51
|
Wüstmann N, Seitzer K, Humberg V, Vieler J, Grundmann N, Steinestel J, Tiedje D, Duensing S, Krabbe LM, Bögemann M, Schrader AJ, Bernemann C, Schlack K. Co-expression and clinical utility of AR-FL and AR splice variants AR-V3, AR-V7 and AR-V9 in prostate cancer. Biomark Res 2023; 11:37. [PMID: 37016463 PMCID: PMC10074820 DOI: 10.1186/s40364-023-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Androgen receptor (AR) splice variants (AR-Vs) have been discussed as a biomarker in prostate cancer (PC). However, some reports question the predictive property of AR-Vs. From a mechanistic perspective, the connection between AR full length (AR-FL) and AR-Vs is not fully understood. Here, we aimed to investigate the dependence of AR-FL and AR-V expression levels on AR gene activity. Additionally, we intended to comprehensively analyze presence of AR-FL and three clinically relevant AR-Vs (AR-V3, AR-V7 and AR-V9) in different stages of disease, especially with respect to clinical utility in PC patients undergoing AR targeted agent (ARTA) treatment. METHODS AR-FL and AR-V levels were analyzed in PC and non-PC cell lines upon artificial increase of AR pre-mRNA using either drug treatment or AR gene activation. Furthermore, expression of AR-FL and AR-Vs was determined in PC specimen at distinct stages of disease (primary (n = 10) and metastatic tissues (n = 20), liquid biopsy samples (n = 422), mCRPC liquid biopsy samples of n = 96 patients starting novel treatment). Finally, baseline AR-FL and AR-V status was correlated with clinical outcome in a defined cohort of n = 65 mCRPC patients undergoing ARTA treatment. RESULTS We revealed rising levels of AR-FL accompanied with appearance and increase of AR-Vs in dependence of elevated AR pre-mRNA levels. We also noticed increase in AR-FL and AR-V levels throughout disease progression. AR-V expression was always associated with high AR-FL levels without any sample being solely AR-V positive. In patients undergoing ARTA treatment, AR-FL did show prognostic, yet not predictive validity. Additionally, we observed a substantial clinical response to ARTA treatment even in AR-V positive patients. Accordingly, multivariate analysis did not demonstrate independent significance of AR-Vs in neither predictive nor prognostic clinical utility. CONCLUSION We demonstrate a correlation between AR-FL and AR-V expression during PC progression; with AR-V expression being a side-effect of elevated AR pre-mRNA levels. Clinically, AR-V positivity relies on high levels of AR-FL, making cells still vulnerable to ARTA treatment, as demonstrated by AR-FL and AR-V positive patients responding to ARTA treatment. Thus, AR-FL and AR-V might be considered as a prognostic, yet not predictive biomarker in mCRPC patients.
Collapse
Affiliation(s)
- Neele Wüstmann
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Konstantin Seitzer
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Verena Humberg
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Julia Vieler
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Norbert Grundmann
- Institute for Bioinformatics, University Hospital Muenster, Muenster, Germany
| | - Julie Steinestel
- Department of Urology, University Hospital Augsburg, Augsburg, Germany
| | - Dorothee Tiedje
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Laura-Maria Krabbe
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Martin Bögemann
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| | - Christof Bernemann
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany.
