51
|
Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154:925-36. [PMID: 11535616 PMCID: PMC2196190 DOI: 10.1083/jcb.200102093] [Citation(s) in RCA: 668] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.
Collapse
Affiliation(s)
- V Sudakin
- Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
52
|
Wang BD, Kuo TT. Induction of a mitosis delay and cell lysis by high-level secretion of mouse alpha-amylase from Saccharomyces cerevisiae. Appl Environ Microbiol 2001; 67:3693-701. [PMID: 11472949 PMCID: PMC93073 DOI: 10.1128/aem.67.8.3693-3701.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse alpha-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in alpha-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of alpha-amylase. Our data also suggest that high levels of alpha-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous alpha-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis.
Collapse
Affiliation(s)
- B D Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | | |
Collapse
|
53
|
Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 2001; 12:1995-2009. [PMID: 11451998 PMCID: PMC55648 DOI: 10.1091/mbc.12.7.1995] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability of kinetochores to recruit microtubules, generate force, and activate the mitotic spindle checkpoint may all depend on microtubule- and/or tension-dependent changes in kinetochore assembly. With the use of quantitative digital imaging and immunofluorescence microscopy of PtK1 tissue cells, we find that the outer domain of the kinetochore, but not the CREST-stained inner core, exhibits three microtubule-dependent assembly states, not directly dependent on tension. First, prometaphase kinetochores with few or no kinetochore microtubules have abundant punctate or oblate fluorescence morphology when stained for outer domain motor proteins CENP-E and cytoplasmic dynein and checkpoint proteins BubR1 and Mad2. Second, microtubule depolymerization induces expansion of the kinetochore outer domain into crescent and ring morphologies around the centromere. This expansion may enhance recruitment of kinetochore microtubules, and occurs with more than a 20- to 100-fold increase in dynein and relatively little change in CENP-E, BubR1, and Mad2 in comparison to prometaphase kinetochores. Crescents disappear and dynein decreases substantially upon microtubule reassembly. Third, when kinetochores acquire their full metaphase complement of kinetochore microtubules, levels of CENP-E, dynein, and BubR1 decrease by three- to sixfold in comparison to unattached prometaphase kinetochores, but remain detectable. In contrast, Mad2 decreases by 100-fold and becomes undetectable, consistent with Mad2 being a key factor for the "wait-anaphase" signal produced by unattached kinetochores. Like previously found for Mad2, the average amounts of CENP-E, dynein, or BubR1 at metaphase kinetochores did not change with the loss of tension induced by taxol stabilization of microtubules.
Collapse
Affiliation(s)
- D B Hoffman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
54
|
Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 2001; 153:1209-26. [PMID: 11402065 PMCID: PMC2192036 DOI: 10.1083/jcb.153.6.1209] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical "kinetochore null" phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A-containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.
Collapse
Affiliation(s)
- K Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
55
|
Hanna JS, Kroll ES, Lundblad V, Spencer FA. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 2001; 21:3144-58. [PMID: 11287619 PMCID: PMC86942 DOI: 10.1128/mcb.21.9.3144-3158.2001] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.
Collapse
Affiliation(s)
- J S Hanna
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
56
|
Gardner RD, Poddar A, Yellman C, Tavormina PA, Monteagudo MC, Burke DJ. The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 2001; 157:1493-502. [PMID: 11290706 PMCID: PMC1461604 DOI: 10.1093/genetics/157.4.1493] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.
Collapse
Affiliation(s)
- R D Gardner
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, University of Virginia, Charlottesville, Virginia 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
57
|
Kerscher O, Hieter P, Winey M, Basrai MA. Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 2001; 157:1543-53. [PMID: 11290711 PMCID: PMC1461611 DOI: 10.1093/genetics/157.4.1543] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We determined that a mutation in the nucleoporin gene NUP170 leads to defects in chromosome transmission fidelity (ctf) and kinetochore integrity in Saccharomyces cerevisiae. A ctf mutant strain, termed s141, shows a transcription readthrough phenotype and stabilizes a dicentric chromosome fragment in two assays for kinetochore integrity. Previously, these assays led to the identification of two essential kinetochore components, Ctf13p and Ctf14p. Thus, s141 represents another ctf mutant involved in the maintenance of kinetochore integrity. We cloned and mapped the gene complementing the ctf mutation of s141 and showed that it is identical to the S. cerevisiae NUP170 gene. A deletion strain of NUP170 (nup170 Delta::HIS3) has a Ctf(-) phenotype similar to the s141 mutant (nup170-141) and also exhibits a kinetochore integrity defect. We identified a second nucleoporin, NUP157, a homologue of NUP170, as a suppressor of the Ctf(-) phenotype of nup170-141 and nup170 Delta::HIS3 strains. However, a deletion of NUP157 or several other nucleoporins did not affect chromosome segregation. Our data suggest that NUP170 encodes a specialized nucleoporin with a unique role in chromosome segregation and possibly kinetochore function.
