51
|
Palmitoylation of Hepatitis C Virus NS2 Regulates Its Subcellular Localization and NS2-NS3 Autocleavage. J Virol 2019; 94:JVI.00906-19. [PMID: 31597774 PMCID: PMC6912101 DOI: 10.1128/jvi.00906-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of severe liver diseases responsible for nearly 400,000 deaths per year. HCV NS2 protein is a multifunctional regulator of HCV replication involved in both viral-genome replication and infectious-virus assembly. However, the underlying mechanism that enables the protein to participate in multiple steps of HCV replication remains unknown. In this study, we discovered that NS2 palmitoylation is the master regulator of its multiple functions, including NS2-mediated self-cleavage and HCV envelope protein recruitment to the virus assembly sites, which in turn promote HCV RNA replication and infectious-particle assembly, respectively. This newly revealed information suggests that NS2 palmitoylation could serve as a promising target to inhibit both HCV RNA replication and virus assembly, representing a new avenue for host-targeting strategies against HCV infection. Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is a multifunctional protein implicated in both HCV RNA replication and virus particle assembly. NS2-encoded cysteine protease is responsible for autoprocessing of NS2-NS3 precursor, an essential step in HCV RNA replication. NS2 also promotes HCV particle assembly by recruiting envelope protein 2 (E2) to the virus assembly sites located at the detergent-resistant membranes (DRM). However, the fundamental mechanism regulating multiple functions of NS2 remains unclear. In this study, we discovered that NS2 is palmitoylated at the position 113 cysteine residue (NS2/C113) when expressed by itself in cells and during infectious-HCV replication. Blocking NS2 palmitoylation by introducing an NS2/C113S mutation reduced NS2-NS3 autoprocessing and impaired HCV RNA replication. Replication of the NS2/C113S mutant was restored by inserting an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) between NS2 and NS3 to separate the two proteins independently of NS2-mediated autoprocessing. These results suggest that NS2 palmitoylation is critical for HCV RNA replication by promoting NS2-NS3 autoprocessing. The NS2/C113S mutation also impaired infectious-HCV assembly, DRM localization of NS2 and E2, and colocalization of NS2 with Core and endoplasmic reticulum lipid raft-associated protein 2 (Erlin-2). In conclusion, our study revealed that two major functions of NS2 involved in HCV RNA replication and virus assembly, i.e., NS2-NS3 autoprocessing and E2 recruitment to the DRM, are regulated by palmitoylation at NS2/C113. Since S-palmitoylation is reversible, NS2 palmitoylation likely allows NS2 to fine tune both HCV RNA replication and infectious-particle assembly. IMPORTANCE Chronic infection with hepatitis C virus (HCV) is a major cause of severe liver diseases responsible for nearly 400,000 deaths per year. HCV NS2 protein is a multifunctional regulator of HCV replication involved in both viral-genome replication and infectious-virus assembly. However, the underlying mechanism that enables the protein to participate in multiple steps of HCV replication remains unknown. In this study, we discovered that NS2 palmitoylation is the master regulator of its multiple functions, including NS2-mediated self-cleavage and HCV envelope protein recruitment to the virus assembly sites, which in turn promote HCV RNA replication and infectious-particle assembly, respectively. This newly revealed information suggests that NS2 palmitoylation could serve as a promising target to inhibit both HCV RNA replication and virus assembly, representing a new avenue for host-targeting strategies against HCV infection.
Collapse
|
52
|
Wakita T. Cell Culture Systems of HCV Using JFH-1 and Other Strains. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036806. [PMID: 31501261 DOI: 10.1101/cshperspect.a036806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection is seen worldwide and is a significant cause of severe chronic liver diseases. Recently, a large number of direct-acting antivirals (DAAs) have been developed against HCV infection, resulting in significant improvements in treatment efficacy. Rapid progress in HCV research has been largely dependent on the development of HCV culture systems and small animal infection models. In the development of HCV cell culture systems, the discovery of the JFH-1 clone, an HCV strain isolated from a fulminant hepatitis C patient, was a key finding. The JFH-1 strain was the first infectious HCV strain belonging to genotype 2a. JFH-1 replicated efficiently in cultured cell lines without acquiring adaptive mutations, providing the secretion of infectious viral particles into the culture medium. Recently, other HCV strains also were reported to be infectious in cultured cells with adaptive viral mutations, but genotype-1b infectious HCV clones and virus culture systems for clinical isolates are still missing. These infectious HCV systems have provided powerful tools to study the viral life cycle, to construct antiviral strategies, and to develop effective vaccines.
Collapse
Affiliation(s)
- Takaji Wakita
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
53
|
Human pegivirus 2 exhibits minimal geographic and temporal genetic diversity. Virology 2019; 539:69-79. [PMID: 31689572 DOI: 10.1016/j.virol.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023]
Abstract
We applied an NGS based target capture approach to amplify HPgV-2 sequences from metagenomic libraries and enable full genome characterization. Despite expanded geographical sampling, sequence variability remains low, with diversity concentrated in approximately 3.3% of all amino acids. Serial samples from one HPgV-2 positive individual co-infected with comparable titers of HIV, HCV, and GBV-C showed that HPgV-2 remains highly stable over several weeks compared to other RNA viruses, despite a similarly error-prone polymerase. The consistent epidemiological association with and structural similarities to HCV, and the weak positive correlation of HCV and HPgV-2 titers shown here, suggests it may benefit from co-infection. While minimal selective pressure on HPgV-2 to evolve could suggest fitness, the rarity of HPgV-2 and the tight phylogenetic clustering of global strains likely indicates origination from a common source and a virus that is ill-suited to its host. Sporadic infections may explain the limited genetic diversity observed worldwide.
