51
|
McKenzie SW, Hentley WT, Hails RS, Jones TH, Vanbergen AJ, Johnson SN. Global climate change and above- belowground insect herbivore interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:412. [PMID: 24155750 PMCID: PMC3804764 DOI: 10.3389/fpls.2013.00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/29/2013] [Indexed: 05/08/2023]
Abstract
Predicted changes to the Earth's climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.
Collapse
Affiliation(s)
- Scott W. McKenzie
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | - William T. Hentley
- Centre for Ecology and HydrologyWallingford, Oxfordshire, UK
- The James Hutton InstituteDundee, UK
- Centre for Ecology and HydrologyPenicuik, Midlothian, UK
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - T. Hefin Jones
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK
| | | | - Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western SydneySydney, NSW, Australia
| |
Collapse
|
52
|
Borowicz VA. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: A search for pattern. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2013. [DOI: 10.1016/j.actao.2013.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
53
|
De Roissart A, Peña EDL, Van Oyen L, Van Leeuwen T, Ballhorn DJ, Bonte D. The presence of root-feeding nematodes – Not AMF – Affects an herbivore dispersal strategy. ACTA OECOLOGICA 2013. [DOI: 10.1016/j.actao.2013.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
54
|
Behie SW, Bidochka MJ. Insects as a Nitrogen Source for Plants. INSECTS 2013; 4:413-24. [PMID: 26462427 PMCID: PMC4553473 DOI: 10.3390/insects4030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022]
Abstract
Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.
Collapse
Affiliation(s)
- Scott W Behie
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
55
|
Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS One 2013; 8:e69013. [PMID: 23894394 PMCID: PMC3716814 DOI: 10.1371/journal.pone.0069013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 06/11/2013] [Indexed: 12/31/2022] Open
Abstract
Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.
Collapse
|
56
|
Staudacher K, Schallhart N, Thalinger B, Wallinger C, Juen A, Traugott M. Plant diversity affects behavior of generalist root herbivores, reduces crop damage, and enhances crop yield. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1135-1145. [PMID: 23967581 DOI: 10.1890/13-0018.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soil-dwelling pests inflict considerable economic damage in agriculture but are hard to control. A promising strategy to reduce pest pressure on crops is to increase the plant diversity in agroecosystems. This approach, however, demands a sound understanding of species' interactions, which is widely lacking for subterranean herbivore-plant systems. Here, we examine the effects of plant diversification on wireworms, the soil-dwelling larvae of click beetles that threaten crops worldwide. We conducted a field experiment employing plant diversification by adding either wheat or a mix of six associated plants (grasses, legumes, and forbs) between rows of maize to protect it from Agriotes wireworms. Wireworm feeding behavior, dispersal between crop and associated plants, as well as maize damage and yield were examined. The former was assessed combining molecular gut content and stable isotope analysis. The pests were strongly attracted by the associated plants in August, when the crop was most vulnerable, whereas in September, shortly before harvest, this effect occurred only in the plant mix. In maize monoculture, the larvae stayed in the principal crop throughout the season. Larval delta13C signatures revealed that maize feeding was reduced up to sevenfold in wireworms of the vegetationally diversified treatments compared to those of the maize monoculture. These findings were confirmed by molecular analysis, which additionally showed a dietary preference of wireworms for specific plants in the associated plant mix. Compared to the monoculture, maize damage was reduced by 38% and 55% in the wheat and plant mix treatment, which translated into a yield increase of 30% and 38%, respectively. The present findings demonstrate that increasing the plant diversity in agroecosystems provides an effective insurance against soil pests. The underlying mechanisms are the diversion of the pest from the principle crop and a changed feeding behavior. The deployment of diverse mixes of associated plants, tailored to the specific preferences of the soil herbivores, provides a promising strategy for managing subterranean pests while maintaining crop yield.
Collapse
Affiliation(s)
- Karin Staudacher
- Mountain Agriculture Research Unit, Institute of Ecology, Innsbruck University, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
57
|
Tanner RA, Varia S, Eschen R, Wood S, Murphy ST, Gange AC. Impacts of an invasive non-native annual weed, Impatiens glandulifera, on above- and below-ground invertebrate communities in the United Kingdom. PLoS One 2013; 8:e67271. [PMID: 23840648 PMCID: PMC3696085 DOI: 10.1371/journal.pone.0067271] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning.