Collapse
Affiliation(s)
- O Kerscher
- Department of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | |
Collapse
|
58
|
Abstract
Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.
Collapse
Affiliation(s)
- K F Sullivan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
59
|
Abstract
Genome instability has been implicated in the generation of multiple somatic mutations that underlie cancer. Germline mutation in the retinoblastoma (RB) gene leads to tumor formation in both human and experimental animal models, and reintroduction of wild-type RB is able to suppress neoplastic phenotypes. Rb governs the passage of cells through the G1 phase-restriction point and this control is lost in most cancer cells. Rb has also been shown to promote terminal differentiation and prevent cell cycle reentry. Recent studies implicate Rb in mitotic progression, faithful chromosome segregation, checkpoint control, and chromatin remodeling, suggesting that Rb may function in the maintenance of genome integrity. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities. A single protein capable of performing multiple antioncogenic functions may be a common characteristic of other tumor suppressors including p53 and BRCA1/2.
Collapse
Affiliation(s)
- L Zheng
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA
| | | |
Collapse
|
60
|
Wigge PA, Kilmartin JV. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 2001; 152:349-60. [PMID: 11266451 PMCID: PMC2199619 DOI: 10.1083/jcb.152.2.349] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have purified a complex from Saccharomyces cerevisiae containing the spindle components Ndc80p, Nuf2p, Spc25p, and Spc24p. Temperature-sensitive mutants in NDC80, SPC25, and SPC24 show defects in chromosome segregation. In spc24-1 cells, green fluorescence protein (GFP)-labeled centromeres fail to split during spindle elongation, and in addition some centromeres may detach from the spindle. Chromatin immunoprecipitation assays show an association of all four components of the complex with the yeast centromere. Homologues of Ndc80p, Nuf2p, and Spc24p were found in Schizosaccharomyces pombe and GFP tagging showed they were located at the centromere. A human homologue of Nuf2p was identified in the expressed sequence tag database. Immunofluorescent staining with anti-human Nuf2p and with anti-HEC, the human homologue of Ndc80p, showed that both proteins are at the centromeres of mitotic HeLa cells. Thus the Ndc80p complex contains centromere-associated components conserved between yeasts and vertebrates.
Collapse
Affiliation(s)
- Philip A. Wigge
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - John V. Kilmartin
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| |
Collapse
|
61
|
Beheshti B, Park PC, Sweet JM, Trachtenberg J, Jewett MA, Squire JA. Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase fish analysis. Neoplasia 2001; 3:62-9. [PMID: 11326317 PMCID: PMC1505026 DOI: 10.1038/sj.neo.7900125] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Accepted: 11/23/2000] [Indexed: 11/09/2022] Open
Abstract
The way in which cytogenetic aberrations develop in prostate cancer (CaP) is poorly understood. Spectral karyotype (SKY) analysis of CaP cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN). To accurately determine the incidence of de novo structural and numerical aberrations in vitro in CaP, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 CaP primary tumors by interphase fluorescence in situ hybridization (FISH). This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in CaP tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05), greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in CaP.
