51
|
Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2014; 12:211-24. [DOI: 10.1586/erv.12.147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
Genetic engineering and characterization of Cowpea mosaic virus empty virus-like particles. Methods Mol Biol 2014; 1108:139-53. [PMID: 24243247 DOI: 10.1007/978-1-62703-751-8_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of methods for the production of empty Cowpea mosaic virus (CPMV) virus-like particles (VLPs) that are devoid of RNA, eVLPs, has renewed promise in CPMV capsid technologies. The recombinant nature of CPMV eVLP production means that the extent and variety of genetic modifications that may be incorporated into the particles is theoretically much greater than those that can be made to infectious CPMV virions due to restrictions on viral propagation of the latter. Free of the infectious agent, the genomic RNA, these particles are now finding potential uses in vaccine development, in vivo imaging, drug delivery, and other nanotechnology applications that make use of internal loading of the empty particles. Here we describe methods for the genetic modification and production of CPMV eVLPs and describe techniques useful for their characterization.
Collapse
|
53
|
Love AJ, Makarov V, Yaminsky I, Kalinina NO, Taliansky ME. The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 2013; 449:133-9. [PMID: 24418546 DOI: 10.1016/j.virol.2013.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/15/2013] [Accepted: 11/02/2013] [Indexed: 12/24/2022]
Abstract
Due to the nanoscale size and the strictly controlled and consistent morphologies of viruses, there has been a recent interest in utilizing them in nanotechnology. The structure, surface chemistries and physical properties of many viruses have been well elucidated, which have allowed identification of regions of their capsids which can be modified either chemically or genetically for nanotechnological uses. In this review we focus on the use of such modifications for the functionalization and production of viruses and empty viral capsids that can be readily decorated with metals in a highly tuned manner. In particular, we discuss the use of two plant viruses (Cowpea mosaic virus and Tobacco mosaic virus) which have been extensively used for production of novel metal nanoparticles (<100nm), composites and building blocks for 2D and 3D materials, and illustrate their applications.
Collapse
Affiliation(s)
- Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom.
| | - Valentine Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Igor Yaminsky
- Physical Faculty of Moscow State University, Moscow, Russia
| | - Natalia O Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | |
Collapse
|
54
|
Saunders K, Lomonossoff GP. Exploiting plant virus-derived components to achieve in planta expression and for templates for synthetic biology applications. THE NEW PHYTOLOGIST 2013; 200:16-26. [PMID: 23452220 PMCID: PMC7167714 DOI: 10.1111/nph.12204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/31/2013] [Indexed: 05/04/2023]
Abstract
This review discusses the varying roles that have been played by many plant-viral regulatory sequences and proteins in the creation of plant-based expression systems and virus particles for use in nanotechnology. Essentially, there are two ways of expressing an exogenous protein: the creation of transgenic plants possessing a stably integrated gene construction, or the transient expression of the desired gene following the infiltration of the gene construct. Both depend on disarmed strains of Agrobacterium tumefaciens to deliver the created gene construction into cell nuclei, usually through the deployment of virus-derived components. The importance of efficient mRNA translation in the latter process is highlighted. Plant viruses replicate to sustain an infection to promote their survival. The major product of this, the virus particle, is finding increasing roles in the emerging field of bionanotechnology. One of the major products of plant-viral expression is the virus-like particle (VLP). These are increasingly playing a role in vaccine development. Similarly, many VLPs are suitable for the investigation of the many facets of the emerging field of synthetic biology, which encompasses the design and construction of new biological functions and systems not found in nature. Genetic and chemical modifications to plant-generated VLPs serve as ideal starter templates for many downstream synthetic biology applications.