| | - Katrin Schlack
- Department of Urology, University Hospital Muenster, Albert-Schweitzer Campus 1 A1, 48149, Muenster, Germany
| |
Collapse
|
52
|
Jiménez-Vacas JM, Montero-Hidalgo AJ, Gómez-Gómez E, Sáez-Martínez P, Fuentes-Fayos AC, Closa A, González-Serrano T, Martínez-López A, Sánchez-Sánchez R, López-Casas PP, Sarmento-Cabral A, Olmos D, Eyras E, Castaño JP, Gahete MD, Luque RM. Tumor suppressor role of RBM22 in prostate cancer acting as a dual-factor regulating alternative splicing and transcription of key oncogenic genes. Transl Res 2023; 253:68-79. [PMID: 36089245 DOI: 10.1016/j.trsl.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adrià Closa
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Ana Martínez-López
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia; Catalan Institution for Research and Advanced Studies. Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
53
|
Zhang N, Huang D, Ruan X, Ng ATL, Tsu JHL, Jiang G, Huang J, Zhan Y, Na R. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resist Updat 2023; 67:100912. [PMID: 36623445 DOI: 10.1016/j.drup.2022.100912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal causes of cancer-related death in male. It is characterized by chromosomal instability and disturbed signaling transduction. E3 ubiquitin ligases are well-recognized as mediators leading to genomic alterations and malignant phenotypes. There is a lack of systematic study on novel oncodrivers with genomic and clinical significance in PCa. In this study we used clustered regularly interspaced short palindromic repeats (CRISPR) system to screen 656 E3 ubiquitin ligases as oncodrivers or tumor repressors in PCa cells. We identified 51 significantly changed genes, and conducted genomic and clinical analysis on these genes. It was found that the Ring Finger Protein 19 A (RNF19A) was a novel oncodriver in PCa. RNF19A was frequently amplified and highly expressed in PCa and other cancer types. Clinically, higher RNF19A expression correlated with advanced Gleason Score and predicted castration resistance. Mechanistically, transcriptomics, quantitative and ubiquitination proteomic analysis showed that RNF19A ubiquitylated Thyroid Hormone Receptor Interactor 13 (TRIP13) and was transcriptionally activated by androgen receptor (AR) and Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A). This study uncovers the genomic and clinical significance of a oncodriver RNF19A in PCa. The results of this study indicate that targeting AR/HIF1A-RNF19A-TRIP13 signaling axis could be an alternative option for PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ada Tsui-Lin Ng
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James Hok-Leung Tsu
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongle Zhan
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
54
|
Amendoeira AF, Luz A, Valente R, Roma-Rodrigues C, Ali H, van Lier JE, Marques F, Baptista PV, Fernandes AR. Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes. Int J Mol Sci 2023; 24:3600. [PMID: 36835012 PMCID: PMC9963437 DOI: 10.3390/ijms24043600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.
Collapse
Affiliation(s)
- Ana F. Amendoeira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Ruben Valente
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| |
Collapse
|
55
|
Androgen receptor variant 7 exacerbates hepatocarcinogenesis in a c-MYC-driven mouse HCC model. Oncogenesis 2023; 12:4. [PMID: 36746917 PMCID: PMC9902460 DOI: 10.1038/s41389-023-00449-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor variant 7 (AR-V7), an AR isoform with a truncated ligand-binding domain, functions as a transcription factor in an androgen-independent manner. AR-V7 is expressed in a subpopulation of hepatocellular carcinoma (HCC), however, its role(s) in this cancer is undefined. In this study, we investigated the potential roles of AR-V7 in hepatocarcinogenesis in vivo in a c-MYC-driven mouse HCC model generated by the hydrodynamic tail-vein injection system. The impacts of AR-V7 on gene expression in mouse HCC were elucidated by RNA-seq transcriptome and ontology analyses. The results showed that AR-V7 significantly exacerbated the c-MYC-mediated oncogenesis in the livers of both sexes. The transcriptome and bioinformatics analyses revealed that AR-V7 and c-MYC synergistically altered the gene sets involved in various cancer-related biological processes, particularly in lipid and steroid/sterol metabolisms. Importantly, AR-V7 suppressed a tumor suppressor Claudin 7 expression, upregulated by c-MYC overexpression via the p53 signaling pathway. Claudin 7 overexpression significantly suppressed the c-MYC-driven HCC development under p53-deficient conditions. Our results suggest that the AR-V7 exacerbates the c-MYC-driven hepatocarcinogenesis by potentiating the oncogenic roles and minimizing the anti-oncogenic functions of c-MYC. Since AR-V7 is expressed in a subpopulation of HCC cases, it could contribute to the inter- and intra-heterogeneity of HCC.