Collapse
Affiliation(s)
- B Beheshti
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
62
|
King JM, Nicklas RB. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J Cell Sci 2000; 113 Pt 21:3815-23. [PMID: 11034909 DOI: 10.1242/jcs.113.21.3815] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
When chromosomes attach properly to a mitotic spindle, their kinetochores generate force in opposite directions, creating tension. Tension is presumed to increase kinetochore microtubule number, but there has been no direct evidence this is true. We micromanipulated grasshopper spermatocyte chromosomes to test this assumption and found that tension does indeed affect the number of kinetochore microtubules. Releasing tension at kinetochores causes a drop to less than half the original number of kinetochore microtubules. Restoring tension onto these depleted kinetochores restores the microtubules to their original number. However, the effects of tension are limited. Prometaphase kinetochores, when under normal tension from mitotic forces, have about half as many microtubules as they will in late metaphase. We imposed a tension force of 6 × 10(−5) dynes, three times the normal tension, on prometaphase kinetochores. The elevated tension did not drive kinetochore microtubule number above normal prometaphase values. Tension probably increases the number of kinetochore microtubules by slowing their turnover rate. The limited effect of tension at prometaphase kinetochores suggests that they have fewer microtubule binding sites than at late metaphase. The relatively few sites available in prometaphase may be the decisive sites whose binding of microtubules regulates the dynamics of transient kinetochore constituents, including checkpoint components.
Collapse
Affiliation(s)
- J M King
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
63
|
Abstract
Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit three- and four-dimensional light microscopy and the maize meiotic mutant absence of first division 1 (afd1) to investigate the properties of single kinetochores. As an outcome of premature sister kinetochore separation in afd1 meiocytes, all of the chromosomes at meiosis II carry single kinetochores. Approximately 60% of the single kinetochore chromosomes align at the spindle equator during prometaphase/metaphase II, whereas acentric fragments, also generated by afd1, fail to align at the equator. Immunocytochemistry suggests that the plateward movement occurs in part because the single kinetochores separate into half kinetochore units. Single kinetochores stain positive for spindle checkpoint proteins during prometaphase, but lose their staining as tension is applied to the half kinetochores. At anaphase, approximately 6% of the kinetochores develop stable interactions with microtubules (kinetochore fibers) from both spindle poles. Our data indicate that maize meiotic kinetochores are plastic, redundant structures that can carry out each of their major functions in duplicate.
Collapse
Affiliation(s)
- H G Yu
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
64
|
Krishnan R, Pangilinan F, Lee C, Spencer F. Saccharomyces cerevisiae BUB2 prevents mitotic exit in response to both spindle and kinetochore damage. Genetics 2000; 156:489-500. [PMID: 11014800 PMCID: PMC1461296 DOI: 10.1093/genetics/156.2.489] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.
Collapse
Affiliation(s)
- R Krishnan
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
65
|
Kalitsis P, Earle E, Fowler KJ, Choo KH. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 2000; 14:2277-82. [PMID: 10995385 PMCID: PMC316933 DOI: 10.1101/gad.827500] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bub3 is a conserved component of the mitotic spindle assembly complex. The protein is essential for early development in Bub3 gene-disrupted mice, evident from their failure to survive beyond day 6.5-7.5 postcoitus (pc). Bub3 null embryos appear normal up to day 3.5 pc but accumulate mitotic errors from days 4.5-6.5 pc in the form of micronuclei, chromatin bridging, lagging chromosomes, and irregular nuclear morphology. Null embryos treated with a spindle-depolymerising agent fail to arrest in metaphase and show an increase in mitotic disarray. The results confirm Bub3 as a component of the essential spindle checkpoint pathway that operates during early embryogenesis.