Collapse
Affiliation(s)
- Keith Saunders
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - George P. Lomonossoff
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
55
|
Peyret H, Lomonossoff GP. The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. PLANT MOLECULAR BIOLOGY 2013; 83:51-8. [PMID: 23479085 DOI: 10.1007/s11103-013-0036-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/26/2013] [Indexed: 05/20/2023]
Abstract
The pEAQ vectors are a series of plasmids designed to allow easy and quick production of recombinant proteins in plants. Their main feature is the use of the Cowpea Mosaic Virus hypertranslational "CPMV-HT" expression system, which provides high yields of recombinant protein through extremely high translational efficiency without the need for viral replication. Since their creation, the pEAQ vectors have been used to produce a wide variety of proteins in plants. Viral proteins and Virus-Like Particles (VLPs) have been of particular interest, but other types of proteins including active enzymes have also been expressed. While the pEAQ vectors have mostly been used in a transient expression context, through agroinfiltration of leaves, they have also been shown to be suitable for the production of stably transformed lines of both cell cultures and whole plants. This paper looks back on the genesis of the pEAQ vectors and reviews their use so far.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
56
|
Zhang H, Wang L, Hunter D, Voogd C, Joyce N, Davies K. A Narcissus mosaic viral vector system for protein expression and flavonoid production. PLANT METHODS 2013; 9:28. [PMID: 23849589 PMCID: PMC3728148 DOI: 10.1186/1746-4811-9-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/07/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND With the explosive numbers of sequences generated by next generation sequencing, the demand for high throughput screening to understand gene function has grown. Plant viral vectors have been widely used as tools in down-regulating plant gene expression. However, plant viral vectors can also express proteins in a very efficient manner and, therefore, can also serve as a valuable tool for characterizing proteins and their functions in metabolic pathways in planta. RESULTS In this study, we have developed a Gateway®-based high throughput viral vector cloning system from Narcissus Mosaic Virus (NMV). Using the reporter genes of GFP and GUS, and the plant genes PAP1 (an R2R3 MYB which activates the anthocyanin pathway) and selenium-binding protein 1 (SeBP), we show that NMV vectors and the model plant Nicotiana benthamiana can be used for efficient protein expression, protein subcellular localization and secondary metabolite production. CONCLUSIONS Our results suggest that not only can the plant viral vector system be employed for protein work but also can potentially be amenable to producing valuable secondary metabolites on a large scale, as the system does not require plant regeneration from seed or calli, which are stages where certain secondary metabolites can interfere with development.
Collapse
Affiliation(s)
- Huaibi Zhang
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Lei Wang
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Donald Hunter
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| | - Charlotte Voogd
- PFR, Private Bag Private Bag 92169, Auckland 1142 New Zealand
| | - Nigel Joyce
- PFR, Private Bag 4704 Christchurch, New Zealand
| | - Kevin Davies
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 11600 Palmerston North, New Zealand
| |
Collapse
|
57
|
Dawson WO, Folimonova SY. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:321-37. [PMID: 23682912 DOI: 10.1146/annurev-phyto-082712-102329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Virus-based expression vectors are commonplace tools for the production of proteins or the induction of RNA silencing in herbaceous plants. This review considers a completely different set of uses for viral vectors in perennial fruit and nut crops, which can be productive for periods of up to 100 years. Viral vectors could be used in the field to modify existing plants. Furthermore, with continually emerging pathogens and pests, viral vectors could express genes to protect the plants or even to treat plants after they become infected. As technologies develop during the life span of these crops, viral vectors can be used for adding new genes as an alternative to pushing up the crop and replanting with transgenic plants. Another value of virus-based vectors is that they add nothing permanently to the environment. This requires that effective and stable viral vectors be developed for specific crops from endemic viruses. Studies using viruses from perennial hosts suggest that these objectives could be accomplished.
Collapse
Affiliation(s)
- William O Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA.
| | | |
Collapse
|
58
|
Hefferon KL. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology 2013; 433:1-6. [PMID: 22979981 DOI: 10.1016/j.virol.2012.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022]
Abstract
Transgenic plants present enormous potential as a cost-effective and safe platform for large-scale production of vaccines and other therapeutic proteins. A number of different technologies are under development for the production of pharmaceutical proteins from plant tissues. One method used to express high levels of protein in plants involves the employment of plant virus expression vectors. Plant virus vectors have been designed to carry vaccine epitopes as well as full therapeutic proteins such as monoclonal antibodies in plant tissue both safely and effectively. Biopharmaceuticals such as these offer enormous potential on many levels, from providing relief to those who have little access to modern medicine, to playing an active role in the battle against cancer. This review describes the current design and status of plant virus expression vectors used as production platforms for biopharmaceutical proteins.