Collapse
|
56
|
Zhang Z, Xie T, Zhang S, Yin H, Zhang X, Zhang S, Chen W, Yu D, Qiu X, Zhao W, Guo H, Zhuang J. Second generation androgen receptor antagonist, TQB3720 abrogates prostate cancer growth via AR/GPX4 axis activated ferroptosis. Front Pharmacol 2023; 14:1110146. [PMID: 36744249 PMCID: PMC9895946 DOI: 10.3389/fphar.2023.1110146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose: Prostate cancer (PCa) poses a great threat to humans. The study aimed to evaluate the potential of TQB3720 in promoting ferroptosis to suppress prostate cancer, providing a theoretical basis for PCa therapy. Methods: PCa cells and nude mice models were divided into TQB3720, enzalutamide (ENZ), and control groups. Sulforhodamine B assay, colony formation assessment, organoids culture system, and the CCK8 assay were used for detecting proliferation. Western blot assay was processed to detect the expression of androgen receptor (AR), ferroptosis, and apoptosis-related genes. Flow cytometry was applied to measure the intracellular ROS levels. ELISA was performed to determine the cellular oxidized glutathione (GSSG) and malondialdehyde (MDA) levels. RT-qPCR was conducted to detect the mRNA expression of genes in AR signaling. BODIPYTM™ 581/591 was processed for detection of intracellular lipid peroxidation levels. The interaction of AR with other translational factor complex proteins was explored using Co-immunoprecipitation (Co-IP), and the chromatin immunoprecipitation (ChIP) assay was performed to detect the binding of AR-involved translational complex to downstream genes promoter. Luciferase reporter assay was conducted to examine the translation activity of GPX4 promoter, and immunohistochemistry (IHC) was conducted to analyze the levels of c-MYC, Ki-67 and AR in TQB3720-treated cancer tissues. Results: Here, we found TQB3720 inhibits the growth of prostate cancer in vitro and in vivo. TQB3720 treatment induced intracellular levels of GSSG and MDA significantly, by which hints AR antagonist caused ferroptosis-related cell death. Moreover, molecular evidence shown TQB3720 regulates downstream of AR signaling by binding AR resulting in inhibition of AR entry into the nucleus. Additional, we also proved that TQB3720 abrogates the interaction between AR and SP1 and leads to decrease GPX4 transcription. Conclusion: TQB3720 promotes ferroptosis in prostate cancer cells by reducing the AR/SP1 transcriptional complex binding to GPX4 promoter. As a result, it is suggested to be a potential drug for clinic prostate cancer treatment.
Collapse
Affiliation(s)
- Zhongqing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shun Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Haoli Yin
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Xuyu Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Siyuan Zhang
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Wei Chen
- Institute of Urology Nanjing University, Nanjing, China
| | - Ding Yu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Xuefeng Qiu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| | - Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Urology Nanjing University, Nanjing, China
| |
Collapse
|
57
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
58
|
Cardiometabolic side effects of androgen deprivation therapy in prostate cancer. Curr Opin Support Palliat Care 2022; 16:216-222. [PMID: 36349380 DOI: 10.1097/spc.0000000000000624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Androgen-deprivation therapy (ADT) is widely employed for treatment of advanced prostate cancer and it is considered the frontline therapy. However, the numerous adverse reactions associated with this treatment option are concerning and its potential association with cardiovascular diseases (CVD) should not be overlooked. In this review, we examine the literature on the cardiovascular side effects of ADT and the physiologic mechanisms underpinning the association with CVD. We will also specifically discuss the different findings regarding the interesting potential disparity in major cardiovascular events among GnRH agonist-treated patients compared with patients undergoing GnRH antagonist treatment. RECENT FINDINGS Androgen-deprivation therapy increases the risk of developing CVD by altering the body composition, metabolism, vascular system, and cardiac physiology. GnRH agonists may pose a higher risk of cardiovascular mortality and morbidity than GnRH antagonists; however, this link remains to be determined. Furthermore, screening for cardiovascular risk factors before and during ADT treatment is a crucial step in preventing major adverse cardiac events in prostate cancer patients. Notably, preexisting CVD and comorbidities have been identified as major key elements predicting cardiovascular events. Early implementation of pharmacological and nonpharmacological treatment strategies is strongly suggested, and regular follow-up visits should be scheduled to continuously assess patients' cardiovascular risk under ADT. SUMMARY ADT is a very powerful treatment option for advanced prostate cancer that improves survival outcomes but has the potential of considerably impacting patients' cardiovascular health. Medical optimization and close monitoring are crucial during treatment with ADT.