Collapse
Affiliation(s)
- P Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Melbourne, Australia
| | | | | | | |
Collapse
|
66
|
Kolnicki RL. Kinetochore reproduction in animal evolution: cell biological explanation of karyotypic fission theory. Proc Natl Acad Sci U S A 2000; 97:9493-7. [PMID: 10944218 PMCID: PMC16892 DOI: 10.1073/pnas.97.17.9493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Karyotypic fission theory of Todd offers an explanation for the diverse range of diploid numbers of many mammalian taxa. Theoretically, a full complement of acrocentric chromosomes can be introduced into a population by chromosomal fission. Subsequent inheritance of ancestral chromosomes and paired fission derivatives potentially generates a diploid range from the ancestral condition to double its number of chromosomes. Although it is undisputed that both chromosomal fission and fusion ("Robertsonian rearrangements") have significantly contributed to karyological diversity, it is generally assumed that independent events, the fission of single chromosomes or the fusion of two chromosomes, are the sources of such change. The karyotypic fission idea by contrast posits that all mediocentric chromosomes simultaneously fission. Here I propose a specific cell biological mechanism for Todd's karyotypic fission concept, "kinetochore reproduction theory," where a complete set of dicentric chromatids is synthesized during gametogenesis, and kinetochore protein dephosphorylation regulates dicentric chromatid segregation. Three postulates of kinetochore reproduction theory are: (i) breakage of dicentric chromosomes between centromere pairs forms acrocentric derivatives, (ii) de novo capping of newly synthesized acrocentric ends with telomeric DNA stabilizes these derivatives, and (iii) mitotic checkpoints regulate chromosomal disjunction to generate fissioned karyotypes. Subsequent chromosomal rearrangement, especially pericentric inversion, increases the probability of genetic isolation amongst incipient sympatric species polytypic for fission-generated acrocentric autosomes. This mechanism obviates the requirement for numerous independent Robertsonian rearrangements and neatly accounts for mammalian karyotype evolution as exemplified in analyses of Carnivora, Artiodactyla, and Primates.
Collapse
Affiliation(s)
- R L Kolnicki
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003-6410, USA.
| |
Collapse
|
67
|
Glowczewski L, Yang P, Kalashnikova T, Santisteban MS, Smith MM. Histone-histone interactions and centromere function. Mol Cell Biol 2000; 20:5700-11. [PMID: 10891506 PMCID: PMC86044 DOI: 10.1128/mcb.20.15.5700-5711.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cse4p is a structural component of the core centromere of Saccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allele hhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4 alleles in an unbiased genetic screen. Two of the cse4 alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4 allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression of cse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.
Collapse
Affiliation(s)
- L Glowczewski
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Ubiquitin-mediated proteolysis of cell cycle regulators is a crucial process during the cell cycle. The anaphase-promoting complex (APC) is a large, multiprotein complex whose E3-ubiquitin ligase activity is required for the ubiquitination of mitotic cyclins and other regulatory proteins that are targeted for destruction during cell division. The recent identification of new APC subunits and regulatory proteins has begun to reveal some of the intricate mechanisms that govern APC regulation. One mechanism is the use of specificity factors to impose temporal control over substrate degradation. A second mechanism is the APC-mediated proteolysis of specific APC regulators. Finally, components of both the APC and the SCF E3 ubiquitin-ligase complex contain several conserved sequence motifs, including WD-40 repeats and cullin homology domains, which suggest that both complexes may use a similar mechanism for substrate ubiquitination.
Collapse
Affiliation(s)
- A M Page
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
69
|
Bonsing BA, Corver WE, Fleuren GJ, Cleton-Jansen AM, Devilee P, Cornelisse CJ. Allelotype analysis of flow-sorted breast cancer cells demonstrates genetically related diploid and aneuploid subpopulations in primary tumors and lymph node metastases. Genes Chromosomes Cancer 2000; 28:173-83. [PMID: 10825002 DOI: 10.1002/(sici)1098-2264(200006)28:2<173::aid-gcc6>3.0.co;2-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flow cytometric DNA content measurements have demonstrated extensive DNA ploidy heterogeneity in primary breast carcinomas. However, little is known at the molecular level about the clonal relationship between these tumor cell subpopulations, or about the molecular genetic changes associated with aneuploidization. We have used flow cytometric cell sorting to dissect some of this complexity by isolating clonal subpopulations in breast carcinomas for comparative molecular genetic analysis. Clonal subpopulations were isolated from 12 primary breast carcinomas and 5 lymph node metastases from 4 cases based on DNA content and cytokeratin 8/18 labeling. DNA from these clones was screened for allelic imbalances with 92 polymorphic microsatellite markers mapped to 39 different chromosome arms. Diploid and aneuploid populations were concurrently present in 11 out of 12 primary tumors. The DNA ploidy status of primary tumors was identical to that of the related lymph node metastases. Allelic imbalance was present in 10 out of 11 diploid clones (mean, 3.4 +/- 4.2). All allelic imbalances observed in the diploid clones recurred in the cognate aneuploid clones, but were, in the latter, accompanied by additional allelic imbalances at other loci and/or chromosome arms (mean, 10.9 +/- 5.8). In only two of the four metastatic cases did the allelotypes of metastatic clones show small differences relative to their cognate primary tumors. The primary diploid tumor clone recurred in all lymph node metastases. This study indicates that the majority of allelic imbalances in breast carcinomas are established during generation of DNA ploidy diversity. Recurrence of the allelic imbalances in diploid clones in the aneuploid clones suggests linear tumor progression, whereas the simultaneous presence of early diploid and advanced aneuploid clones in both primary and metastatic tumor sites suggests that acquisition of metastatic propensity can be an early event in the genetic progression of breast cancer.