Collapse
|
58
|
Nalam VJ, Shah J, Nachappa P. Emerging role of roots in plant responses to above ground insect herbivory. INSECT SCIENCE 2013; 20:286-296. [PMID: 23955881 DOI: 10.1111/1744-7917.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 06/02/2023]
Abstract
Plants have evolved complex biochemical mechanisms to counter threats from insect herbivory. Recent research has revealed an important role of roots in plant responses to above ground herbivory (AGH). The involvement of roots is integral to plant resistance and tolerance mechanisms. Roots not only play an active role in plant defenses by acting as sites for biosynthesis of various toxins and but also contribute to tolerance by storing photoassimilates to enable future regrowth. The interaction of roots with beneficial soil-borne microorganisms also influences the outcome of the interaction between plant and insect herbivores. Shoot-to-root communication signals are critical for plant response to AGH. A better understanding of the role of roots in plant response to AGH is essential in order to develop a comprehensive picture of plant-insect interactions. Here, we summarize the current status of research on the role of roots in plant response to AGH and also discuss possible signals involved in shoot-to-root communication.
Collapse
Affiliation(s)
- Vamsi J Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, USA
| | | | | |
Collapse
|
59
|
Erwin AC, Geber MA, Agrawal AA. Specific impacts of two root herbivores and soil nutrients on plant performance and insect-insect interactions. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00434.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
60
|
Cédola CV, Gugole Ottaviano MF, Brentassi ME, Cingolani MF, Greco NM. Negative interaction between twospotted spider mites and aphids mediated by feeding damage and honeydew. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:233-240. [PMID: 23043760 DOI: 10.1017/s0007485312000594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the herbivorous arthropods that feed on strawberry, the most important are the two-spotted spider mite (TSSM), Tetranychus urticae Koch, and several species of aphids. Mites and aphids belong to different guilds that coexist in the field and feed on the undersides of strawberry leaflets. However, the occurrence of large numbers of individuals of both species on the same leaflet is rarely recorded. We hypothesize that negative interactions between TSSM and aphids explain the intraplant distribution of these herbivores. We first examined the spatial coincidence of both herbivores in the field. Under experimental conditions, we then analyzed: (i) the rate of increase of TSSM and the aphid Chaetosiphon fragaefolii (Cockerell), growing individually and together; (ii) the effect of honeydew on TSSM preference; and (iii) the effect of previous strawberry leaflet damage by TSSM on C. fragaefolii preference. The proportion of TSSM that coincided with at least one aphid decreased as the percentage of leaflets with TSSM increased. The spatial coincidence index between aphids and TSSM increased together with the percentage of TSSM-infested leaflets. TSSM showed both a lower rate of increase when they shared the same leaflet with C. fragaefolii and lower fecundity on strawberry discs with honeydew. The rate of increase of C. fragaefolii did not change on co-occupied leaves, but the aphid species moved to the other side of leaflets shared with TSSM. Negative interactions resulting in a tendency for species to avoid each other, such as demonstrated herein, can affect distribution and performance of herbivorous arthropods.
Collapse
Affiliation(s)
- C V Cédola
- Centro de Estudios Parasitológicos y de Vectores (CCT La Plata, CONICET-UNLP), La Plata, Argentina
| | | | | | | | | |
Collapse
|
61
|
Johnson SN, Mitchell C, McNicol JW, Thompson J, Karley AJ. Downstairs drivers - root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients. J Anim Ecol 2013; 82:1021-30. [DOI: 10.1111/1365-2656.12070] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment; University of Western Sydney; Locked Bag 1797; Penrith; NSW; 2751; Australia
| | | | - James W. McNicol
- Biomathematics & Statistics Scotland; The James Hutton Institute; Dundee; DD2 5DA; UK
| | | | | |
Collapse
|
62
|
Erb M, Lu J. Soil abiotic factors influence interactions between belowground herbivores and plant roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1295-303. [PMID: 23505310 DOI: 10.1093/jxb/ert007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.