Collapse
|
59
|
Han Z, Rimal U, Khatiwada P, Brandman J, Zhou J, Hussain M, Viola RE, Shemshedini L. Dual-Acting Peptides Target EZH2 and AR: A New Paradigm for Effective Treatment of Castration-Resistant Prostate Cancer. Endocrinology 2022; 164:6775160. [PMID: 36288553 DOI: 10.1210/endocr/bqac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/16/2023]
Abstract
Prostate cancer starts as a treatable hormone-dependent disease, but often ends in a drug-resistant form called castration-resistant prostate cancer (CRPC). Despite the development of the antiandrogens enzalutamide and abiraterone for CRPC, which target the androgen receptor (AR), drug resistance usually develops within 6 months and metastatic CRPC (mCRPC) leads to lethality. EZH2, found with SUZ12, EED, and RbAP48 in Polycomb repressive complex 2 (PRC2), has emerged as an alternative target for the treatment of deadly mCRPC. Unfortunately, drugs targeting EZH2 have shown limited efficacy in mCRPC. To address these failures, we have developed novel, dual-acting peptide inhibitors of PRC2 that uniquely target the SUZ12 protein component, resulting in the inhibition of both PRC2 canonical and noncanonical functions in prostate cancer. These peptides were found to inhibit not only the EZH2 methylation activity, but also block its positive effect on AR gene expression in prostate cancer cells. Since the peptide effect on AR levels is transcriptional, the inhibitory peptides can block the expression of both full-length AR and its splicing variants including AR-V7, which plays a significant role in the development of drug resistance. This dual-mode action provides the peptides with the capability to kill enzalutamide-resistant CRPC cells. These peptides are also more cytotoxic to prostate cancer cells than the combination of enzalutamide and an EZH2 inhibitory drug, which was recently suggested to be an effective treatment of mCRPC disease. Our data show that such a dual-acting therapeutic approach can be more effective than the existing front-line drug therapies for treating deadly mCRPC.
Collapse
Affiliation(s)
- Zhengyang Han
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ujjwal Rimal
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Prabesh Khatiwada
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Jacob Brandman
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Jun Zhou
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Muhammad Hussain
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Lirim Shemshedini
- Department of Biological Sciences and Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
60
|
Kwan EM, Wyatt AW, Chi KN. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Front Oncol 2022; 12:1054497. [PMID: 36439451 PMCID: PMC9685669 DOI: 10.3389/fonc.2022.1054497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Plasma circulating tumor DNA (ctDNA) represents short fragments of tumor-derived DNA released into the bloodstream primarily from cancer cells undergoing apoptosis. In metastatic castration-resistant prostate cancer (mCRPC), characterizing genomic alterations in ctDNA identifies mutations, copy number alterations, and structural rearrangements with predictive and prognostic biomarker utility. These associations with clinical outcomes have resulted in ctDNA increasingly incorporated into routine clinical care. In this review, we summarize current and emerging applications for ctDNA analysis in metastatic prostate cancer, including outcome prediction, treatment selection, and characterization of treatment resistance. We also discuss potential pitfalls with interpreting ctDNA findings, namely false negatives arising from low tumor content and optimal assay design, including correction for clonal hematopoiesis of indeterminate potential and germline variants. Understanding the influence of these limitations on interpretation of ctDNA results is necessary to overcome barriers to clinical implementation. Nevertheless, as assay availability and technology continue to improve, recognizing both opportunities and shortcomings of ctDNA analysis will retain relevance with informing the implementation of precision-oncology initiatives for metastatic prostate cancer.