Collapse
Affiliation(s)
- B A Bonsing
- Department of Pathology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
70
|
Campbell MS, Daum JR, Gersch MS, Nicklas RB, Gorbsky GJ. Kinetochore "memory" of spindle checkpoint signaling in lysed mitotic cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:146-56. [PMID: 10891860 DOI: 10.1002/1097-0169(200006)46:2<146::aid-cm7>3.0.co;2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The spindle checkpoint prevents errors in mitosis. Cells respond to the presence of kinetochores that are improperly attached to the mitotic spindle by delaying anaphase onset. Evidence suggests that phosphorylations recognized by the 3F3/2 anti-phosphoepitope antibody may be involved in the kinetochore signaling of the spindle checkpoint. Mitotic cells lysed in detergent in the absence of phosphatase inhibitors rapidly lose expression of the 3F3/2 phosphoepitope. However, when ATP is added to lysed and rinsed mitotic cytoskeletons, kinetochores become rephosphorylated by an endogenous, bound kinase. Kinetochore rephosphorylation in vitro produced the same differential phosphorylation seen in appropriately fixed living cells. In chromosomes not yet aligned at the metaphase plate, kinetochores undergo rapid rephosphorylation, while those of fully congressed chromosomes are under-phosphorylated. However, latent 3F3/2 kinase activity is retained at kinetochores of cells at all stages of mitosis including anaphase. This latent activity is revealed when rephosphorylation reactions are carried out for extended times. The endogenous, kinetochore-bound kinase can be chemically inactivated. Remarkably, a soluble kinase activity extracted from mitotic cells also caused differential rephosphorylation of kinetochores whose endogenous kinase had been chemically inactivated. We suggest that, in vivo, microtubule attachment alters the kinetochore 3F3/2 phosphoprotein, causing it to resist phosphorylation. This kinetochore modification is retained after cell lysis, producing a "memory" of the in vivo phosphorylation state.
Collapse
Affiliation(s)
- M S Campbell
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
71
|
Starr DA, Saffery R, Li Z, Simpson AE, Choo KH, Yen TJ, Goldberg ML. HZwint-1, a novel human kinetochore component that interacts with HZW10. J Cell Sci 2000; 113 ( Pt 11):1939-50. [PMID: 10806105 DOI: 10.1242/jcs.113.11.1939] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HZwint-1 (Human ZW10 interacting protein-1) was identified in a yeast two hybrid screen for proteins that interact with HZW10. HZwint-1 cDNA encodes a 43 kDa protein predicted to contain an extended coiled-coil domain. Immunofluorescence studies with sera raised against HZwint-1 protein revealed strong kinetochore staining in nocodazole-arrested chromosome spreads. This signal co-localizes at the kinetochore with HZW10, at a position slightly outside of the central part of the centromere as revealed by staining with a CREST serum. The kinetochore localization of HZwint-1 has been confirmed by following GFP fluorescence in HeLa cells transiently transfected with a plasmid encoding a GFP/HZwint-1 fusion protein. In cycling HeLa cells, HZwint-1 localizes to the kinetochore of prophase HeLa cells prior to HZW10 localization, and remains at the kinetochore until late in anaphase. This localization pattern, combined with the two-hybrid results, suggests that HZwint-1 may play a role in targeting HZW10 to the kinetochore at prometaphase. HZwint-1 was also found to localize to neocentromeres and to the active centromere of dicentric chromosomes. HZwint-1 thus appears to associate with all active centromeres, implying that it plays an important role in correct centromere function.