Collapse
|
54
|
Multidecade Mortality and a Homolog of Hepatitis C Virus in Bald Eagles (Haliaeetus leucocephalus), the National Bird of the USA. Sci Rep 2019; 9:14953. [PMID: 31628350 PMCID: PMC6802099 DOI: 10.1038/s41598-019-50580-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
The bald eagle (Haliaeetus leucocephalus) once experienced near-extinction but has since rebounded. For decades, bald eagles near the Wisconsin River, USA, have experienced a lethal syndrome with characteristic clinical and pathological features but unknown etiology. Here, we describe a novel hepacivirus-like virus (Flaviviridae: Hepacivirus) identified during an investigation of Wisconsin River eagle syndrome (WRES). Bald eagle hepacivirus (BeHV) belongs to a divergent clade of avian viruses that share features with members of the genera Hepacivirus and Pegivirus. BeHV infected 31.9% of eagles spanning 4,254 km of the coterminous USA, with negative strand viral RNA demonstrating active replication in liver tissues. Eagles from Wisconsin were approximately 10-fold more likely to be infected than eagles from elsewhere. Eagle mitochondrial DNA sequences were homogeneous and geographically unstructured, likely reflecting a recent population bottleneck, whereas BeHV envelope gene sequences showed strong population genetic substructure and isolation by distance, suggesting localized transmission. Cophylogenetic analyses showed no congruity between eagles and their viruses, supporting horizontal rather than vertical transmission. These results expand our knowledge of the Flaviviridae, reveal a striking pattern of decoupled host/virus coevolution on a continental scale, and highlight knowledge gaps about health and conservation in even the most iconic of wildlife species.
Collapse
|
55
|
Wang H, Wan Z, Xu R, Guan Y, Zhu N, Li J, Xie Z, Lu A, Zhang F, Fu Y, Tang S. A Novel Human Pegivirus, HPgV-2 (HHpgV-1), Is Tightly Associated With Hepatitis C Virus (HCV) Infection and HCV/Human Immunodeficiency Virus Type 1 Coinfection. Clin Infect Dis 2019; 66:29-35. [PMID: 29020289 DOI: 10.1093/cid/cix748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022] Open
Abstract
Background Human pegivirus type 2 (HPgV-2) is a novel blood-borne human pegivirus that mainly infects hepatitis C virus (HCV)-infected subjects. We have investigated the prevalence of HPgV-2 in China, its association with HCV and human immunodeficiency virus type 1 (HIV-1), and the impact on HCV viral load and liver damage. Methods A cross-sectional study was conducted with both blood donors and HCV- and HIV-1-infected patients in Guangzhou, China. All subjects were screened for anti-HPgV-2 and HPgV-2 RNA. Demographic and clinical information were obtained from electronic medical records. Results We tested 8198 serum or plasma samples. Only 0.15% (6/4017) of healthy blood donors were positive for anti-HPgV-2 and negative for HPgV-2 RNA. No HPgV-2 viremia was detected in hepatitis B virus- or HIV-1-monoinfected individuals. The relatively high frequency of HPgV-2 infection was observed in 1.23% (30/2440) and 0.29% (7/2440) of HCV-infected persons by serological assay and reverse-transcription polymerase chain reaction, respectively. Furthermore, anti-HPgV-2 and HPgV-2 RNA were detected in 8.91% (18/202) and 3.47% (7/202), respectively, of HCV/HIV-1-coinfected subjects. HPgV-2 persistent infection was documented in about 30% of anti-HPgV-2-positive individuals. In addition, HPgV-2 infection may not affect HCV-related liver injury and HCV viral load. Conclusions Our results indicate the rarity of HPgV-2 infection in the general population and tight association with HCV, in particular with HCV/HIV-1 coinfection. HPgV-2 appears not to worsen HCV-related liver damage. Our study provides new findings about the association of HPgV-2 and HCV/HIV-1 and the impact of HPgV-2 infection on HCV replication and pathogenesis.