Collapse
Affiliation(s)
- Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, D-07745 Jena, Germany.
| | | |
Collapse
|
63
|
Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG, Tholl D. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. THE PLANT CELL 2013; 25:1108-25. [PMID: 23512856 PMCID: PMC3634680 DOI: 10.1105/tpc.112.100057] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 01/13/2013] [Accepted: 03/01/2013] [Indexed: 05/20/2023]
Abstract
Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects.
Collapse
Affiliation(s)
- Martha M. Vaughan
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Qiang Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Francis X. Webster
- Department of Chemistry, State University of New York–Environmental Science and Forestry, Syracuse, New York 13210
| | - Dave Kiemle
- Department of Chemistry, State University of New York–Environmental Science and Forestry, Syracuse, New York 13210
| | - Young J. Hong
- Department of Chemistry, University of California, Davis, California 95616
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, California 95616
| | - Robert M. Coates
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Austin T. Wray
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Whitnee Askew
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | | | - James G. Tokuhisa
- Department of Horticulture, Virginia Tech, Blacksburg, Virginia 24061
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
64
|
Kostenko O, Mulder PPJ, Bezemer TM. Effects of Root Herbivory on Pyrrolizidine Alkaloid Content and Aboveground Plant-Herbivore-Parasitoid Interactions in Jacobaea Vulgaris. J Chem Ecol 2013; 39:109-19. [DOI: 10.1007/s10886-012-0234-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/29/2022]
|
65
|
Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. FRONTIERS IN PLANT SCIENCE 2013; 4:287. [PMID: 23914197 PMCID: PMC3728486 DOI: 10.3389/fpls.2013.00287] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/12/2013] [Indexed: 05/20/2023]
Abstract
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Collapse
Affiliation(s)
- Peter Kupferschmied
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology ZurichZurich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of LausanneLausanne, Switzerland
- *Correspondence: Christoph Keel, Department of Fundamental Microbiology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
66
|
Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J. Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 2012. [PMID: 23185882 DOI: 10.1890/11-2272.1] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research investigating interactions between aboveground (AG) and below-ground (BG) herbivores has been central to characterizing AG-BG linkages in terrestrial ecosystems, with many of these interactions forming the basis of complex food webs spanning the two subsystems. Despite the growing literature on the effects of AG and BG herbivores on each other, underlying patterns have been difficult to identify due to a high degree of context dependency. In this study, we present the first quantitative meta-analysis of AG and BG herbivore interactions. Previous global predictions, specifically that BG herbivores normally promoted AG herbivore performance and AG herbivores normally reduced BG herbivore performance, were not supported. Instead, the meta-analysis identified four factors that determined the outcome of AG-BG interactions. (1) Sequence of herbivore arrival on host plants was important, with BG herbivores promoting AG herbivore performance only when introduced to the plant simultaneously, whereas AG herbivores had negative effects on BG herbivores only when introduced first. (2) AG herbivores negatively affected BG herbivore survival but tended to increase population growth rates. (3) AG herbivores negatively affected BG herbivore performance on annual plants, but not on perennials, and these effects were observed more consistently in laboratory than field studies. (4) The type of herbivore was also important, with BG insect herbivores belonging to the order Diptera (i.e., true flies) having the strongest negative effects on AG herbivores. Coleoptera (i.e., beetles) species were the most widely investigated BG herbivores and had positive impacts on AG Homoptera (e.g., aphids), but negative effects on AG Hymenoptera (e.g., sawflies). The strongest negative outcomes for BG herbivores were seen when the AG herbivore was a Coleoptera species. We found no evidence for publication bias in AG-BG herbivore interaction literature and conclude that several biological and experimental factors are important for predicting the outcome of AG-BG herbivore interactions. The sequence of herbivore arrival on the host plant was among the most influential.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia.
| | | | | | | | | | | |
Collapse
|
67
|
Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community. PLoS One 2012; 7:e49034. [PMID: 23145055 PMCID: PMC3493510 DOI: 10.1371/journal.pone.0049034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.