Collapse
Affiliation(s)
- D A Starr
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Yudkovsky Y, Shteinberg M, Listovsky T, Brandeis M, Hershko A. Phosphorylation of Cdc20/fizzy negatively regulates the mammalian cyclosome/APC in the mitotic checkpoint. Biochem Biophys Res Commun 2000; 271:299-304. [PMID: 10799291 DOI: 10.1006/bbrc.2000.2622] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclosome/anaphase promoting complex (APC) is a multisubunit ubiquitin ligase that targets mitotic regulators for degradation in exit from mitosis. It is activated at the end of mitosis by phosphorylation and association with the WD-40 protein Cdc20/Fizzy and is then kept active in the G1 phase by association with Cdh1/Hct1. The mitotic checkpoint system that keeps cells with defective spindles from leaving mitosis interacts with Cdc20 and prevents its stimulatory action on the cyclosome. The activity of Cdh1 is negatively regulated by phosphorylation, while the abundance of Cdc20 is cell cycle regulated, with a peak in M-phase. Cdc20 is also phosphorylated in G2/M and in mitotically arrested cells, but the role of phosphorylation remained unknown. Here we show that phosphorylation of Cdc20 by Cdk1/cyclin B abrogates its ability to activate cyclosome/APC from mitotic HeLa cells. A nonphosphorylatable derivative of Cdc20 stimulates cyclin-ubiquitin ligation in extracts from nocodazole-arrested cells to a much greater extent than does wild-type Cdc20. It is suggested that inhibitory phosphorylation of Cdc20/Fizzy may have a role in keeping the cyclosome inactive in early mitosis and under conditions of mitotic checkpoint arrest.
Collapse
Affiliation(s)
- Y Yudkovsky
- Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | | | | | | | |
Collapse
|
73
|
Abstract
Centromere formation is a complex process that involves the packaging of DNA into a centromere-unique chromatin, chemical modification and the seeding of kinetochore and associated proteins. The early steps in this process, in which a chromosomal region is marked for centromerization (that is, to become resolutely committed to centromere formation), are unusual in that they can apparently occur in a DNA-sequence-independent manner. Current evidence indicates the involvement of epigenetic influences in these early steps. A number of epigenetic mechanisms that can affect centromere chromatin organization have been proposed. Here, the characteristics of these mechanisms and their relative roles as possible primary triggers for centromerization are discussed in the light of recent data.
Collapse
Affiliation(s)
- K H Choo
- The Murdoch Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Melbourne, Australia.
| |
Collapse
|
74
|
Abstract
Each year many reviews deal with checkpoint control.((1-5)) Here we discuss checkpoint pathways that control mitosis. We address four checkpoint systems in depth: budding yeast DNA damage, the DNA replication checkpoint, the spindle assembly checkpoint and the mammalian G2 topoisomerase II-dependent checkpoint. A main focus of the review is the organization of these checkpoint pathways. Recent work has elucidated the order-of-function of several checkpoint components, and has revealed that the S phase, DNA damage and spindle assembly checkpoints each have at least two parallel branches. These steps forward have largely come from kinetic studies of checkpoint-defective mutants.
Collapse
Affiliation(s)
- D J Clarke
- The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
75
|
Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 2000; 97:1148-53. [PMID: 10655499 PMCID: PMC15551 DOI: 10.1073/pnas.97.3.1148] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromere protein A (Cenpa for mouse, CENP-A for other species) is a histone H3-like protein that is thought to be involved in the nucleosomal packaging of centromeric DNA. Using gene targeting, we have disrupted the mouse Cenpa gene and demonstrated that the gene is essential. Heterozygous mice are healthy and fertile whereas null mutants fail to survive beyond 6.5 days postconception. Affected embryos show severe mitotic problems, including micronuclei and macronuclei formation, nuclear bridging and blebbing, and chromatin fragmentation and hypercondensation. Immunofluorescence analysis of interphase cells at day 5.5 reveals complete Cenpa depletion, diffuse Cenpb foci, absence of discrete Cenpc signal on centromeres, and dispersion of Cenpb and Cenpc throughout the nucleus. These results suggest that Cenpa is essential for kinetochore targeting of Cenpc and plays an early role in organizing centromeric chromatin at interphase. The evidence is consistent with the proposal of a critical epigenetic function for CENP-A in marking a chromosomal region for centromere formation.
