51
|
Cangelosi V, Ruckthong L, Pecoraro VL. Lead(II) Binding in Natural and Artificial Proteins. Met Ions Life Sci 2017; 17:/books/9783110434330/9783110434330-010/9783110434330-010.xml. [PMID: 28731303 PMCID: PMC5771651 DOI: 10.1515/9783110434330-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article describes recent attempts to understand the biological chemistry of lead using a synthetic biology approach. Lead binds to a variety of different biomolecules ranging from enzymes to regulatory and signaling proteins to bone matrix. We have focused on the interactions of this element in thiolate-rich sites that are found in metalloregulatory proteins such as Pbr, Znt, and CadC and in enzymes such as δ-aminolevulinic acid dehydratase (ALAD). In these proteins, Pb(II) is often found as a homoleptic and hemidirectic Pb(II)(SR)3- complex. Using first principles of biophysics, we have developed relatively short peptides that can associate into three-stranded coiled coils (3SCCs), in which a cysteine group is incorporated into the hydrophobic core to generate a (cysteine)3 binding site. We describe how lead may be sequestered into these sites, the characteristic spectral features may be observed for such systems and we provide crystallographic insight on metal binding. The Pb(II)(SR)3- that is revealed within these α-helical assemblies forms a trigonal pyramidal structure (having an endo orientation) with distinct conformations than are also found in natural proteins (having an exo conformation). This structural insight, combined with 207Pb NMR spectroscopy, suggests that while Pb(II) prefers hemidirected Pb(II)(SR)3- scaffolds regardless of the protein fold, the way this is achieved within α-helical systems is different than in β-sheet or loop regions of proteins. These interactions between metal coordination preference and protein structural preference undoubtedly are exploited in natural systems to allow for protein conformation changes that define function. Thus, using a design approach that separates the numerous factors that lead to stable natural proteins allows us to extract fundamental concepts on how metals behave in biological systems.
Collapse
|
52
|
Heier JL, Mikolajczak DJ, Böttcher C, Koksch B. Substrate specificity of an actively assembling amyloid catalyst. Biopolymers 2017; 108. [PMID: 27858968 DOI: 10.1002/bip.23003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/01/2016] [Accepted: 10/12/2016] [Indexed: 01/20/2023]
Abstract
In the presence of Zn2+ , the catalytic, amyloid-forming peptide Ac-IHIHIQI-NH2 , was found to exhibit enhanced selectivity for hydrophobic p-nitrophenyl ester substrates while in the process of self-assembly. As opposed to the substrate p-nitrophenyl acetate, which was more effectively hydrolyzed with Ac-IHIHIQI-NH2 in its fully fibrillar state, the hydrophobic substrate Z-L-Phe-ONp was converted with a second-order rate constant more than 11-times greater when the catalyst was actively assembling. Under such conditions, Z-L-Phe-ONp hydrolysis proceeded at a greater velocity than the more hydrophilic and otherwise more labile ester Boc-L-Asn-ONp. When assembling, the catalyst also showed increased selectivity for the L-enantiomer of Z-Phe-ONp. These findings suggest the occurrence of increased interactions of hydrophobic moieties of the substrate with exposed hydrophobic surfaces of the assembling peptides and present valuable features for future de novo design consideration.
Collapse
Affiliation(s)
- Jason L Heier
- Freie Universität Berlin Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Berlin, Germany
| | - Dorian J Mikolajczak
- Freie Universität Berlin Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Berlin, Germany
| | - Christoph Böttcher
- Freie Universität Berlin Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Research Center for Electron Microscopy Berlin, Germany
| | - Beate Koksch
- Freie Universität Berlin Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Berlin, Germany
| |
Collapse
|
53
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
54
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|
55
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Abstract
For more than two decades, de novo protein design has proven to be an effective methodology for modeling native proteins. De novo design involves the construction of metal-binding sites within simple and/or unrelated α-helical peptide structures. The preparation of α3D, a single polypeptide that folds into a native-like three-helix bundle structure, has significantly expanded available de novo designed scaffolds. Devoid of a metal-binding site (MBS), we incorporated a 3Cys and 3His motif in α3D to construct a heavy metal and a transition metal center, respectively. These efforts produced excellent functional models for native metalloproteins/metalloregulatory proteins and metalloenzymes. Morever, these α3D derivatives serve as a foundation for constructing redox active sites with either the same (e.g., 4Cys) or mixed (e.g., 2HisCys) ligands, a feat that could be achieved in this preassembled framework. Here, we describe the process of constructing MBSs in α3D and our expression techniques.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- Department of Chemistry, University of Michigan, 930 North University Ave., Ann Arbor, MI, 48910, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, 930 North University Ave., Ann Arbor, MI, 48910, USA.