Collapse
Affiliation(s)
- Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Zhengwei Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Yujuan Guan
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Naling Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| | - Jianping Li
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Xie
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Aiqi Lu
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fuchun Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University
| |
Collapse
|
56
|
Replicons of a Rodent Hepatitis C Model Virus Permit Selection of Highly Permissive Cells. J Virol 2019; 93:JVI.00733-19. [PMID: 31292246 DOI: 10.1128/jvi.00733-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Animal hepaciviruses represent promising surrogate models for hepatitis C virus (HCV), for which there are no efficient immunocompetent animal models. Experimental infection of laboratory rats with rodent hepacivirus isolated from feral Rattus norvegicus (RHV-rn1) mirrors key aspects of HCV infection in humans, including chronicity, hepatitis, and steatosis. Moreover, RHV has been adapted to infect immunocompetent laboratory mice. RHV in vitro systems have not been developed but would enable detailed studies of the virus life cycle crucial for designing animal experiments to model HCV infection. Here, we established efficient RHV-rn1 selectable subgenomic replicons with and without reporter genes. Rat and mouse liver-derived cells did not readily support the complete RHV life cycle, but replicon-containing cell clones could be selected with and without acquired mutations. Replication was significantly enhanced by mutations in NS4B and NS5A and in cell clones cured of replicon RNA. These mutations increased RHV replication of both mono- and bicistronic constructs, and CpG/UpA-dinucleotide optimization of reporter genes allowed replication. Using the replicon system, we show that the RHV-rn1 NS3-4A protease cleaves a human mitochondrial antiviral signaling protein reporter, providing a sensitive readout for virus replication. RHV-rn1 replication was inhibited by the HCV polymerase inhibitor sofosbuvir and high concentrations of HCV NS5A antivirals but not by NS3 protease inhibitors. The microRNA-122 antagonist miravirsen inhibited RHV-rn1 replication, demonstrating the importance of this HCV host factor for RHV. These novel RHV in vitro systems will be useful for studies of tropism, molecular virology, and characterization of virus-host interactions, thereby providing important complements to in vivo systems.IMPORTANCE A vaccine against hepatitis C virus (HCV) is crucial for global control of this important pathogen, which induces fatal human liver diseases. Vaccine development has been hampered by the lack of immunocompetent animal models. Discovery of rodent hepacivirus (RHV) enabled establishment of novel surrogate animal models. These allow robust infection and reverse genetic and immunization studies of laboratory animals, which develop HCV-like chronicity. Currently, there are no RHV in vitro systems available to study tropism and molecular virology. Here, we established the first culture systems for RHV, recapitulating the intracellular phase of the virus life cycle in vitro These replicon systems enabled identification of replication-enhancing mutations and selection of cells highly permissive to RHV replication, which allow study of virus-host interactions. HCV antivirals targeting NS5A, NS5B, and microRNA-122 efficiently inhibited RHV replication. Hence, several important aspects of HCV replication are shared by the rodent virus system, reinforcing its utility as an HCV model.
Collapse
|
57
|
Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 2019; 164:2401-2410. [PMID: 31243554 DOI: 10.1007/s00705-019-04303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Rodent populations are known to be reservoirs of viruses with the potential to infect humans. However, a large number of such viruses remain undiscovered. In this study, we investigated the shedding of unknown viruses in long-tailed ground squirrel (Spermophilus undulatus) feces by high-throughput sequencing. A novel and highly divergent virus related to members of the genus Hepacivirus was identified in ground squirrel liver. This virus, tentatively named RHV-GS2015, was found to have a genome organization that is typical of hepaciviruses, including a long open reading frame encoding a polyprotein of 2763 aa. Sequence alignment of RHV-GS2015 with the most closely related hepaciviruses yielded p-distances of the NS3 and NS5B regions of 0.546 and 0.476, respectively, supporting the conclusion that RHV-GS2015 is a member of a new hepacivirus species, which we propose to be named "Hepacivirus P". Phylogenetic analysis of the NS3 and NS5B regions indicated that RHV-GS2015 shares common ancestry with other rodent hepaciviruses (species Hepacivirus E, and species Hepacivirus F), Norway rat hepacivirus 1 (species Hepacivirus G), and Norway rat hepacivirus 2 (species Hepacivirus H). A phylogenetic tree including the seven previously identified rodent hepaciviruses revealed extreme genetic heterogeneity among these viruses. RHV-GS2015 was detected in 7 out of 12 ground squirrel pools and was present in liver, lung, and spleen tissues. Furthermore, livers showed extremely high viral loads of RHV-GS2015, ranging from 2.5 × 106 to 2.0 × 108 copies/g. It is reasonable to assume that this novel virus is hepatotropic, like hepatitis C virus. The discovery of RHV-GS2015 extends our knowledge of the genetic diversity and host range of hepaciviruses, helping to elucidate their origins and evolution.
Collapse
|
58
|
A Novel Hepacivirus in Wild Rodents from South America. Viruses 2019; 11:v11030297. [PMID: 30909631 PMCID: PMC6466192 DOI: 10.3390/v11030297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
The Hepacivirus genus comprises single-stranded positive-sense RNA viruses within the family Flaviviridae. Several hepaciviruses have been identified in different mammals, including multiple rodent species in Africa, Asia, Europe, and North America. To date, no rodent hepacivirus has been identified in the South American continent. Here, we describe an unknown hepacivirus discovered during a metagenomic screen in Akodon montensis, Calomys tener, Oligoryzomys nigripes, Necromys lasiurus, and Mus musculus from São Paulo State, Brazil. Molecular detection of this novel hepacivirus by RT-PCR showed a frequency of 11.11% (2/18) in Oligoryzomys nigripes. This is the first identification of hepavivirus in sigmondonine rodents and in rodents from South America. In sum, our results expand the host range, viral diversity, and geographical distribution of the Hepacivirus genus.