Collapse
Affiliation(s)
- E V Howman
- The Murdoch Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
76
|
Lorson MA, Horvitz HR, van den Heuvel S. LIN-5 is a novel component of the spindle apparatus required for chromosome segregation and cleavage plane specification in Caenorhabditis elegans. J Cell Biol 2000; 148:73-86. [PMID: 10629219 PMCID: PMC3207147 DOI: 10.1083/jcb.148.1.73] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Successful divisions of eukaryotic cells require accurate and coordinated cycles of DNA replication, spindle formation, chromosome segregation, and cytoplasmic cleavage. The Caenorhabditis elegans gene lin-5 is essential for multiple aspects of cell division. Cells in lin-5 null mutants enter mitosis at the normal time and form bipolar spindles, but fail chromosome alignment at the metaphase plate, sister chromatid separation, and cytokinesis. Despite these defects, cells exit from mitosis without delay and progress through subsequent rounds of DNA replication, centrosome duplication, and abortive mitoses. In addition, early embryos that lack lin-5 function show defects in spindle positioning and cleavage plane specification. The lin-5 gene encodes a novel protein with a central coiled-coil domain. This protein localizes to the spindle apparatus in a cell cycle- and microtubule-dependent manner. The LIN-5 protein is located at the centrosomes throughout mitosis, at the kinetochore microtubules in metaphase cells, and at the spindle during meiosis. Our results show that LIN-5 is a novel component of the spindle apparatus required for chromosome and spindle movements, cytoplasmic cleavage, and correct alternation of the S and M phases of the cell cycle.
Collapse
Affiliation(s)
- Monique A. Lorson
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sander van den Heuvel
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
77
|
Saavedra HI, Fukasawa K, Conn CW, Stambrook PJ. MAPK mediates RAS-induced chromosome instability. J Biol Chem 1999; 274:38083-90. [PMID: 10608877 DOI: 10.1074/jbc.274.53.38083] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of micronuclei is a reflection of DNA damage, defective mitosis, and loss of genetic material. The involvement of the MAPK pathway in mediating v-ras-induced micronuclei in NIH 3T3 cells was examined by inhibiting MAPK activation. Conversely, the MAPK pathway was constitutively activated by infecting cells with a v-mos retrovirus. Micronucleus formation was inhibited by the MAPK kinase inhibitors PD98059 and U0126, but not by wortmannin, an inhibitor of the Ras/phosphatidylinositol 3-kinase pathway. Transduction of cells with v-mos resulted in an increase in micronucleus formation, also consistent with the involvement of the MAPK pathway. Staining with the anti-centromeric CREST antibody revealed that instability induced by constitutive activation of MAPK is due predominantly to aberrant mitotic segregation, since most of the micronuclei were CREST-positive, reflective of lost chromosomes. A significant fraction of the micronuclei were CREST-negative, reflective of lost acentric chromosome fragments. Some of the instability observed was due to mitotic events, consistent with the increased formation of bi-nucleated cells, which result from perturbations of the mitotic spindle and failure to undergo cytokinesis. This chromosome instability, therefore, is a consequence of mitotic aberrations, mediated by the MAPK pathway, including centrosome amplification and formation of mitotic chromosome bridges.
Collapse
Affiliation(s)
- H I Saavedra
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | |
Collapse
|
78
|
Ploubidou A, Robinson DR, Docherty RC, Ogbadoyi EO, Gull K. Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis. J Cell Sci 1999; 112 ( Pt 24):4641-50. [PMID: 10574712 DOI: 10.1242/jcs.112.24.4641] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei has a single nucleus and a single kinetoplast (the mitochondrial genome). Each of these organelles has a distinct S phase, which is followed by a segregation period, prior to cell division. The segregation of the two genomes takes place in a specific temporal order by interaction with microtubule-based structures, the spindle for nuclear DNA and the flagellum basal bodies for the kinetoplast DNA. We used rhizoxin, the anti-microtubule agent and polymerisation inhibitor, or the nuclear DNA synthesis inhibitor aphidicolin, to interfere with cell cycle events in order to study how such events are co-ordinated. We show that T. brucei cytokinesis is not dependent upon either mitosis or nuclear DNA synthesis, suggesting that there are novel cell cycle checkpoints in this organism. Moreover, use of monoclonal antibodies to reveal cytoplasmic events such as basal body duplication shows that some aphidicolin treated cells appear to be in G(1) phase (1K1N) but have activated some cytoplasmic events characteristic of G(2) phase (basal body segregation). We discuss a possible dominant role in trypanosomes for kinetoplast/basal body segregation in control of later cell cycle events such as cytokinesis
Collapse
Affiliation(s)
- A Ploubidou
- University of Manchester, School of Biological Sciences, Stopford Building 2.205, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- S L Holloway
- Howard Hughes Medical Institute, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
80
|
Bastians H, Topper LM, Gorbsky GL, Ruderman JV. Cell cycle-regulated proteolysis of mitotic target proteins. Mol Biol Cell 1999; 10:3927-41. [PMID: 10564281 PMCID: PMC25689 DOI: 10.1091/mbc.10.11.3927] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 08/24/1999] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.