| |
Collapse
|
57
|
Clark KM, Tian S, van der Donk WA, Lu Y. Probing the role of the backbone carbonyl interaction with the Cu A center in azurin by replacing the peptide bond with an ester linkage. Chem Commun (Camb) 2016; 53:224-227. [PMID: 27918029 PMCID: PMC5253137 DOI: 10.1039/c6cc07274g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of a backbone carbonyl interaction with an engineered CuA center in azurin was investigated by developing a method of synthesis and incorporation of a depsipeptide where one of the amide bonds in azurin is replaced by an ester bond using expressed protein ligation. Studies by electronic absorption and electron paramagnetic resonance spectroscopic techniques indicate that, while the substitution does not significantly alter the geometry of the site, it weakens the axial interaction to the CuA center and strengthens the Cu-Cu bond, as evidenced by the blue shift of the near-IR absorption that has been assigned to the Cu-Cu ψ → ψ* transition. Interestingly, the changes in the electronic structure from the replacement did not result in a change in the reduction potential of the CuA center, suggesting that the diamond core structure of Cu2SCys2 is resistant to variations in axial interactions.
Collapse
Affiliation(s)
- Kevin M Clark
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA.
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA. and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA. and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| |
Collapse
|
58
|
Vasudev PG, Aravinda S, Shamala N. Crystal structure of a tripeptide containing aminocyclododecane carboxylic acid: a supramolecular twisted parallel β-sheet in crystals. J Pept Sci 2016; 22:166-73. [PMID: 26856690 DOI: 10.1002/psc.2854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
The crystal structure of a tripeptide Boc-Leu-Val-Ac12 c-OMe (1) is determined, which incorporates a bulky 1-aminocyclododecane-1-carboxylic acid (Ac12 c) side chain. The peptide adopts a semi-extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the C(α,α) -dialkylated residue Ac12 c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel β-sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac12 c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti-parallel β-sheet in crystals, twisted or helical β-sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted β-sheet assembly in crystals.
Collapse
Affiliation(s)
- Prema G Vasudev
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | | |
Collapse
|
59
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
60
|
Ruckthong L, Zastrow ML, Stuckey JA, Pecoraro VL. A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins. J Am Chem Soc 2016; 138:11979-88. [PMID: 27532255 PMCID: PMC5242185 DOI: 10.1021/jacs.6b07165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Preorganization and predisposition are important molecular recognition concepts exploited by nature to obtain site-specific and selective metal binding to proteins. While native structures containing an MS3 core are often unavailable in both apo- and holo-forms, one can use designed three-stranded coiled coils (3SCCs) containing tris-thiolate sites to evaluate these concepts. We show that the preferred metal geometry dictates the degree to which the cysteine rotamers change upon metal complexation. The Cys ligands in the apo-form are preorganized for binding trigonal pyramidal species (Pb(II)S3 and As(III)S3) in an endo conformation oriented toward the 3SCC C-termini, whereas the cysteines are predisposed for trigonal planar Hg(II)S3 and 4-coordinate Zn(II)S3O structures, requiring significant thiol rotation for metal binding. This study allows assessment of the importance of protein fold and side-chain reorientation for achieving metal selectivity in human retrotransposons and metalloregulatory proteins.
Collapse
Affiliation(s)
- Leela Ruckthong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
61
|
Long A, Rothenberg P, Patel D, MacDougall J, Hartings MR. The structure and peroxidase activity of myoglobin in alcoholic solvents. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
62
|
Lou C, Martos-Maldonado MC, Madsen CS, Thomsen RP, Midtgaard SR, Christensen NJ, Kjems J, Thulstrup PW, Wengel J, Jensen KJ. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic. Nat Commun 2016; 7:12294. [PMID: 27464951 PMCID: PMC4974474 DOI: 10.1038/ncomms12294] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide–oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design. Peptide and oligonucleotide systems are known to self-assemble both in nature and artificial systems. Here, the authors combine both forms of self-assembly through the synthesis of peptideoligonucleotide conjugates and show formation of a three-helix structure that dimerises at higher concentrations.
Collapse
Affiliation(s)
- Chenguang Lou
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Manuel C Martos-Maldonado
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Charlotte S Madsen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Rasmus P Thomsen
- Biomolecular Nanoscale Engineering Center and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Søren Roi Midtgaard
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jørgen Kjems
- Biomolecular Nanoscale Engineering Center and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Knud J Jensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
63
|
Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y. Design of Heteronuclear Metalloenzymes. Methods Enzymol 2016; 580:501-37. [PMID: 27586347 PMCID: PMC5156654 DOI: 10.1016/bs.mie.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity.