Collapse
|
59
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
60
|
Damas ND, Fossat N, Scheel TKH. Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals. Noncoding RNA 2019; 5:ncrna5010007. [PMID: 30646609 PMCID: PMC6468702 DOI: 10.3390/ncrna5010007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Exploring virus–host interactions is key to understand mechanisms regulating the viral replicative cycle and any pathological outcomes associated with infection. Whereas interactions at the protein level are well explored, RNA interactions are less so. Novel sequencing methodologies have helped uncover the importance of RNA–protein and RNA–RNA interactions during infection. In addition to messenger RNAs (mRNAs), mammalian cells express a great number of regulatory non-coding RNAs, some of which are crucial for regulation of the immune system whereas others are utilized by viruses. It is thus becoming increasingly clear that RNA interactions play important roles for both sides in the arms race between virus and host. With the emerging field of RNA therapeutics, such interactions are promising antiviral targets. In this review, we discuss direct and indirect RNA interactions occurring between RNA viruses or retroviruses and host non-coding transcripts upon infection. In addition, we review RNA virus derived non-coding RNAs affecting immunological and metabolic pathways of the host cell typically to provide an advantage to the virus. The relatively few known examples of virus–host RNA interactions suggest that many more await discovery.
Collapse
Affiliation(s)
- Nkerorema Djodji Damas
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
61
|
Divers TJ, Tennant BC, Kumar A, McDonough S, Cullen J, Bhuva N, Jain K, Chauhan LS, Scheel TKH, Lipkin WI, Laverack M, Trivedi S, Srinivasa S, Beard L, Rice CM, Burbelo PD, Renshaw RW, Dubovi E, Kapoor A. New Parvovirus Associated with Serum Hepatitis in Horses after Inoculation of Common Biological Product. Emerg Infect Dis 2019; 24:303-310. [PMID: 29350162 PMCID: PMC5782890 DOI: 10.3201/eid2402.171031] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Equine serum hepatitis (i.e., Theiler's disease) is a serious and often life-threatening disease of unknown etiology that affects horses. A horse in Nebraska, USA, with serum hepatitis died 65 days after treatment with equine-origin tetanus antitoxin. We identified an unknown parvovirus in serum and liver of the dead horse and in the administered antitoxin. The equine parvovirus-hepatitis (EqPV-H) shares <50% protein identity with its phylogenetic relatives of the genus Copiparvovirus. Next, we experimentally infected 2 horses using a tetanus antitoxin contaminated with EqPV-H. Viremia developed, the horses seroconverted, and acute hepatitis developed that was confirmed by clinical, biochemical, and histopathologic testing. We also determined that EqPV-H is an endemic infection because, in a cohort of 100 clinically normal adult horses, 13 were viremic and 15 were seropositive. We identified a new virus associated with equine serum hepatitis and confirmed its pathogenicity and transmissibility through contaminated biological products.
Collapse
|
62
|
Chang WS, Eden JS, Hartley WJ, Shi M, Rose K, Holmes EC. Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums. ONE HEALTH OUTLOOK 2019; 1:5. [PMID: 33829126 PMCID: PMC7990097 DOI: 10.1186/s42522-019-0006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Australian brushtail possums (Trichosurus vulpecula) are an introduced pest species in New Zealand, but native to Australia where they are protected for biodiversity conservation. Wobbly possum disease (WPD) is a fatal neurological disease of Australian brushtail possums described in New Zealand populations that has been associated with infection by the arterivirus (Arteriviridae) wobbly possum disease virus (WPDV-NZ). Clinically, WPD-infected possums present with chronic meningoencephalitis, choroiditis and multifocal neurological symptoms including ataxia, incoordination, and abnormal gait. METHODS We conducted a retrospective investigation to characterise WPD in native Australian brushtail possums, and used a bulk meta-transcriptomic approach (i.e. total RNA-sequencing) to investigate its potential viral aetiology. PCR assays were developed for case diagnosis and full genome recovery in the face of extensive genetic variation. RESULTS We identified genetically distinct lineages of arteriviruses from archival tissues of WPD-infected possums in Australia, termed wobbly possum disease virus AU1 and AU2. Phylogenetically, WPDV-AU1 and WPDV-AU2 shared only ~ 70% nucleotide similarity to each other and the WPDV-NZ strain, suggestive of a relatively ancient divergence. Notably, we also identified a novel and divergent hepacivirus (Flaviviridae) - the first in a marsupial - in both WPD-infected and uninfected possums, indicative of virus co-infection. CONCLUSIONS We have identified marsupial-specific lineages of arteriviruses in mainland Australia that are genetically distinct from that in New Zealand, in some cases co-infecting animals with a novel hepacivirus. Our study provides new insight into the hidden genetic diversity of arteriviruses, the capacity for virus co-infection, and highlights the utility of meta-transcriptomics for disease investigation in a One Health context.