Collapse
|
68
|
Huang W, Carrillo J, Ding J, Siemann E. Invader partitions ecological and evolutionary responses to above- and belowground herbivory. Ecology 2012; 93:2343-52. [PMID: 23236906 DOI: 10.1890/11-1964.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
| | | | | | | |
Collapse
|
69
|
Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 2012; 38:755-67. [PMID: 22467133 PMCID: PMC3375011 DOI: 10.1007/s10886-012-0104-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/01/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
In terrestrial food webs, the study of multitrophic interactions traditionally has focused on organisms that share a common domain, mainly above ground. In the last two decades, it has become clear that to further understand multitrophic interactions, the barrier between the belowground and aboveground domains has to be crossed. Belowground organisms that are intimately associated with the roots of terrestrial plants can influence the levels of primary and secondary chemistry and biomass of aboveground plant parts. These changes, in turn, influence the growth, development, and survival of aboveground insect herbivores. The discovery that soil organisms, which are usually out of sight and out of mind, can affect plant-herbivore interactions aboveground raised the question if and how higher trophic level organisms, such as carnivores, could be influenced. At present, the study of above-belowground interactions is evolving from interactions between organisms directly associated with the plant roots and shoots (e.g., root feeders - plant - foliar herbivores) to interactions involving members of higher trophic levels (e.g., parasitoids), as well as non-herbivorous organisms (e.g., decomposers, symbiotic plant mutualists, and pollinators). This multitrophic approach linking above- and belowground food webs aims at addressing interactions between plants, herbivores, and carnivores in a more realistic community setting. The ultimate goal is to understand the ecology and evolution of species in communities and, ultimately how community interactions contribute to the functioning of terrestrial ecosystems. Here, we summarize studies on the effects of root feeders on aboveground insect herbivores and parasitoids and discuss if there are common trends. We discuss the mechanisms that have been reported to mediate these effects, from changes in concentrations of plant nutritional quality and secondary chemistry to defense signaling. Finally, we discuss how the traditional framework of fixed paired combinations of root- and shoot-related organisms feeding on a common plant can be transformed into a more dynamic and realistic framework that incorporates community variation in species, densities, space and time, in order to gain further insight in this exciting and rapidly developing field.
Collapse
Affiliation(s)
- Roxina Soler
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
70
|
Hiltpold I, Turlings TCJ. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield. J Chem Ecol 2012; 38:641-50. [PMID: 22592335 DOI: 10.1007/s10886-012-0131-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 01/03/2023]
Abstract
In most agro-ecosystems the organisms that feed on plant roots have an important impact on crop yield and can impose tremendous costs to farmers. Similar to aboveground pests, they rely on a broad range of chemical cues to locate their host plant. In their turn, plants have co-evolved a large arsenal of direct and indirect defense to face these attacks. For instance, insect herbivory induces the synthesis and release of specific volatile compounds in plants. These volatiles have been shown to be highly attractive to natural enemies of the herbivores, such as parasitoids, predators, or entomopathogenic nematodes. So far few of the key compounds mediating these so-called tritrophic interactions have been identified and only few genes and biochemical pathways responsible for the production of the emitted volatiles have been elucidated and described. Roots also exude chemicals that directly impact belowground herbivores by altering their behavior or development. Many of these compounds remain unknown, but the identification of, for instance, a key compound that triggers nematode egg hatching to some plant parasitic nematodes has great potential for application in crop protection. These advances in understanding the chemical emissions and their role in ecological signaling open novel ways to manipulate plant exudates in order to enhance their natural defense properties. The potential of this approach is discussed, and we identify several gaps in our knowledge and steps that need to be taken to arrive at ecologically sound strategies for belowground pest management.
Collapse
Affiliation(s)
- Ivan Hiltpold
- University of Missouri, Columbia, MO 65211-7020, USA.
| | | |
Collapse
|
71
|
Kostenko O, van de Voorde TFJ, Mulder PPJ, van der Putten WH, Martijn Bezemer T. Legacy effects of aboveground-belowground interactions. Ecol Lett 2012; 15:813-21. [PMID: 22594311 DOI: 10.1111/j.1461-0248.2012.01801.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/02/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and belowground organisms interact when they feed on plant individuals that grow after each other in the same soil. We show that feeding by aboveground and belowground insect herbivores on ragwort (Jacobaea vulgaris) plants exert unique soil legacy effects, via herbivore-induced changes in the composition of soil fungi. These changes in the soil biota induced by aboveground and belowground herbivores of preceding plants greatly influenced the pyrrolizidine alkaloid content, biomass and aboveground multitrophic interactions of succeeding plants. We conclude that plant-mediated interactions between aboveground and belowground insects are also important when they do not feed simultaneously on the same plant.