Collapse
Affiliation(s)
- A Bhagi-Damodaran
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Hosseinzadeh
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Mirts
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J Reed
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - I D Petrik
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Lu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
64
|
Mann SI, Heinisch T, Weitz AC, Hendrich MP, Ward TR, Borovik AS. Modular Artificial Cupredoxins. J Am Chem Soc 2016; 138:9073-6. [PMID: 27385206 DOI: 10.1021/jacs.6b05428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cupredoxins are electron-transfer proteins that have active sites containing a mononuclear Cu center with an unusual trigonal monopyramidal structure (Type 1 Cu). A single Cu-Scys bond is present within the trigonal plane that is responsible for its unique physical properties. We demonstrate that a cysteine-containing variant of streptavidin (Sav) can serve as a protein host to model the structure and properties of Type 1 Cu sites. A series of artificial Cu proteins are described that rely on Sav and a series of biotinylated synthetic Cu complexes. Optical and EPR measurements highlight the presence of a Cu-Scys bond, and XRD analysis provides structural evidence. We further provide evidence that changes in the linker between the biotin and Cu complex within the synthetic constructs allows for small changes in the placement of Cu centers within Sav that have dramatic effects on the structural and physical properties of the resulting artificial metalloproteins. These findings highlight the utility of the biotin-Sav technology as an approach for simulating active sites of metalloproteins.
Collapse
Affiliation(s)
- Samuel I Mann
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Tillmann Heinisch
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Thomas R Ward
- Department of Chemistry, University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - A S Borovik
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
65
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
66
|
Ruckthong L, Stuckey JA, Pecoraro VL. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids. Methods Enzymol 2016; 580:135-48. [PMID: 27586331 DOI: 10.1016/bs.mie.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The core objective of de novo metalloprotein design is to define metal-protein relationships that control the structure and function of metal centers by using simplified proteins. An essential requirement to achieve this goal is to obtain high resolution structural data using either NMR or crystallographic studies in order to evaluate successful design. X-ray crystal structures have proven that a four heptad repeat scaffold contained in the three-stranded coiled coil (3SCC), called CoilSer (CS), provides an excellent motif for modeling a three Cys binding environment capable of chelating metals into geometries that resemble heavy metal sites in metalloregulatory systems. However, new generations of more complicated designs that feature, for example, a d-amino acid or multiple metal ligand sites in the helical sequence require a more stable construct. In doing so, an extra heptad was introduced into the original CS sequence, yielding a GRAND-CoilSer (GRAND-CS) to retain the 3SCC folding. An apo-(GRAND-CSL12DLL16C)3 crystal structure, designed for Cd(II)S3 complexation, proved to be a well-folded parallel 3SCC. Because this structure is novel, protocols for crystallization, structural determination, and refinements of the apo-(GRAND-CSL12DLL16C)3 are described. This report should be generally useful for future crystallographic studies of related coiled-coil designs.
Collapse
Affiliation(s)
- L Ruckthong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - J A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - V L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
67
|
Marullo R, Kastantin M, Drews LB, Tirrell M. Peptide contour length determines equilibrium secondary structure in protein-analogous micelles. Biopolymers 2016; 99:573-81. [PMID: 23794370 DOI: 10.1002/bip.22217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022]
Abstract
This work advances bottom-up design of bioinspired materials built from peptide-amphiphiles, which are a class of bioconjugates in which a biofunctional peptide is covalently attached to a hydrophobic moiety that drives self-assembly in aqueous solution. Specifically, this work highlights the importance of peptide contour length in determining the equilibrium secondary structure of the peptide as well as the self-assembled (i.e., micelle) geometry. Peptides used here repeat a seven-amino acid sequence between one and four times to vary peptide contour length while maintaining similar peptide-peptide interactions. Without a hydrophobic tail, these peptides all exhibit a combination of random coil and α-helical structure. Upon self-assembly in the crowded environment of a micellar corona, however, short peptides are prone to β-sheet structure and cylindrical micelle geometry while longer peptides remain helical in spheroidal micelles. The transition to β-sheets in short peptides is rapid, whereby amphiphiles first self-assemble with α-helical peptide structure, then transition to their equilibrium β-sheet structure at a rate that depends on both temperature and ionic strength. These results identify peptide contour length as an important control over equilibrium peptide secondary structure and micelle geometry. Furthermore, the time-dependent nature of the helix-to-sheet transition opens the door for shape-changing bioinspired materials with tunable conversion rates.
Collapse
Affiliation(s)
- Rachel Marullo
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
68
|
Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids. Methods Mol Biol 2016. [PMID: 27094291 DOI: 10.1007/978-1-4939-3569-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions. The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural amino acid technology and tested experimentally for structure and catalytic activity.