Collapse
Affiliation(s)
- Wei-Shan Chang
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
- Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW Australia
| | - William J. Hartley
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
63
|
Tomlinson JE, Kapoor A, Kumar A, Tennant BC, Laverack MA, Beard L, Delph K, Davis E, Schott Ii H, Lascola K, Holbrook TC, Johnson P, Taylor SD, McKenzie E, Carter-Arnold J, Setlakwe E, Fultz L, Brakenhoff J, Ruby R, Trivedi S, Van de Walle GR, Renshaw RW, Dubovi EJ, Divers TJ. Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014-2018). J Vet Intern Med 2018; 33:251-257. [PMID: 30520162 PMCID: PMC6335536 DOI: 10.1111/jvim.15368] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Three flaviviruses (equine pegivirus [EPgV]; Theiler's disease–associated virus [TDAV]; non‐primate hepacivirus [NPHV]) and equine parvovirus (EqPV‐H) are present in equine blood products; the TDAV, NPHV, and EqPV‐H have been suggested as potential causes of serum hepatitis. Objective To determine the prevalence of these viruses in horses with equine serum hepatitis. Animals Eighteen horses diagnosed with serum hepatitis, enrolled from US referral hospitals. Methods In the prospective case study, liver, serum, or both samples were tested for EPgV, TDAV, NPHV, and EqPV‐H by PCR. Results Both liver tissue and serum were tested for 6 cases, serum only for 8 cases, and liver only for 4 cases. Twelve horses received tetanus antitoxin (TAT) 4‐12.7 weeks (median = 8 weeks), 3 horses received commercial equine plasma 6‐8.6 weeks, and 3 horses received allogenic stem cells 6.4‐7.6 weeks before the onset of hepatic failure. All samples were TDAV negative. Two of 14 serum samples were NPHV‐positive. Six of 14 serum samples were EPgV‐positive. All liver samples were NPHV‐negative and EPgV‐negative. EqPV‐H was detected in the serum (N = 8), liver (N = 4), or both samples (N = 6) of all 18 cases. The TAT of the same lot number was available for virologic testing in 10 of 12 TAT‐associated cases, and all 10 samples were EqPV‐H positive. Conclusions and Clinical Importance We demonstrated EqPV‐H in 18 consecutive cases of serum hepatitis. EPgV, TDAV, and NPHV were not consistently present. This information should encourage blood product manufacturers to test for EqPV‐H and eliminate EqPV‐H–infected horses from their donor herds.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Amit Kapoor
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Arvind Kumar
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Bud C Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Melissa A Laverack
- New York State Animal Health Diagnostic Center, Cornell University, Ithaca, New York
| | - Laurie Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Katie Delph
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elizabeth Davis
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Harold Schott Ii
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kara Lascola
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Todd C Holbrook
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Philip Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Erica McKenzie
- Department of Clinical Sciences, Oregon State University, Corvallis, Oregon
| | | | | | - Lisa Fultz
- Equine Medicine Specialists of South Florida, Wellington, Florida
| | | | - Rebecca Ruby
- Lloyd Veterinary Medical Center, Iowa State University, Ames, Iowa
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward J Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
64
|
Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Arch Virol 2018; 164:509-522. [PMID: 30460488 DOI: 10.1007/s00705-018-4099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Lemurs are highly endangered mammals inhabiting the forests of Madagascar. In this study, we performed virus discovery on serum samples collected from 84 wild lemurs and identified viral sequence fragments from 4 novel viruses within the family Flaviviridae, including members of the genera Hepacivirus and Pegivirus. The sifaka hepacivirus (SifHV, two genotypes) and pegivirus (SifPgV, two genotypes) were discovered in the diademed sifaka (Propithecus diadema), while other pegiviral fragments were detected in samples from the indri (Indri indri, IndPgV) and the weasel sportive lemur (Lepilemur mustelinus, LepPgV). Although data are preliminary, each viral species appeared host species-specific and frequent infection was detected (18 of 84 individuals were positive for at least one virus). The complete coding sequence and partial 5' and 3' untranslated regions (UTRs) were obtained for SifHV and its genomic organization was consistent with that of other hepaciviruses, with one unique polyprotein and highly structured UTRs. Phylogenetic analyses showed the SifHV belonged to a clade that includes several viral species identified in rodents from Asia and North America, while SifPgV and IndPgV were more closely related to pegiviral species A and C, that include viruses found in humans as well as New- and Old-World monkeys. Our results support the current proposed model of virus-host co-divergence with frequent occurrence of cross-species transmission for these genera and highlight how the discovery of more members of the Flaviviridae can help clarify the ecology and evolutionary history of these viruses. Furthermore, this knowledge is important for conservation and captive management of lemurs.