Collapse
|
59
|
Abstract
Virus-like particles (VLPs) are formed by viral structural proteins that, when overexpressed, spontaneously self-assemble into particles that are antigenically indistinguishable from infectious virus or subviral particles. VLPs are appealing as vaccine candidates because their inherent properties (i.e., virus-sized, multimeric antigens, highly organised and repetitive structure, not infectious) are suitable for the induction of safe and efficient humoral and cellular immune responses. VLP-based vaccines have already been licensed for human and veterinary use, and many more vaccine candidates are currently in late stages of evaluation. Moreover, the development of VLPs as platforms for foreign antigen display has further broadened their potential applicability both as prophylactic and therapeutic vaccines. This chapter provides an overview on the design and use of VLPs for the development of new generation vaccines.
Collapse
Affiliation(s)
- Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA), Valdeolmos, 28130, Madrid, Spain,
| | | |
Collapse
|
60
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
61
|
Osbourn AE, O'Maille PE, Rosser SJ, Lindsey K. Synthetic biology. 4th New Phytologist Workshop, Bristol, UK, June 2012. THE NEW PHYTOLOGIST 2012; 196:671-677. [PMID: 23043589 DOI: 10.1111/j.1469-8137.2012.04374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul E O'Maille
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- Institute of Molecular, Cell and Systems Biology, Glasgow University, Glasgow, G12 8QQ, UK
| | - Keith Lindsey
- School of Biological Sciences, University of Durham, Durham, DH1 3UP, UK
| |
Collapse
|
62
|
Gao R, Tian YP, Wang J, Yin X, Li XD, Valkonen JPT. Construction of an infectious cDNA clone and gene expression vector of Tobacco vein banding mosaic virus (genus Potyvirus). Virus Res 2012; 169:276-81. [PMID: 22820405 DOI: 10.1016/j.virusres.2012.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/22/2022]
Abstract
Tobacco vein banding mosaic virus (TVBMV, genus Potyvirus) mainly infects solanaceous plants and is of increasing economic importance in China. Here, we report sequence determination of the full-length 5'-untranslated region of TVBMV isolate HN39 and construction of an infectious clone. The resultant clone, pTVBMV, which was stabilized by introducing three introns in the P3 and CI-encoding regions, induced similar disease symptoms and accumulated similar titers of virus in plants of Nicotiana benthamiana, Nicotiana tabacum and N. rustica as the wild type HN39 isolate. Mutation of arginine to isoleucine (R182I) or aspartic acid to lysine (D198K) in HC-Pro alleviated the symptoms of pTVBMV significantly, indicating a role of the two amino acids in regulating virulence of TVBMV. The Aequoria victoriae gene for green fluorescent protein was inserted between the NIb and CP encoding regions of pTVBMV and expressed stably in the systemically infected N. benthamiana leaves, indicating suitability of pTVBMV for expression of foreign proteins in plants.
Collapse
Affiliation(s)
- Rui Gao
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | | | | | | |
Collapse
|
63
|
Liu D, Shi L, Han C, Yu J, Li D, Zhang Y. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 2012; 7:e46451. [PMID: 23029521 PMCID: PMC3460881 DOI: 10.1371/journal.pone.0046451] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 02/04/2023] Open
Abstract
Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deshui Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lindan Shi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
64
|
Crisci E, Bárcena J, Montoya M. Virus-like particles: the new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 2012; 148:211-25. [PMID: 22705417 PMCID: PMC7112581 DOI: 10.1016/j.vetimm.2012.04.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/12/2022]
Abstract
Vaccination continues to be the main approach to protect animals from infectious diseases. Until recently, all licensed vaccines were developed using conventional technologies. Subunit vaccines are, however, gaining attention from researchers in the field of veterinary vaccinology, and among these, virus-like particles (VLPs) represent one of the most appealing approaches. VLPs are robust protein cages in the nanometer range that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines. Here, we review the current status of VLPs as a vaccine technology in the veterinary field, and discuss the potential advantages and challenges of this technology.