Collapse
|
69
|
Ulas G, Lemmin T, Wu Y, Gassner GT, DeGrado WF. Designed metalloprotein stabilizes a semiquinone radical. Nat Chem 2016; 8:354-9. [PMID: 27001731 PMCID: PMC4857601 DOI: 10.1038/nchem.2453] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Enzymes use binding energy to stabilize their substrates in high-energy states that are otherwise inaccessible at ambient temperature. Here we show that a de novo designed Zn(II) metalloprotein stabilizes a chemically reactive organic radical that is otherwise unstable in aqueous media. The protein binds tightly to and stabilizes the radical semiquinone form of 3,5-di-tert-butylcatechol. Solution NMR spectroscopy in conjunction with molecular dynamics simulations show that the substrate binds in the active site pocket where it is stabilized by metal-ligand interactions as well as by burial of its hydrophobic groups. Spectrochemical redox titrations show that the protein stabilized the semiquinone by reducing the electrochemical midpoint potential for its formation via the one-electron oxidation of the catechol by approximately 400 mV (9 kcal mol(-1)). Therefore, the inherent chemical properties of the radical were changed drastically by harnessing its binding energy to the metalloprotein. This model sets the basis for designed enzymes with radical cofactors to tackle challenging chemistry.
Collapse
Affiliation(s)
- Gözde Ulas
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California 94158, USA
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California 94158, USA
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California 94158, USA
| | - George T. Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
70
|
Celentano V, Diana D, Di Salvo C, De Rosa L, Romanelli A, Fattorusso R, D'Andrea LD. 1,2,3-Triazole Bridge as Conformational Constrain in β-Hairpin Peptides: Analysis of Hydrogen-Bonded Positions. Chemistry 2016; 22:5534-7. [DOI: 10.1002/chem.201600154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- V. Celentano
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - D. Diana
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - C. Di Salvo
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
- National University of Ireland; Galway (Ireland)
| | - L. De Rosa
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - A. Romanelli
- Dipartimento di Farmacia; Università di Napoli “Federico II”; Via Mezzocannone 16 80134 Napoli (Italy)
| | - R. Fattorusso
- Dipartimento di Scienze Ambientali, Biologiche e Farmaceutiche; Seconda Università di Napoli; Via Vivaldi 46 81100 Caserta, Napoli (Italy)
| | - L. D. D'Andrea
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| |
Collapse
|
71
|
Mandal S, Das G. Gas phase conformational behavior of selenomethionine: A computational elucidation. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615070021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Petrik ID, Davydov R, Ross M, Zhao X, Hoffman B, Lu Y. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin. J Am Chem Soc 2016; 138:1134-7. [PMID: 26716352 PMCID: PMC4750474 DOI: 10.1021/jacs.5b12004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heme-copper oxidases (HCOs) catalyze efficient reduction of oxygen to water in biological respiration. Despite progress in studying native enzymes and their models, the roles of non-covalent interactions in promoting this activity are still not well understood. Here we report EPR spectroscopic studies of cryoreduced oxy-F33Y-CuBMb, a functional model of HCOs engineered in myoglobin (Mb). We find that cryoreduction at 77 K of the O2-bound form, trapped in the conformation of the parent oxyferrous form, displays a ferric-hydroperoxo EPR signal, in contrast to the cryoreduced oxy-wild-type (WT) Mb, which is unable to deliver a proton and shows a signal from the peroxo-ferric state. Crystallography of oxy-F33Y-CuBMb reveals an extensive H-bond network involving H2O molecules, which is absent from oxy-WTMb. This H-bonding proton-delivery network is the key structural feature that transforms the reversible oxygen-binding protein, WTMb, into F33Y-CuBMb, an oxygen-activating enzyme that reduces O2 to H2O. These results provide direct evidence of the importance of H-bond networks involving H2O in conferring enzymatic activity to a designed protein. Incorporating such extended H-bond networks in designing other metalloenzymes may allow us to confer and fine-tune their enzymatic activities.
Collapse
Affiliation(s)
- Igor D Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Roman Davydov
- The Department of Chemistry, Northwestern University , Evanston, Illinois 60201, United States
| | - Matthew Ross
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,The Department of Chemistry, Northwestern University , Evanston, Illinois 60201, United States
| | - Xuan Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Brian Hoffman
- The Department of Chemistry, Northwestern University , Evanston, Illinois 60201, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
73
|
Amino acid-type interactions of L-3,4-dihydroxyphenylalanine with transition metal ions: An experimental and theoretical investigation. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.06.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Lin CY, Wang CH, Hung CL, Lin YS. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs. Int J Genomics 2015; 2015:950905. [PMID: 26491652 PMCID: PMC4605447 DOI: 10.1155/2015/950905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022] Open
Abstract
Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.