Collapse
|
65
|
The Small-Compound Inhibitor K22 Displays Broad Antiviral Activity against Different Members of the Family Flaviviridae and Offers Potential as a Panviral Inhibitor. Antimicrob Agents Chemother 2018; 62:AAC.01206-18. [PMID: 30181371 PMCID: PMC6201103 DOI: 10.1128/aac.01206-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
The virus family Flaviviridae encompasses several viruses, including (re)emerging viruses which cause widespread morbidity and mortality throughout the world. Members of this virus family are positive-strand RNA viruses and replicate their genome in close association with reorganized intracellular host cell membrane compartments. This evolutionarily conserved strategy facilitates efficient viral genome replication and contributes to evasion from host cell cytosolic defense mechanisms. We have previously described the identification of a small-compound inhibitor, K22, which exerts a potent antiviral activity against a broad range of coronaviruses by targeting membrane-bound viral RNA replication. To analyze the antiviral spectrum of this inhibitor, we assessed the inhibitory potential of K22 against several members of the Flaviviridae family, including the reemerging Zika virus (ZIKV). We show that ZIKV is strongly affected by K22. Time-of-addition experiments revealed that K22 acts during a postentry phase of the ZIKV life cycle, and combination regimens of K22 together with ribavirin (RBV) or interferon alpha (IFN-α) further increased the extent of viral inhibition. Ultrastructural electron microscopy studies revealed severe alterations of ZIKV-induced intracellular replication compartments upon infection of K22-treated cells. Importantly, the antiviral activity of K22 was demonstrated against several other members of the Flaviviridae family. It is tempting to speculate that K22 exerts its broad antiviral activity against several positive-strand RNA viruses via a similar mechanism and thereby represents an attractive candidate for development as a panviral inhibitor.
Collapse
|
66
|
Jordier F, Deligny ML, Barré R, Robert C, Galicher V, Uch R, Fournier PE, Raoult D, Biagini P. Human pegivirus isolates characterized by deep sequencing from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations, France. J Med Virol 2018; 91:38-44. [PMID: 30133782 DOI: 10.1002/jmv.25290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023]
Abstract
Human pegivirus (HPgV, formerly GBV-C) is a member of the genus Pegivirus, family Flaviviridae. Despite its identification more than 20 years ago, both natural history and distribution of this viral group in human hosts remain under exploration. Analysis of HPgV genomes characterized up to now points out the scarcity of French pegivirus sequences in databases. To bring new data regarding HPgV genomic diversity, we investigated 16 French isolates obtained from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations following deep sequencing and coupled molecular protocols. Initial phylogenetic analysis of 5'-untranslated region (5'-UTR)/E2 partial sequences permitted to assign HPgV isolates to genotypes 2 (n = 15) and 1 (n = 1), with up to 16% genetic diversity observed for both regions considered. Seven nearly full-length representative genomes were characterized subsequently, with complete polyprotein coding sequences exhibiting up to 13% genetic diversity; closest nucleotide (nt) divergence with available HPgV sequences was in the range 7% to 11%. A 36 nts deletion located on the NS4B coding region (N-terminal part, 12 amino acids) of the genotype 1 HPgV genome characterized was identified, along with single nucleotide deletions in two genotype 2, 5'-UTR sequences.
Collapse
Affiliation(s)
- François Jordier
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Marie-Laurence Deligny
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Romain Barré
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Catherine Robert
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Vital Galicher
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Rathviro Uch
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, IRD, Aix Marseille University, SSA, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Philippe Biagini
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
67
|
Baechlein C, Baron AL, Meyer D, Gorriz-Martin L, Pfankuche VM, Baumgärtner W, Polywka S, Peine S, Fischer N, Rehage J, Becher P. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound Emerg Dis 2018; 66:195-206. [PMID: 30126081 DOI: 10.1111/tbed.12999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Bovine hepacivirus (BovHepV) is a recently added member to the growing genus Hepacivirus within the family Flaviviridae. Animal hepaciviruses are rarely characterized so far. Apart from norway rat hepacivirus which represents a promising HCV surrogate model, only equine hepaciviruses have been studied to some extent. BovHepV has been initially identified in bovine samples and was shown to establish persistent infections in cattle. However, consequences of those chronic infections, humoral immune response and the possibility of an extended host spectrum have not been explored so far. Therefore, we here investigated (a) the presence of anti-NS3-antibodies and viral RNA in cattle herds in Germany, (b) the course of infection in cattle, and (c) the host tropism including zoonotic potential of bovine hepaciviruses. Our results show that 19.9% of investigated bovine serum samples had antibodies against BovHepV. In 8.2% of investigated samples, viral RNA was detected. Subsequent genetic analysis revealed a novel genetic cluster of BovHepV variants. For 25 selected cattle in a BovHepV positive herd the presence of viral genomic RNA was monitored over one year in two to three months intervals by RT-PCR in order to discriminate acute versus persistent infection. In persistently infected animals, no serum antibodies were detected. Biochemical analyses could not establish a link between BovHepV infection and liver injury. Apart from a single sample of a pig providing a positive reaction in the antibody test, neither BovHepV-specific antibodies nor viral RNA were detected in porcine, equine or human samples implying a strict host specificity of BovHepV.