Collapse
Affiliation(s)
- H Bastians
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
81
|
Abstract
Macromolecular centromere-kinetochore complex plays a critical role in sister chromatid separation, but its complete protein composition as well as its precise dynamic function during mitosis has not yet been clearly determined. Here we report the isolation of a novel mouse kinetochore protein, CENP-H. The CENP-H, with an apparent molecular mass of 33 kDa, was found to contain a coiled-coil structure and a nuclear localization signal. The CENP-H transcripts were relatively scarce but were detectable in most tissues and embryos at various stages of development. Immunofluorescence stainings of mouse fibroblast cells with anti-CENP-H-specific antibody demonstrated that the CENP-H is specifically and constitutively localized in kinetochores throughout the cell cycle; this was also confirmed by stainings with anti-centromere-specific antibody. Thus the newly isolated CENP-H may play a role in kinetochore organization and function throughout the cell cycle.
Collapse
Affiliation(s)
- N Sugata
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
82
|
Abstract
Cyclin-dependent kinases (Cdks) control major transitions as cells pass through the cell cycle. It has recently been shown that centrosome duplication in vertebrates requires Cdk2 activity and can be driven solely by Cdk2-cyclin E complexes.
Collapse
Affiliation(s)
- M Winey
- MCD Biology, University of Colorado-Boulder, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
83
|
Loeb KR, Loeb LA. Genetic instability and the mutator phenotype. Studies in ulcerative colitis. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1621-6. [PMID: 10362784 PMCID: PMC1866616 DOI: 10.1016/s0002-9440(10)65415-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Keith R. Loeb
- University of Washington School of Medicine and the Fred Hutchinson Cancer Research Center,†
| | - Lawrence A. Loeb
- University of Washington School of Medicine and the Fred Hutchinson Cancer Research Center,†
| |
Collapse
|
84
|
Skibbens RV, Corson LB, Koshland D, Hieter P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 1999; 13:307-19. [PMID: 9990855 PMCID: PMC316428 DOI: 10.1101/gad.13.3.307] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Accepted: 11/30/1998] [Indexed: 11/24/2022]
Abstract
CTF7 (chromosome transmission fidelity) gene in budding yeast encodes an essential protein that is required for high-fidelity chromosome transmission and contains regions of identity conserved from yeast to man. ctf7 mutant cells arrested prior to anaphase onset contain separated sister chromatids. Thus, Ctf7p is essential for cohesion. Cohesion is established during S phase and then maintained until mitosis. However, Ctf7p activity is required only during S phase, suggesting that Ctf7p functions in the establishment of cohesion. In addition, ctf7 genetically interacts with DNA metabolism mutations pol30 (PCNA) and ctf18 (an RF-C like protein) and ctf7 temperature sensitivity and chromosome loss are rescued by high levels of POL30. These findings provide the first evidence that links the establishment of sister chromatid cohesion to the DNA replication machinery and suggest that the assembly of cohesion (and possibly condensation) complexes are coupled to PCNA-dependent DNA replication. The analysis of Ctf7p also reveals an important connection between sister chromatid cohesion, spindle integrity and the spindle assembly checkpoint.
Collapse
Affiliation(s)
- R V Skibbens
- Department of Molecular Biology and Genetics, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205 USA.
| | | | | | | |
Collapse
|