Collapse
Affiliation(s)
- Chun-Yuan Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Hung Wang
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Che-Lun Hung
- Department of Computer Science and Communication Engineering, Providence University, Taichung 43301, Taiwan
| | - Yu-Shiang Lin
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
75
|
Plegaria JS, Herrero C, Quaranta A, Pecoraro VL. Electron transfer activity of a de novo designed copper center in a three-helix bundle fold. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:522-530. [PMID: 26427552 DOI: 10.1016/j.bbabio.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
In this work, we characterized the intermolecular electron transfer (ET) properties of a de novo designed metallopeptide using laser-flash photolysis. α3D-CH3 is three helix bundle peptide that was designed to contain a copper ET site that is found in the β-barrel fold of native cupredoxins. The ET activity of Cuα3D-CH3 was determined using five different photosensitizers. By exhibiting a complete depletion of the photo-oxidant and the successive formation of a Cu(II) species at 400 nm, the transient and generated spectra demonstrated an ET transfer reaction between the photo-oxidant and Cu(I)α3D-CH3. This observation illustrated our success in integrating an ET center within a de novo designed scaffold. From the kinetic traces at 400 nm, first-order and bimolecular rate constants of 10(5) s(-1) and 10(8) M(-1) s(-1) were derived. Moreover, a Marcus equation analysis on the rate versus driving force study produced a reorganization energy of 1.1 eV, demonstrating that the helical fold of α3D requires further structural optimization to efficiently perform ET. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris Sud, CNRS, 91405 Orsay Cedex, France
| | | | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
76
|
Plegaria JS, Duca M, Tard C, Friedlander TJ, Deb A, Penner-Hahn JE, Pecoraro VL. De novo design and characterization of copper metallopeptides inspired by native cupredoxins. Inorg Chem 2015; 54:9470-82. [PMID: 26381361 DOI: 10.1021/acs.inorgchem.5b01330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using de novo protein design, we incorporated a copper metal binding site within the three-helix bundle α3D (Walsh et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5486-5491) to assess whether a cupredoxin center within an α-helical domain could mimic the spectroscopic, structural, and redox features of native type-1 copper (CuT1) proteins. We aimed to determine whether a CuT1 center could be realized in a markedly different scaffold rather than the native β-barrel fold and whether the characteristic short Cu-S bond (2.1-2.2 Å) and positive reduction potentials could be decoupled from the spectroscopic properties (ε600 nm = 5000 M(-1) cm(-1)) of such centers. We incorporated 2HisCys(Met) residues in three distinct α3D designs designated core (CR), chelate (CH), and chelate-core (ChC). XAS analysis revealed a coordination environment similar to reduced CuT1 proteins, producing Cu-S(Cys) bonds ranging from 2.16 to 2.23 Å and Cu-N(His) bond distances of 1.92-1.99 Å. However, Cu(II) binding to the CR and CH constructs resulted in tetragonal type-2 copper-like species, displaying an intense absorption band between 380 and 400 nm (>1500 M(-1) cm(-1)) and A|| values of (150-185) × 10(-4) cm(-4). The ChC construct, which possesses a metal-binding site deeper in its helical bundle, yielded a CuT1-like brown copper species, with two absorption bands at 401 (4429 M(-1) cm(-1)) and 499 (2020 M(-1) cm(-1)) nm and an A|| value ∼30 × 10(-4) cm(-4) greater than its native counterparts. Electrochemical studies demonstrated reduction potentials of +360 to +460 mV (vs NHE), which are within the observed range for azurin and plastocyanin. These observations showed that the designed metal binding sites lacked the necessary rigidity to enforce the appropriate structural constraints for a Cu(II) chromophore (EPR and UV-vis); however, the Cu(I) structural environment and the high positive potential of CuT1 centers were recapitulated within the α-helical bundle of α3D.
Collapse
Affiliation(s)
| | - Matteo Duca
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 Rue Jean Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Cédric Tard
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 Rue Jean Antoine de Baïf, F-75205 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
77
|
Watkins A, Wuo MG, Arora PS. Protein-Protein Interactions Mediated by Helical Tertiary Structure Motifs. J Am Chem Soc 2015; 137:11622-30. [PMID: 26302018 PMCID: PMC4577960 DOI: 10.1021/jacs.5b05527] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/26/2022]
Abstract
The modulation of protein-protein interactions (PPIs) by means of creating or stabilizing secondary structure conformations is a rapidly growing area of research. Recent success in the inhibition of difficult PPIs by secondary structure mimetics also points to potential limitations, because often, specific cases require tertiary structure mimetics. To streamline protein structure-based inhibitor design, we have previously described the examination of protein complexes in the Protein Data Bank where α-helices or β-strands form critical contacts. Here, we examined coiled coils and helix bundles that mediate complex formation to create a platform for the discovery of potential tertiary structure mimetics. Though there has been extensive analysis of coiled coil motifs, the interactions between pre-formed coiled coils and globular proteins have not been systematically analyzed. This article identifies critical features of these helical interfaces with respect to coiled coil and other helical PPIs. We expect the analysis to prove useful for the rational design of modulators of this fundamental class of protein assemblies.