Collapse
Affiliation(s)
- Olga Kostenko
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
72
|
Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst. J Chem Ecol 2012; 38:629-40. [DOI: 10.1007/s10886-012-0107-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022]
|
73
|
Dhileepan K, Trevino M, Vitelli MP, Senaratne KADW, McClay AS, McFadyen RE. Introduction, establishment, and potential geographic range of Carmenta sp. nr ithacae (Lepidoptera: Sesiidae), a biological control agent for Parthenium hysterophorus (Asteraceae) in Australia. ENVIRONMENTAL ENTOMOLOGY 2012; 41:317-325. [PMID: 22507004 DOI: 10.1603/en11220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Parthenium (Parthenium hysterophorus L.), a major weed causing economic, environmental, and human and animal health problems in Australia and several countries in Asia, Africa, and the Pacific, has been a target for biological control in Australia since the mid-1970s. Nine species of insects and two rust fungi have been introduced as biological control agents into Australia. These include Carmenta sp. nr ithacae, a root feeding agent from Mexico. The larvae of C. sp. nr ithacae bore through the stem-base into the root where they feed on the cortical tissue of the taproot. During 1998-2002, 2,816 larval-infested plants and 387 adults were released at 31 sites across Queensland, Australia. Evidence of field establishment was first observed in two of the release sites in central Queensland in 2004. Annual surveys at these sites and nonrelease sites during 2006-2011 showed wide variations in the incidence and abundance of C. sp. nr ithacae between years and sites. Surveys at three of the nine release sites in northern Queensland and 16 of the 22 release sites in central Queensland confirmed the field establishment of C. sp. nr ithacae in four release sites and four nonrelease sites, all in central Queensland. No field establishment was evident in the inland region or in northern Queensland. A CLIMEX model based on the native range distribution of C. sp. nr ithacae predicts that areas east of the dividing range along the coast are more suitable for field establishment than inland areas. Future efforts to redistribute this agent should be restricted to areas identified as climatically favorable by the CLIMEX model.
Collapse
Affiliation(s)
- K Dhileepan
- Biosecurity Queensland, Department of Employment, Economic Development and Innovation, Ecosciences Precinct, Brisbane, QLD, Australia.
| | | | | | | | | | | |
Collapse
|
74
|
Lefort MC, Boyer S, Worner SP, Armstrong K. Noninvasive molecular methods to identify live scarab larvae: an example of sympatric pest and nonpest species in New Zealand. Mol Ecol Resour 2011; 12:389-95. [PMID: 22189059 DOI: 10.1111/j.1755-0998.2011.03103.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the negative impact that many scarab larvae have on agro-ecosystems, very little attention has been paid to their taxonomy. Their often extremely similar morphological characteristics have probably contributed to this impediment, which has also meant that they are very difficult to identify in the field. Molecular methods can overcome this challenge and are particularly useful for the identification of larvae to enable management of pest species occurring sympatrically with nonpest species. However, the invasive collection of DNA samples for such molecular methods is not compatible with subsequent behavioural, developmental or fitness studies. Two noninvasive DNA sampling and DNA analysis methods suitable for the identification of larvae from closely related scarab species were developed here. Using the frass and larval exuviae as sources of DNA, field-collected larvae of Costelytra zealandica (White) and Costelytra brunneum (Broun) (Scarabaeidae: Melolonthinae) were identified by multiplex PCR based on the difference in size of the resulting PCR products. This study also showed that small quantities of frass can be used reliably even 7 days after excretion. This stability of the DNA is of major importance in ecological studies where timeframes rarely allow daily monitoring. The approach developed here is readily transferable to the study of any holometabolous insect species for which morphological identification of larval stages is difficult.