Collapse
Affiliation(s)
- Elisa Crisci
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
65
|
Rego JM, Yi H. Viruses as Self-Assembled Templates. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Sainsbury F, Saxena P, Geisler K, Osbourn A, Lomonossoff GP. Using a virus-derived system to manipulate plant natural product biosynthetic pathways. Methods Enzymol 2012; 517:185-202. [PMID: 23084939 DOI: 10.1016/b978-0-12-404634-4.00009-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of vectors (the pEAQ series) based on cowpea mosaic virus has been developed which allows the rapid transient expression of high levels of foreign protein in plants without the need for viral replication. The plasmids are small binary vectors, which are introduced into plant leaves by agroinfiltration. They are modular in design and allow the insertion of multiple coding sequences on the same segment of T-DNA. These properties make the pEAQ vectors particularly suitable for use in situations, such as the investigation and manipulation of metabolic pathways, where the coexpression of multiple proteins within a cell is required.
Collapse
Affiliation(s)
- Frank Sainsbury
- Département de Phytologie, Pavillon des Services, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
67
|
Abstract
The capsids of most plant viruses are simple and robust structures consisting of multiple copies of one or a few types of protein subunit arranged with either icosahedral or helical symmetry. In many cases, capsids can be produced in large quantities either by the infection of plants or by the expression of the subunit(s) in a variety of heterologous systems. In view of their relative simplicity, stability and ease of production, plant virus particles or virus-like particles (VLPs) have attracted attention as potential reagents for applications in bionanotechnology. As a result, plant virus particles have been subjected to both genetic and chemical modification, have been used to encapsulate foreign material and have, themselves, been incorporated into supramolecular structures.
Collapse
|
68
|
Sainsbury F, Saunders K, Aljabali AAA, Evans DJ, Lomonossoff GP. Peptide-Controlled Access to the Interior Surface of Empty Virus Nanoparticles. Chembiochem 2011; 12:2435-40. [DOI: 10.1002/cbic.201100482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 11/07/2022]
|
69
|
Lee SY, Lim JS, Harris MT. Synthesis and application of virus-based hybrid nanomaterials. Biotechnol Bioeng 2011; 109:16-30. [DOI: 10.1002/bit.23328] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/17/2011] [Accepted: 08/31/2011] [Indexed: 12/13/2022]
|
70
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
71
|
Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA. An effective virus-based gene silencing method for functional genomics studies in common bean. PLANT METHODS 2011; 7:16. [PMID: 21668993 PMCID: PMC3141803 DOI: 10.1186/1746-4811-7-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/13/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement. Although concerted efforts from the "Phaseomics" consortium have resulted in the development of several genomic resources, functional studies have continued to lag due to the recalcitrance of this crop for genetic transformation. RESULTS Here we describe the use of a bean pod mottle virus (BPMV)-based vector for silencing of endogenous genes in common bean as well as for protein expression. This BPMV-based vector was originally developed for use in soybean. It has been successfully employed for both protein expression and gene silencing in this species. We tested this vector for applications in common bean by targeting common bean genes encoding nodulin 22 and stearoyl-acyl carrier protein desaturase for silencing. Our results indicate that the BPMV vector can indeed be employed for reverse genetics studies of diverse biological processes in common bean. We also used the BPMV-based vector for expressing the green fluorescent protein (GFP) in common bean and demonstrate stable GFP expression in all common bean tissues where BPMV was detected. CONCLUSIONS The availability of this vector is an important advance for the common bean research community not only because it provides a rapid means for functional studies in common bean, but also because it does so without generating genetically modified plants. Here we describe the detailed methodology and provide essential guidelines for the use of this vector for both gene silencing and protein expression in common bean. The entire VIGS procedure can be completed in 4-5 weeks.
Collapse
Affiliation(s)
- Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Padmanaban Annamalai
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | - Aardra Kachroo
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| | - Said A Ghabrial
- Department of Plant Pathology, 201F Plant Science Building, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546-0312, USA
| |
Collapse
|
72
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
73
|
Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One 2010; 5:e13976. [PMID: 21103044 PMCID: PMC2980466 DOI: 10.1371/journal.pone.0013976] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/21/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product. METHODOLOGY/PRINCIPAL FINDINGS To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV) RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue) of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER). Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO) cell-produced 2G12. CONCLUSIONS Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for biopharmaceutical development and production.
Collapse
Affiliation(s)
- Frank Sainsbury
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| | | | | | | | | | | |
Collapse
|