Collapse
Affiliation(s)
- Andrew
M. Watkins
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael G. Wuo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
78
|
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry 2015; 54:4987-97. [PMID: 26225466 PMCID: PMC5335877 DOI: 10.1021/acs.biochem.5b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.
Collapse
Affiliation(s)
- Avanish S. Parmar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, INDIA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Fei Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sandeep V. Belure
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nida F. Hasan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kathryn E. Drzewiecki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
79
|
Flores M, Olson TL, Wang D, Edwardraja S, Shinde S, Williams JC, Ghirlanda G, Allen JP. Copper Environment in Artificial Metalloproteins Probed by Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marco Flores
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Tien L. Olson
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Dong Wang
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Selvakumar Edwardraja
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sandip Shinde
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - JoAnn C. Williams
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Giovanna Ghirlanda
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - James P. Allen
- Department
of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
80
|
Snyder RA, Betzu J, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins. Biochemistry 2015; 54:4637-51. [PMID: 26154739 DOI: 10.1021/acs.biochem.5b00324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DFsc (single-chain due ferri) proteins allow for modeling binuclear non-heme iron enzymes with a similar fold. Three 4A → 4G variants of DFsc were studied to investigate the effects of (1) increasing the size of the substrate/solvent access channel (G4DFsc), (2) including an additional His residue in the first coordination sphere along with three additional helix-stabilizing mutations [3His-G4DFsc(Mut3)], and (3) the three helix-stabilizing mutations alone [G4DFsc(Mut3)] on the biferrous structures and their O2 reactivities. Near-infrared circular dichroism and magnetic circular dichroism (MCD) spectroscopy show that the 4A → 4G mutations increase coordination of the diiron site from 4-coordinate/5-coordinate to 5-coordinate/5-coordinate, likely reflecting increased solvent accessibility. While the three helix-stabilizing mutations [G4DFsc(Mut3)] do not affect the coordination number, addition of the third active site His residue [3His-G4DFsc(Mut3)] results in a 5-coordinate/6-coordinate site. Although all 4A→ 4G variants have significantly slower pseudo-first-order rates when reacting with excess O2 than DFsc (∼2 s(-1)), G4DFsc and 3His-G4DFsc(Mut3) have rates (∼0.02 and ∼0.04 s(-1)) faster than that of G4DFsc(Mut3) (∼0.002 s(-1)). These trends in the rate of O2 reactivity correlate with exchange coupling between the Fe(II) sites and suggest that the two-electron reduction of O2 occurs through end-on binding at one Fe(II) rather than through a peroxy-bridged intermediate. UV-vis absorption and MCD spectroscopies indicate that an Fe(III)Fe(III)-OH species first forms in all three variants but converts into an Fe(III)-μ-OH-Fe(III) species only in the 2-His forms, a process inhibited by the additional active site His ligand that coordinatively saturates one of the iron centers in 3His-G4DFsc(Mut3).
Collapse
Affiliation(s)
- Rae Ana Snyder
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Justine Betzu
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Susan E Butch
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Amanda J Reig
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - William F DeGrado
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Edward I Solomon
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States.,∥Stanford Synchrotron Radiation Laboratory, Stanford University, SLAC, Menlo Park, California 94025, United States
| |
Collapse
|
81
|
Snyder RA, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. J Am Chem Soc 2015; 137:9302-14. [PMID: 26090726 DOI: 10.1021/jacs.5b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A→4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of the biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O2 is reduced to H2O2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. In 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.