Collapse
Affiliation(s)
- Christine Baechlein
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| | - Anna Lena Baron
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Gorriz-Martin
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Susanne Polywka
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| |
Collapse
|
68
|
Trivedi S, Murthy S, Sharma H, Hartlage AS, Kumar A, Gadi S, Simmonds P, Chauhan LV, Scheel TKH, Billerbeck E, Burbelo PD, Rice CM, Lipkin WI, Vandergrift K, Cullen JM, Kapoor A. Viral persistence, liver disease, and host response in a hepatitis C-like virus rat model. Hepatology 2018; 68:435-448. [PMID: 28859226 PMCID: PMC5832584 DOI: 10.1002/hep.29494] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity, and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could potentially provide useful surrogate models. We isolated a rodent hepacivirus from wild rats (Rattus norvegicus), RHV-rn1; acquired the complete viral genome sequence; and developed an infectious reverse genetics system. RHV-rn1 resembles HCV in genomic features including the pattern of polyprotein cleavage sites and secondary structures in the viral 5' and 3' untranslated regions. We used site-directed and random mutagenesis to determine that only the first of the two microRNA-122 seed sites in the viral 5' untranslated region is required for viral replication and persistence in rats. Next, we used the clone-derived virus progeny to infect several inbred and outbred rat strains. Our results determined that RHV-rn1 possesses several HCV-defining hallmarks: hepatotropism, propensity to persist, and the ability to induce gradual liver damage. Histological examination of liver samples revealed the presence of lymphoid aggregates, parenchymal inflammation, and macrovesicular and microvesicular steatosis in chronically infected rats. Gene expression analysis demonstrated that the intrahepatic response during RHV-rn1 infection in rats mirrors that of HCV infection, including persistent activation of interferon signaling pathways. Finally, we determined that the backbone drug of HCV direct-acting antiviral therapy, sofosbuvir, effectively suppresses chronic RHV-rn1 infection in rats. CONCLUSION We developed RHV-rn1-infected rats as a fully immunocompetent and informative surrogate model to delineate the mechanisms of HCV-related viral persistence, immunity, and pathogenesis. (Hepatology 2018).
Collapse
Affiliation(s)
- Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alex S. Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Medical Scientist Training Program, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sashi Gadi
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - Lokendra V. Chauhan
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | - Eva Billerbeck
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Kurt Vandergrift
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210,Corresponding author. , Amit Kapoor, Ph.D., Associate Professor, Department of Pediatrics, College of Medicine, The Ohio State University, Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, Ohio 43205
| |
Collapse
|
69
|
朱 娜, 许 如, 唐 伟, 王 海, 万 政, 吴 学, 付 涌, 唐 时, 俞 守. [Detection of a novel human pegivirus HPgV-2 in healthy blood donors and recipients of multiple transfusions: implications for blood safety]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:842-849. [PMID: 33168509 PMCID: PMC6765548 DOI: 10.3969/j.issn.1673-4254.2018.07.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the prevalence of HPgV-2 in blood donors, transfusion recipients and hemophilia patients and its impact on blood safety. METHODS Serum samples were collected from 1060 healthy blood donors, 1402 HCV-positive and 500 HBV- positive blood donors, 570 transfusion recipients and 248 hemophilia patients for screening anti-HPgV-2 antibodies, HPgV-2 RNA, anti-HCV and HBsAg/HBV-DNA using ELISA and RT-PCR. Phylogenetic analysis of near fulllength genome sequences and NS3 genes of pegiviruses and hepaciviruses were performed using MEGA software. RESULTS Anti-HPgV-2 positivity and HPgV-2 RNA positivity were found in 1.21% (17/1402) and 0.36% (5/1402) of the blood donors infected with HCV (RNA+/Ab+), respectively, indicating a close correlation between HPgV-2 and HCV infection (χ2=13.78, P= 0.004). Anti-HPgV-2 antibody was hardly detected in the other populations. A nucleotide identity as high as 97.11% was found in the NS3 fragments among the 5 isolated HPgV-2 strains, which had a nucleotide identity of 96.53% with the reported strains isolated out of China. CONCLUSIONS The prevalence of HPgV-2 infection is rather low in healthy blood donors and transfusion recipients. Coinfection with HCV is common in HPgV-2 infection, and no evidence has now been available to support HPgV-2 transmission via blood transfusion, indicating that HPgV-2 may not pose a threat to blood safety.