Collapse
Affiliation(s)
- M-C Lefort
- Bio-Protection Research Centre, PO Box 84, Lincoln University, Lincoln 7647, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
75
|
Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 2011; 169:441-52. [DOI: 10.1007/s00442-011-2210-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 11/02/2011] [Indexed: 10/14/2022]
|
76
|
April V, Robertson MP, Simelane DO. Interaction between Uroplata girardi (Coleoptera: Chrysomelidae) and Ophiomyia camarae (Diptera: Agromyzidae) on a shared host Lantana camara (Verbenaceae). ENVIRONMENTAL ENTOMOLOGY 2011; 40:1123-1130. [PMID: 22251724 DOI: 10.1603/en11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multiple releases of insect agents intended to target a single plant pest species could result in competitive interactions that in turn might affect the community structure of the phytophagous insects. Two leaf-feeding biological control agents, Uroplata girardi Pic (Coleoptera: Chrysomelidae) and Ophiomyia camarae Spencer (Dipetera: Agromyzidae), were released against the weed Lantana camara L. (Verbenaceae) in South Africa in the 1970s and 2001, respectively. Since the population explosion of O. camarae in 2005, a decline of U. girardi populations had been observed in KwaZulu-Natal (KZN) humid coast, leading to speculation that negative interaction may be operating between the agents. The study therefore was conducted to determine the competitive effect of O. camarae on U. girardi. The study showed that 76% of O. camarae larval mines were formed on uninfested (clean) compared with only 24% formed on U. girardi-infested leaves, suggesting that the fly chose to lay more eggs on clean leaves. Almost the same number of U. girardi larval mines was formed on both O. camarae-infested and clean leaves, indicating that U. girardi females in this case oviposited indiscriminately on the two types of leaves. The survival of U. girardi was 53.8% when reared on clean leaves compared with only 14.6% survival on O. camarae-infested leaves. At the end of the sampling period, densities of U. girardi was over two times higher in single-species than in combined-species treatment. Releasing both agents together did not significantly affect O. camarae densities during the sampling period. In the field, O. camarae densities increased rapidly from spring to autumn, whereas those of U. girardi remained consistently low during the same period. The bias toward oviposition on clean leaves in O. camarae enables its larvae to avoid unfavorable encounters with U. girardi larvae, thus enhancing its development and survival. The apparent inability of U. girardi to distinguish between suitable and unsuitable leaves for oviposition could compromise the fitness of this beetle, and this could explain the suppression of U. girardi populations during summer when O. camarae populations begin to increase rapidly. This study provides evidence for an asymmetric interaction between two introduced agents, and therefore highlights the importance of conducting interaction studies on agents with extensive niche overlap before their release into the environment.
Collapse
Affiliation(s)
- Vuyokazi April
- ARC-Plant Protection Research Institute, Weeds Research Division, Queenswood, South Africa
| | | | | |
Collapse
|
77
|
Hiltpold I, Erb M, Robert CAM, Turlings TCJ. Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. PLANT, CELL & ENVIRONMENT 2011; 34:1267-75. [PMID: 21477121 DOI: 10.1111/j.1365-3040.2011.02327.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.
Collapse
Affiliation(s)
- Ivan Hiltpold
- FARCE Laboratory, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
78
|
Watts SM, Dodson CD, Reichman OJ. The roots of defense: plant resistance and tolerance to belowground herbivory. PLoS One 2011; 6:e18463. [PMID: 21494690 PMCID: PMC3071833 DOI: 10.1371/journal.pone.0018463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 03/08/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae) provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts. METHODOLOGY AND PRINCIPAL FINDINGS We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory) to island populations (free from gophers for up to 500,000 years). Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1) Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2) captive gophers were used to test the palatability of E. californica roots and 3) simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals. CONCLUSIONS AND SIGNIFICANCE These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of the putative target herbivore.
Collapse
Affiliation(s)
- Sean M Watts
- Environmental Studies Institute, Santa Clara University, Santa Clara, California, United States of America.
| | | | | |
Collapse
|
79
|
Orians CM, Thorn A, Gómez S. Herbivore-induced resource sequestration in plants: why bother? Oecologia 2011; 167:1-9. [PMID: 21431939 DOI: 10.1007/s00442-011-1968-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 03/08/2011] [Indexed: 11/26/2022]
Abstract
Herbivores can cause numerous changes in primary plant metabolism. Recent studies using radioisotopes, for example, have found that insect herbivores and related cues can induce faster export from leaves and roots and greater partitioning into tissues inaccessible to foraging herbivores. This process, termed induced resource sequestration, is being proposed as an important response of plants to cope with herbivory. Here, we review the evidence for resource sequestration and suggest that associated allocation and ecological costs may limit the benefit of this response because resources allocated to storage are not immediately available to other plant functions or may be consumed by other enemies. We then present a conceptual model that describes the conditions under which benefits might outweigh costs of induced resource sequestration. Benefits and costs are discussed in the context of differences in plant life-history traits and biotic and abiotic conditions, and new testable hypotheses are presented to guide future research. We predict that intrinsic factors related to life history, ontogeny and phenology will alter patterns of induced sequestration. We also predict that induced sequestration will depend on certain external factors: abiotic conditions, types of herbivores, and trophic interactions. We hope the concepts presented here will stimulate more focused research on the ecological and evolutionary costs and benefits of herbivore-induced resource sequestration.