Collapse
Affiliation(s)
- Rae Ana Snyder
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Susan E Butch
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Amanda J Reig
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - William F DeGrado
- ⊥Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Edward I Solomon
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States.,§Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
82
|
Iscla I, Wray R, Blount P, Larkins-Ford J, Conery AL, Ausubel FM, Ramu S, Kavanagh A, Huang JX, Blaskovich MA, Cooper MA, Obregon-Henao A, Orme I, Tjandra ES, Stroeher UH, Brown MH, Macardle C, van Holst N, Ling Tong C, Slattery AD, Gibson CT, Raston CL, Boulos RA. A new antibiotic with potent activity targets MscL. J Antibiot (Tokyo) 2015; 68:453-62. [PMID: 25649856 PMCID: PMC4430313 DOI: 10.1038/ja.2015.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022]
Abstract
The growing problem of antibiotic-resistant bacteria is a major threat to human health. Paradoxically, new antibiotic discovery is declining, with most of the recently approved antibiotics corresponding to new uses for old antibiotics or structurally similar derivatives of known antibiotics. We used an in silico approach to design a new class of nontoxic antimicrobials for the bacteria-specific mechanosensitive ion channel of large conductance, MscL. One antimicrobial of this class, compound 10, is effective against methicillin-resistant Staphylococcus aureus with no cytotoxicity in human cell lines at the therapeutic concentrations. As predicted from in silico modeling, we show that the mechanism of action of compound 10 is at least partly dependent on interactions with MscL. Moreover we show that compound 10 cured a methicillin-resistant S. aureus infection in the model nematode Caenorhabditis elegans. Our work shows that compound 10, and other drugs that target MscL, are potentially important therapeutics against antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Irene Iscla
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Robin Wray
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Paul Blount
- Department of Physiology, UT Southwestern Med Ctr, Dallas, TX, USA
| | - Jonah Larkins-Ford
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Annie L Conery
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Soumya Ramu
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Angela Kavanagh
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Mark A Blaskovich
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ian Orme
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edwin S Tjandra
- School of Animal Biology, The University of Western Australia, Crawley, WA, Australia
| | - Uwe H Stroeher
- School of Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- School of Biological Sciences, Flinders University, Bedford Park, SA, Australia
| | - Cindy Macardle
- Flinders Medical Science and Technology, Immunology, Allergy and Arthritis, Flinders University, Bedford Park, SA, Australia
| | - Nick van Holst
- Flinders Medical Science and Technology, Immunology, Allergy and Arthritis, Flinders University, Bedford Park, SA, Australia
| | - Chee Ling Tong
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Ashley D Slattery
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Christopher T Gibson
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Colin L Raston
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| | - Ramiz A Boulos
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
83
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
84
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
85
|
Plegaria JS, Dzul SP, Zuiderweg ERP, Stemmler TL, Pecoraro VL. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals. Biochemistry 2015; 54:2858-73. [PMID: 25790102 DOI: 10.1021/acs.biochem.5b00064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.
Collapse
Affiliation(s)
| | - Stephen P Dzul
- #Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | | | - Timothy L Stemmler
- #Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | | |
Collapse
|
86
|
Yang Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Chem Sci 2015; 6:3881-3885. [PMID: 26417427 PMCID: PMC4583198 DOI: 10.1039/c5sc01126d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Incorporation of 3-methoxytyrosine boosts the oxidase activity of the myoglobin model of oxidase, stressing the importance of the redox potential tuning of tyrosine.
While nature employs various covalent and non-covalent strategies to modulate tyrosine (Y) redox potential and pKa in order to optimize enzyme activities, such approaches have not been systematically applied for the design of functional metalloproteins. Through the genetic incorporation of 3-methoxytyrosine (OMeY) into myoglobin, we replicated important features of cytochrome c oxidase (CcO) in this small soluble protein, which exhibits selective O2 reduction activity while generating a small amount of reactive oxygen species (ROS). These results demonstrate that the electron donating ability of a tyrosine residue in the active site is important for CcO function. Moreover, we elucidated the structural basis for the genetic incorporation of OMeY into proteins by solving the X-ray structure of OMeY specific aminoacyl-tRNA synthetase complexed with OMeY.
Collapse
Affiliation(s)
- Yu Yang
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Qing Zhou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Li Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China ; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Wei Zhang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Meirong Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jianshu Dong
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jiasong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China ; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lv Xiaoxuan
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hanlin Ouyang
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Han Li
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Feng Gao
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Weimin Gong
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yi Lu
- Center of Biophysics and Computational Biology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
87
|
Tang L, Liu W, Wang Y, Zhao Y, Oscar BG, Campbell RE, Fang C. Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca(2+) imaging. Chemistry 2015; 21:6481-90. [PMID: 25761197 DOI: 10.1002/chem.201500491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/08/2022]
Abstract
Imaging Ca(2+) dynamics in living systems holds great potential to advance neuroscience and cellular biology. G-GECO1.1 is an intensiometric fluorescent protein Ca(2+) biosensor with a Thr-Tyr-Gly chromophore. The protonated chromophore emits green upon photoexcitation via excited-state proton transfer (ESPT). Upon Ca(2+) binding, a significant population of the chromophores becomes deprotonated. It remains elusive how the chromophore structurally evolves prior to and during ESPT, and how it is affected by Ca(2+) . We use femtosecond stimulated Raman spectroscopy to dissect ESPT in both the Ca(2+) -free and bound states. The protein chromophores exhibit a sub-200 fs vibrational frequency shift due to coherent small-scale proton motions. After wavepackets move out of the Franck-Condon region, ESPT gets faster in the Ca(2+) -bound protein, indicative of the formation of a more hydrophilic environment. These results reveal the governing structure-function relationship of Ca(2+) -sensing protein biosensors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (USA)
| | | | | | | | | | | | | |
Collapse
|
88
|
Mandal S, Das G, Askari H. A combined experimental and quantum mechanical investigation on some selected metal complexes of l-serine with first row transition metal cations. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
Pawar NJ, Diederichsen U, Dhavale DD. Multivalent presentation of carbohydrates by 314-helical peptide templates: synthesis, conformational analysis using CD spectroscopy and saccharide recognition. Org Biomol Chem 2015; 13:11278-85. [DOI: 10.1039/c5ob01673h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetrameric glycoconjugate template, SSFT 1, was coupled with a variety of six aminooxy sugars to achieve multivalent glycoconjugates 2–7.