Collapse
Affiliation(s)
- 娜玲 朱
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 如 许
- 广州血液中心输血研究所,广东 广州 510000Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510000, China
| | - 伟平 唐
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 海鹰 王
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 政伟 万
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 学东 吴
- 南方医科大学 南方医院儿科,广东 广州 510515Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 涌水 付
- 广州血液中心输血研究所,广东 广州 510000Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou 510000, China
| | - 时幸 唐
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 守义 俞
- 南方医科大学 公共卫生学院流行病系//热带病研究所,广东 广州 510515Guangdong Provincial Key Laboratory of Tropical Disease Research/Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
70
|
Schlottau K, Wernike K, Forth L, Holsteg M, Höper D, Beer M, Hoffmann B. Presence of two different bovine hepacivirus clusters in Germany. Transbound Emerg Dis 2018; 65:1705-1711. [PMID: 29971937 DOI: 10.1111/tbed.12930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/24/2022]
Abstract
During the last years, genetic information of hepaciviruses (family Flaviviridae), whose type species is the human hepatitis C virus, was detected in a wide range of primates and non-primate vertebrates. Here, samples collected from 263 German cattle kept in 22 different holdings were analysed for the presence of hepacivirus N (syn. bovine hepacivirus; BovHepV). One hundred eighty-six cattle that suffered from unspecific clinical signs such as fever and a reduced milk yield as well as 77 apparently healthy animals were included. A total of 39 cattle (14.8%) tested positive for BovHepV by real-time RT-PCR, but a correlation between clinical signs and virus infection could not be found. From 31 of the virus-positive samples, sequences of the NS3 coding region were generated and from two samples, viral sequences of the complete coding region were produced and compared to further European and African BovHepV sequences. Based on the NS3 genomic region, two distinct German BovHepV clusters were identified which differed between each other up to 20% at the nucleotide level, the diversity within the individual clusters reached up to 10%. Based on the full-length sequences, the newly detected virus variants group together with further German and African viruses in a sister relationship to other hepaciviruses from primates and further mammalians, but form distinct clusters within the BovHepV branch. In conclusion, highly diverse hepaciviruses were detected in German cattle further expanding the known phylogenetic diversity of the genus Hepacivirus.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Leonie Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Bad Sassendorf, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald - Insel Riems, Germany
| |
Collapse
|
71
|
Tang W, Zhu N, Wang H, Gao Y, Wan Z, Cai Q, Yu S, Tang S. Identification and genetic characterization of equine Pegivirus in China. J Gen Virol 2018; 99:768-776. [PMID: 29658859 DOI: 10.1099/jgv.0.001063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 2013, two new viruses, equine pegivirus (EPgV) and Theiler's disease-associated virus (TDAV), both belonging to the genus Pegivirus within the family Flaviviridae, were identified. To investigate the geographical distribution and genetic diversity of these two viruses in China, we screened EPgV and TDAV infection in imported race horses and Chinese work horses by using reverse-transcription polymerase chain reaction (RT-PCR). EPgV was detected in 10.8 % (8/74) of the total horses tested, with a prevalence of 5.8 and 22.7 % in the race horses and work horses, respectively. No TDAV infection was found. A near full-length genome sequence of EPgV was obtained that showed an identity of 89.5-90.6 % at the nucleotide level and 98.1-98.3 % at the amino acid level with an American strain, C0035, and another Chinese strain, LW/216, respectively. Phylogenetic analysis showed two different clusters of the sequences from the race horses and work horses, indicating a difference in virus origin. Our results demonstrated a higher positive rate of EPgV in the Chinese work horses than in the imported race horses, a moderate genetic diversity of EPgV strains worldwide and possibly no liver pathogenesis for EPgV infection.
Collapse
Affiliation(s)
- Weiping Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Naling Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Youwen Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhengwei Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qundi Cai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shouyi Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
72
|
Novel bovine hepacivirus in dairy cattle, China. Emerg Microbes Infect 2018; 7:54. [PMID: 29615608 PMCID: PMC5883034 DOI: 10.1038/s41426-018-0055-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/21/2018] [Accepted: 02/11/2018] [Indexed: 11/08/2022]
|
73
|
Elia G, Lanave G, Lorusso E, Parisi A, Cavaliere N, Patruno G, Terregino C, Decaro N, Martella V, Buonavoglia C. Identification and genetic characterization of equine hepaciviruses in Italy. Vet Microbiol 2017; 207:239-247. [PMID: 28757030 DOI: 10.1016/j.vetmic.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Abstract
Viruses similar to human hepatitis C virus, hepaciviruses, have been identified in various animal species. Equine hepacivirus (EqHV) is the closest relative of human hepaciviruses. Although detected worldwide, information on EqHV epidemiology, genetic diversity and pathogenicity is still limited. In this study we investigated the prevalence and genetic diversity of EqHV in Italian equids. The RNA of EqHV was detected in 91/1932 sera (4.7%) whilst it was not detectable in 134 donkey sera screened by a TaqMan-based quantitative assay. Upon sequencing and phylogenetic analysis of genomic portions located in the NS5B, 5'UTR and NS3 genes, the Italian EqHV strains segregated into two distinct clades that are also co-circulating globally, without apparent geographic restrictions.
Collapse
Affiliation(s)
- Gabriella Elia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Eleonora Lorusso
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Nicola Cavaliere
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | | | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Nicola Decaro
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
74
|
Abstract
Hepatitis C virus (HCV) displays a restricted host species tropism and only humans and chimpanzees are susceptible to infection. A robust immunocompetent animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control, and prophylactic vaccine development. The closest homolog of HCV is the equine nonprimate hepacivirus (NPHV), which shares similar features with HCV and thus represents an animal model to study hepacivirus infections in their natural hosts. We aimed to dissect equine immune responses after experimental NPHV infection and conducted challenge experiments to investigate immune protection against secondary NPHV infections. Horses were i.v. injected with NPHV containing plasma. Flow cytometric analysis was used to monitor immune cell frequencies and activation status. All infected horses became viremic after 1 or 2 wk and viremia could be detected in two horses for several weeks followed by a delayed seroconversion and viral clearance. Histopathological examinations of liver biopsies revealed mild, periportally accentuated infiltrations of lymphocytes, macrophages, and plasma cells with some horses displaying subclinical signs of hepatitis. Following viral challenge, an activation of equine immune responses was observed. Importantly, after a primary NPHV infection, horses were protected against rechallenge with the homologous as well as a distinct isolate with only minute amounts of circulating virus being detectable.
Collapse
|