Collapse
Affiliation(s)
- Colin M Orians
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
80
|
Vaughan MM, Tholl D, Tokuhisa JG. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana. PLANT METHODS 2011; 7:5. [PMID: 21392399 PMCID: PMC3064660 DOI: 10.1186/1746-4811-7-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/10/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. RESULTS We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat). Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. CONCLUSIONS A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.
Collapse
Affiliation(s)
- Martha M Vaughan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- USDA Agricultural Research Service Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, Gainesville, FL 32608, USA
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - James G Tokuhisa
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
81
|
Ali JG, Alborn HT, Stelinski LL. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. JOURNAL OF ECOLOGY 2011; 99:26-35. [PMID: 0 DOI: 10.1111/j.1365-2745.2010.01758.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
82
|
Erb M, Köllner TG, Degenhardt J, Zwahlen C, Hibbard BE, Turlings TCJ. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. THE NEW PHYTOLOGIST 2011; 189:308-20. [PMID: 20840610 DOI: 10.1111/j.1469-8137.2010.03450.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.
Collapse
Affiliation(s)
- Matthias Erb
- FARCE Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
83
|
Rasmann S, Bauerle TL, Poveda K, Vannette R. Predicting root defence against herbivores during succession. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01811.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Hoffmann D, Vierheilig H, Schausberger P. Mycorrhiza-induced trophic cascade enhances fitness and population growth of an acarine predator. Oecologia 2010; 166:141-9. [DOI: 10.1007/s00442-010-1821-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 10/12/2010] [Indexed: 11/28/2022]
|
85
|
Vandegehuchte ML, de la Peña E, Bonte D. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS One 2010; 5:e12937. [PMID: 20886078 PMCID: PMC2944872 DOI: 10.1371/journal.pone.0012937] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/29/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plants are affected by several aspects of the soil, which have the potential to exert cascading effects on the performance of herbivorous insects. The effects of biotic and abiotic soil characteristics have however mostly been investigated in isolation, leaving their relative importance largely unexplored. Such is the case for the dune grass Ammophila, whose decline under decreasing sand accretion is argued to be caused by either biotic or abiotic soil properties. METHODOLOGY/PRINCIPAL FINDINGS By manipulating dune soils from three different regions, we decoupled the contributions of region, the abiotic and biotic soil component to the variation in characteristics of Ammophila arenaria seedlings and Schizaphis rufula aphid populations. Root mass fraction and total dry biomass of plants were affected by soil biota, although the latter effect was not consistent across regions. None of the measured plant properties were significantly affected by the abiotic soil component. Aphid population characteristics all differed between regions, irrespective of whether soil biota were present or absent. Hence these effects were due to differences in abiotic soil properties between regions. Although several chemical properties of the soil mixtures were measured, none of these were consistent with results for plant or aphid traits. CONCLUSIONS/SIGNIFICANCE Plants were affected more strongly by soil biota than by abiotic soil properties, whereas the opposite was true for aphids. Our results thus demonstrate that the relative importance of the abiotic and biotic component of soils can differ for plants and their herbivores. The fact that not all effects of soil properties could be detected across regions moreover emphasizes the need for spatial replication in order to make sound conclusions about the generality of aboveground-belowground interactions.
Collapse
|
86
|
Bass KA, John EA, Ewald NC, Hartley SE. Insect herbivore mortality is increased by competition with a hemiparasitic plant. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01743.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Bonte D, De Roissart A, Vandegehuchte ML, Ballhorn DJ, Van Leeuwen T, de la Peña E. Local adaptation of aboveground herbivores towards plant phenotypes induced by soil biota. PLoS One 2010; 5:e11174. [PMID: 20567507 PMCID: PMC2887358 DOI: 10.1371/journal.pone.0011174] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/27/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. METHODOLOGY AND PRINCIPAL FINDINGS We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. CONCLUSION/SIGNIFICANCE These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitative changes of the different separately studied life history traits (i.e. fecundity, longevity, sex-ratio, time to maturity).