Collapse
Affiliation(s)
- Nitin J. Pawar
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune - 411 007
- India
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry
- Georg-August University Göttingen
- D-37077 Göttingen
- Germany
| | - Dilip. D. Dhavale
- Department of Chemistry
- Garware Research Centre
- Savitribai Phule Pune University (Formerly University of Pune)
- Pune - 411 007
- India
| |
Collapse
|
90
|
Plegaria JS, Pecoraro VL. Sculpting Metal-binding Environments in De Novo Designed Three-helix Bundles. Isr J Chem 2015; 55:85-95. [PMID: 29353917 PMCID: PMC5771423 DOI: 10.1002/ijch.201400146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
De novo protein design is a biologically relevant approach used to study the active centers of native metalloproteins. In this review, we will first discuss the design process in achieving α3D, a de novo designed three-helix bundle peptide with a well-defined fold. We will then cover our recent work in functionalizing the α3D framework by incorporating a tris(cysteine) and tris(histidine) motif. Our first design contains the thiol-rich sites found in metalloregulatory proteins that control the levels of toxic metal ions (Hg, Cd, and Pb). The latter design recapitulates the catalytic site and activity of a natural metalloenzyme carbonic anhydrase. The review will conclude with future design goals aimed at introducing an asymmetric metal-binding site in the α3D framework.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- 930 North University Ave, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (USA)
| | - Vincent L Pecoraro
- 930 North University Ave, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (USA)
| |
Collapse
|
91
|
Matsuo T, Hirota S. Artificial enzymes with protein scaffolds: Structural design and modification. Bioorg Med Chem 2014; 22:5638-56. [DOI: 10.1016/j.bmc.2014.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 01/04/2023]
|
92
|
Ezhov RN, Metzel GA, Mukhina OA, Musselman CA, Kutateladze TG, Gustafson TP, Kutateladze AG. Photoactive Spatial Proximity Probes for Binding Pairs with Epigenetic Marks. J Photochem Photobiol A Chem 2014; 290:101-108. [PMID: 25197204 DOI: 10.1016/j.jphotochem.2014.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new strategy for encoding polypeptide libraries with photolabile tags is developed. The photoassisted assay, based on conditional release of encoding tags only from bound pairs, can differentiate between peptides which have minor differences in a form of post-translational modifications with epigenetic marks. The encoding strategy is fully compatible with automated peptide synthesis. The encoding pendants are compact and do not perturb potential binding interactions.
Collapse
Affiliation(s)
- Roman N Ezhov
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Greg A Metzel
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Olga A Mukhina
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Catherine A Musselman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tiffany P Gustafson
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
93
|
Reid RC, Yau MK, Singh R, Hamidon JK, Reed AN, Chu P, Suen JY, Stoermer MJ, Blakeney JS, Lim J, Faber JM, Fairlie DP. Downsizing a human inflammatory protein to a small molecule with equal potency and functionality. Nat Commun 2014; 4:2802. [PMID: 24257095 DOI: 10.1038/ncomms3802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/21/2013] [Indexed: 01/20/2023] Open
Abstract
A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weight <500 Da) examined for receptor affinity and cellular responses have the same high potencies, functional profile and specificity of action as C3a protein, but greater plasma stability and bioavailability.
Collapse
Affiliation(s)
- Robert C Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Jin S, Lee HJ, Lee S, Lee HS. Genetic Incorporation of a Phenanthroline-Containing Amino Acid in Escherichia coli. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.4.1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
96
|
|
97
|
Zastrow M, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014; 53:957-78. [PMID: 24506795 PMCID: PMC3985962 DOI: 10.1021/bi4016617] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up.
Collapse
Affiliation(s)
| | - Vincent L. Pecoraro
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
98
|
An accurate binding interaction model in de novo computational protein design of interactions: If you build it, they will bind. J Struct Biol 2014; 185:136-46. [DOI: 10.1016/j.jsb.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/07/2023]
|
99
|
Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li CJ, Liu J, Jensen MP, Lai L, He C. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat Chem 2014; 6:236-41. [DOI: 10.1038/nchem.1856] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022]
|
100
|
Lin Y, Wang J, Lu Y. Functional tuning and expanding of myoglobin by rational protein design. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5063-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|