Collapse
Affiliation(s)
- Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
61
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
62
|
Kargbo R. Targeted Degradation of Androgen Receptor for the Potential Treatment of Prostate Cancer. ACS Med Chem Lett 2022; 13:1558-1560. [PMID: 36267135 PMCID: PMC9578027 DOI: 10.1021/acsmedchemlett.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer (PCa) is the fourth most commonly diagnosed cancer in the world. Antiandrogens treatments have eventually mostly induced resistant mutations in patients, and when higher dosages are administered, they might cause adverse effects, such as fatigue, back pain, and constipation. The present Patent Highlight provides PROTACs that degrade or inhibit the androgen receptor at low concentrations in a subject in need of treatment.
Collapse
|
63
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
64
|
AR-regulated ZIC5 contributes to the aggressiveness of prostate cancer. Cell Death Dis 2022; 8:393. [PMID: 36127329 PMCID: PMC9489711 DOI: 10.1038/s41420-022-01181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
The mechanisms by which prostate cancer (PCa) progresses to the aggressive castration-resistant stage remain uncertain. Zinc finger of the cerebellum 5 (ZIC5), a transcription factor belonging to the ZIC family, is involved in the pathology of various cancers. However, the potential effect of ZIC5 on PCa malignant progression has not been fully defined. Here, we show that ZIC5 is upregulated in PCa, particularly in metastatic lesions, in positive association with poor prognosis. Genetic inhibition of ZIC5 in PCa cells obviously attenuated invasion and metastasis and blunted the oncogenic properties of colony formation. Mechanistically, ZIC5 functioned as a transcription factor to promote TWIST1-mediated EMT progression or as a cofactor to strengthen the β-catenin-TCF4 association and stimulate Wnt/β-catenin signaling. Importantly, ZIC5 and the androgen receptor (AR) form a positive feed-forward loop to mutually stimulate each other’s expression. AR, in cooperation with its steroid receptor coactivator 3 (SRC-3), increased ZIC5 expression through binding to the miR-27b-3p promoter and repressing miR-27b-3p transcription. In turn, ZIC5 potentiated AR, AR-V7, and AR targets’ expression. Besides, ZIC5 inhibition reduced AR and AR-V7 protein expression and enhanced the sensitivity of PCa to enzalutamide (Enz) treatment, both in vitro and in vivo. These findings indicate that the reciprocal activation between AR and ZIC5 promotes metastasis and Enz resistance of PCa and suggest the therapeutic value of cotargeting ZIC5 and AR for the treatment of advanced PCa.
Collapse
|
65
|
Abstract
A splice variant of the androgen receptor that drives prostate cancer resistance translocates into the nucleus using a different mechanism from the full-length receptor and exhibits distinct molecular properties once inside.
Collapse
Affiliation(s)
- Prathyusha Konda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | | |
Collapse
|
66
|
Sowalsky AG, Figueiredo I, Lis RT, Coleman I, Gurel B, Bogdan D, Yuan W, Russo JW, Bright JR, Whitlock NC, Trostel SY, Ku AT, Patel RA, True LD, Welti J, Jimenez-Vacas JM, Rodrigues DN, Riisnaes R, Neeb A, Sprenger CT, Swain A, Wilkinson S, Karzai F, Dahut WL, Balk SP, Corey E, Nelson PS, Haffner MC, Plymate SR, de Bono JS, Sharp A. Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clin Cancer Res 2022; 28:3509-3525. [PMID: 35695870 PMCID: PMC9378683 DOI: 10.1158/1078-0432.ccr-22-0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
Collapse
Affiliation(s)
| | | | - Rosina T. Lis
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bora Gurel
- Institute of Cancer Research, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | | | - John R. Bright
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | - Anson T. Ku
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | - Antje Neeb
- Institute of Cancer Research, London, UK
| | | | | | | | - Fatima Karzai
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Steven P. Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Eva Corey
- University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Stephen R. Plymate
- University of Washington, Seattle, Washington
- Geriatrics Research, Education and Clinical Center, VAPSHCS, Seattle, Washington
| | - Johann S. de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
67
|
Qie Y, Zhou D, Wu Z, Liu S, Shen C, Hu H, Zhang C, Xu Y. Low-dose hexavalent chromium(VI) exposure promotes prostate cancer cell proliferation by activating MAGEB2-AR signal pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113724. [PMID: 35660381 DOI: 10.1016/j.ecoenv.2022.113724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.