Collapse
Affiliation(s)
- Dries Bonte
- Department of Biology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
88
|
Stein C, Unsicker SB, Kahmen A, Wagner M, Audorff V, Auge H, Prati D, Weisser WW. Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology 2010; 91:1639-50. [DOI: 10.1890/09-0600.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
89
|
Vandegehuchte ML, De La Peña E, Bonte D. Interactions between root and shoot herbivores of Ammophila arenaria in the laboratory do not translate into correlated abundances in the field. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18360.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Heil M, Ton J. Systemic Resistance Induction by Vascular and Airborne Signaling. PROGRESS IN BOTANY 2010. [DOI: 10.1007/978-3-642-02167-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
91
|
Paschke M, Horiuchi J, Vivanco J, Perry L, Alford É. Chemical Signals in the Rhizosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420005585.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
92
|
van Dam NM. Belowground Herbivory and Plant Defenses. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.110308.120314] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole M. van Dam
- Netherlands Institute of Ecology (NIOO-KNAW), 6666 ZG Heteren, The Netherlands;
| |
Collapse
|
93
|
Johnson SN, Hawes C, Karley AJ. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01550.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Daugherty MP. Specialized feeding modes promote coexistence of competing herbivores: insights from a metabolic pool model. ENVIRONMENTAL ENTOMOLOGY 2009; 38:667-676. [PMID: 19508775 DOI: 10.1603/022.038.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Competition theory suggests that a single resource should support one consumer species. However, competitive exclusion may be relaxed by periodic disturbances, temporal or spatial segregation of consumers, or fine-scale resource partitioning. This last mechanism may be especially common for competing phytophagous insects. Unlike many predators, herbivores rarely consume their entire prey item and often have specialized feeding modes on specific plant parts. Thus, different herbivore guilds may "avoid" each other, thereby facilitating their coexistence. I analyzed a simplified metabolic pool model that includes two herbivore types: a "leaf chewer" and a "phloem feeder." Phytophagous insects with the same feeding mode never coexisted, but different guilds may coexist stably-depending on productivity of the carbohydrate pool, allocation to vegetative biomass, and defoliation rate. Differences in herbivore feeding mode are equivalent to fine scale resource partitioning, potentially within the individual plant. Thus, the addition of physiological detail changes the predictions of simple competition models and is relevant to weed biocontrol by informing decisions on which guilds of biocontrol agents to introduce.
Collapse
Affiliation(s)
- Matthew P Daugherty
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| |
Collapse
|
95
|
Lilleskov EA, Mattson WJ, Storer AJ. Divergent biogeography of native and introduced soil macroinvertebrates in North America north of Mexico. DIVERS DISTRIB 2008. [DOI: 10.1111/j.1472-4642.2008.00487.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
96
|
Staley JT, Mortimer SR, Morecroft MD. Drought impacts on above–belowground interactions: Do effects differ between annual and perennial host species? Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Erb M, Ton J, Degenhardt J, Turlings TCJ. Interactions between arthropod-induced aboveground and belowground defenses in plants. PLANT PHYSIOLOGY 2008; 146:867-74. [PMID: 18316642 PMCID: PMC2259098 DOI: 10.1104/pp.107.112169] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/14/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Matthias Erb
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
98
|
Rasmann S, Agrawal AA. In defense of roots: a research agenda for studying plant resistance to belowground herbivory. PLANT PHYSIOLOGY 2008; 146:875-80. [PMID: 18316643 PMCID: PMC2259042 DOI: 10.1104/pp.107.112045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/28/2007] [Indexed: 05/20/2023]
Affiliation(s)
- Sergio Rasmann
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853-2701, USA.
| | | |
Collapse
|
99
|
Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 2008; 89:392-406. [PMID: 18409429 DOI: 10.1890/07-0471.1] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
100
|
McCall AC. Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 2008; 155:729-37. [DOI: 10.1007/s00442-007-0934-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 11/30/2007] [Indexed: 11/28/2022]
|