic acid). Int J Mol Sci 2012; 13:11681-11693. [PMID: 23109877 PMCID: PMC3472769 DOI: 10.3390/ijms130911681] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.
Collapse
|
74
|
Abstract
Over the past decade, whole genome sequencing and other 'omics' technologies have defined pathogenic driver mutations to which tumor cells are addicted. Such addictions, synthetic lethalities and other tumor vulnerabilities have yielded novel targets for a new generation of cancer drugs to treat discrete, genetically defined patient subgroups. This personalized cancer medicine strategy could eventually replace the conventional one-size-fits-all cytotoxic chemotherapy approach. However, the extraordinary intratumor genetic heterogeneity in cancers revealed by deep sequencing explains why de novo and acquired resistance arise with molecularly targeted drugs and cytotoxic chemotherapy, limiting their utility. One solution to the enduring challenge of polygenic cancer drug resistance is rational combinatorial targeted therapy.
Collapse
|
75
|
|
76
|
Abstract
Two recent papers published in Nature demonstrate the power of systematic high-throughput pharmacologic profiling of very large, diverse, molecularly-characterized human cancer cell line panels to reveal linkages between genetic profile and targeted-drug sensitivity. Known oncogene addictions are confirmed while surprising complexities and biomarker relationships with clinical potential are revealed.
Collapse
Affiliation(s)
- Paul Workman
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, UK.
| | | | | |
Collapse
|
77
|
Samant RS, Clarke PA, Workman P. The expanding proteome of the molecular chaperone HSP90. Cell Cycle 2012; 11:1301-8. [PMID: 22421145 DOI: 10.4161/cc.19722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular chaperone HSP90 maintains the activity and stability of a diverse set of "client" proteins that play key roles in normal and disease biology. Around 20 HSP90 inhibitors that deplete the oncogenic clientele have entered clinical trials for cancer. However, the full extent of the HSP90-dependent proteome, which encompasses not only clients but also proteins modulated by downstream transcriptional responses, is still incompletely characterized and poorly understood. Earlier large-scale efforts to define the HSP90 proteome have been valuable but are incomplete because of limited technical sensitivity. Here we discuss previous large-scale surveys of proteome perturbations induced by HSP90 inhibitors in light of a significant new study using state-of-the-art SILAC technology combined with more sensitive high-resolution mass spectrometry (MS) that extends the catalog of proteomic changes in inhibitor-treated cancer cells. Among wide-ranging changes, major functional responses include downregulation of protein kinase activity and the DNA damage response alongside upregulation of the protein degradation machinery. Despite this improved proteomic coverage, there was surprisingly little overlap with previous studies. This may be due in part to technical issues but is likely also due to the variability of the HSP90 proteome with the inhibitor conditions used, the cancer cell type and the genetic status of client proteins. We suggest future proteomic studies to address these factors, to help distinguish client protein components from indirect transcriptional components and to address other key questions in fundamental and translational HSP90 research. Such studies should also reveal new biomarkers for patient selection and novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rahul S Samant
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| | | | | |
Collapse
|
78
|
Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 2012; 6:155-76. [PMID: 22440008 PMCID: PMC3476506 DOI: 10.1016/j.molonc.2012.02.004] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 02/07/2023] Open
Abstract
The discovery and development of small molecule cancer drugs has been revolutionised over the last decade. Most notably, we have moved from a one-size-fits-all approach that emphasized cytotoxic chemotherapy to a personalised medicine strategy that focuses on the discovery and development of molecularly targeted drugs that exploit the particular genetic addictions, dependencies and vulnerabilities of cancer cells. These exploitable characteristics are increasingly being revealed by our expanding understanding of the abnormal biology and genetics of cancer cells, accelerated by cancer genome sequencing and other high-throughput genome-wide campaigns, including functional screens using RNA interference. In this review we provide an overview of contemporary approaches to the discovery of small molecule cancer drugs, highlighting successes, current challenges and future opportunities. We focus in particular on four key steps: Target validation and selection; chemical hit and lead generation; lead optimization to identify a clinical drug candidate; and finally hypothesis-driven, biomarker-led clinical trials. Although all of these steps are critical, we view target validation and selection and the conduct of biology-directed clinical trials as especially important areas upon which to focus to speed progress from gene to drug and to reduce the unacceptably high attrition rate during clinical development. Other challenges include expanding the envelope of druggability for less tractable targets, understanding and overcoming drug resistance, and designing intelligent and effective drug combinations. We discuss not only scientific and technical challenges, but also the assessment and mitigation of risks as well as organizational, cultural and funding problems for cancer drug discovery and development, together with solutions to overcome the 'Valley of Death' between basic research and approved medicines. We envisage a future in which addressing these challenges will enhance our rapid progress towards truly personalised medicine for cancer patients.
Collapse
|
79
|
Abstract
The discovery and clinical development of small-molecule inhibitors of the phosphatidylinositide 3-kinase (PI3 kinase) family of lipid kinases have marked a remarkable 20-year journey that follows the progressive developments in cancer biology over the last few decades: from hypothesis-driven, basic cancer research that began with viral oncogenesis and developed in the 1960s and 70s, through the discovery of individual mutated oncogenes and tumor suppressor genes in 1970 and 80s and the linkage of these cancer genes to signal transduction pathways in the 1990s, to all large-scale genome-wide sequencing, functional screening, and network biology efforts today. Thus, PI3 kinase research began with the discovery in 1985 of a new type of enzyme activity associated with viral oncogenesis. It benefited greatly from the discovery of wortmannin and LY294002 as PI3 kinase inhibitors and chemical tools in late 1980s to mid-90s. Alongside these tools, genetic validation of PI3 kinase as a target initially involved activation by upstream oncogenic receptor tyrosine kinases and RAS mutation, together with overexpression and amplification of the p110α catalytic isoform of PI3 kinase and frequent loss of the tumor suppressor and negative regulator of PI3 kinase activity, PTEN. As PI3 kinase drug development began, further stimulus came from the discovery through genome sequencing of mutations in PIK3CA, which encodes p110α and is the most frequently mutated kinase in the human genome. From these beginnings, there are now many PI3 kinase inhibitors in clinical trials and more in preclinical development. We review progress, current challenges, and future opportunities in this article.
Collapse
Affiliation(s)
- Paul Workman
- From the Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey UK
| | - Paul Clarke
- From the Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey UK
| |
Collapse
|