Collapse
Affiliation(s)
- Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shenglai Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
68
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
69
|
Wittka A, Ketteler J, Borgards L, Maier P, Herskind C, Jendrossek V, Klein D. Stromal Fibroblasts Counteract the Caveolin-1-Dependent Radiation Response of LNCaP Prostate Carcinoma Cells. Front Oncol 2022; 12:802482. [PMID: 35155239 PMCID: PMC8826751 DOI: 10.3389/fonc.2022.802482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
In prostate cancer (PCa), a characteristic stromal–epithelial redistribution of the membrane protein caveolin 1 (CAV1) occurs upon tumor progression, where a gain of CAV1 in the malignant epithelial cells is accompanied by a loss of CAV1 in the tumor stroma, both facts that were correlated with higher Gleason scores, poor prognosis, and pronounced resistance to therapy particularly to radiotherapy (RT). However, it needs to be clarified whether inhibiting the CAV1 gain in the malignant prostate epithelium or limiting the loss of stromal CAV1 would be the better choice for improving PCa therapy, particularly for improving the response to RT; or whether ideally both processes need to be targeted. Concerning the first assumption, we investigated the RT response of LNCaP PCa cells following overexpression of different CAV1 mutants. While CAV1 overexpression generally caused an increased epithelial-to-mesenchymal phenotype in respective LNCaP cells, effects that were accompanied by increasing levels of the 5′-AMP-activated protein kinase (AMPK), a master regulator of cellular homeostasis, only wildtype CAV1 was able to increase the three-dimensional growth of LNCaP spheroids, particularly following RT. Both effects could be limited by an additional treatment with the SRC inhibitor dasatinib, finally resulting in radiosensitization. Using co-cultured (CAV1-expressing) fibroblasts as an approximation to the in vivo situation of early PCa it could be revealed that RT itself caused an activated, more tumor-promoting phenotype of stromal fibroblats with an increased an increased metabolic potential, that could not be limited by combined dasatinib treatment. Thus, targeting fibroblasts and/or limiting fibroblast activation, potentially by limiting the loss of stromal CAV1 seems to be absolute for inhibiting the resistance-promoting CAV1-dependent signals of the tumor stroma.
Collapse
Affiliation(s)
- Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Lars Borgards
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical Faculty Essen, Essen, Germany
| |
Collapse
|
70
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
71
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
72
|
Insel PA, Blaschke TF, Amara SG, Meyer UA. Introduction to the Theme "New Insights, Strategies, and Therapeutics for Common Diseases". Annu Rev Pharmacol Toxicol 2021; 62:19-24. [PMID: 34606327 DOI: 10.1146/annurev-pharmtox-091421-094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The reviews in Volume 62 of the Annual Review of Pharmacology and Toxicology (ARPT) cover a diverse range of topics. A theme that encompasses many of these reviews is their relevance to common diseases and disorders, including type 2 diabetes, heart failure, cancer, tuberculosis, Alzheimer's disease, neurodegenerative disorders, and Down syndrome. Other reviews highlight important aspects of therapeutics, including placebos and patient-centric approaches to drug formulation. The reviews with this thematic focus, as well as other reviews in this volume, emphasize new mechanistic insights, experimental and therapeutic strategies, and novel insights regarding topics in the disciplines of pharmacology and toxicology. As the editors of ARPT, we believe that these reviews help advance those disciplines and, even more importantly, have the potential to improve the health care of the world's population. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | | | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|