51
|
Tanaka H, Yao MC. Palindromic gene amplification--an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 2009; 9:216-24. [PMID: 19212324 DOI: 10.1038/nrc2591] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The clinical importance of gene amplification in the diagnosis and treatment of cancer has been widely recognized, as it is often evident in advanced stages of diseases. However, our knowledge of the underlying mechanisms is still limited. Gene amplification is an essential process in several organisms including the ciliate Tetrahymena thermophila, in which the initiating mechanism has been well characterized. Lessons from such simple eukaryotes may provide useful information regarding how gene amplification occurs in tumour cells.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, 9,500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
52
|
Abstract
Transposons populate the landscape of all eukaryotic genomes. Often considered purely genomic parasites, transposons can also benefit their hosts, playing roles in gene regulation and in genome organization and evolution. Peaceful coexistence with mobile elements depends upon adaptive control mechanisms, since unchecked transposon activity can impact long-term fitness and acutely reduce the fertility of progeny. Here, we review the conserved roles played by small RNAs in the adaptation of eukaryotes to coexist with their genomic colonists. An understanding of transposon-defense pathways has uncovered recurring themes in the mechanisms by which genomes distinguish "self" from "non-self" and selectively silence the latter.
Collapse
Affiliation(s)
- Colin D. Malone
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
53
|
Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS One 2009; 4:e4429. [PMID: 19204800 PMCID: PMC2636879 DOI: 10.1371/journal.pone.0004429] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. METHODOLOGY/PRINCIPAL FINDINGS A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. CONCLUSIONS/SIGNIFICANCE Of the approximately 27,000 predicted open reading frames, transcripts homologous to only approximately 5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.
Collapse
|
54
|
Lepère G, Nowacki M, Serrano V, Gout JF, Guglielmi G, Duharcourt S, Meyer E. Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Res 2008; 37:903-15. [PMID: 19103667 PMCID: PMC2647294 DOI: 10.1093/nar/gkn1018] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Distinct small RNA pathways are involved in the two types of homology-dependent effects described in Paramecium tetraurelia, as shown by a functional analysis of Dicer and Dicer-like genes and by the sequencing of small RNAs. The siRNAs that mediate post-transcriptional gene silencing when cells are fed with double-stranded RNA (dsRNA) were found to comprise two subclasses. DCR1-dependent cleavage of the inducing dsRNA generates approximately 23-nt primary siRNAs from both strands, while a different subclass of approximately 24-nt RNAs, characterized by a short untemplated poly-A tail, is strictly antisense to the targeted mRNA, suggestive of secondary siRNAs that depend on an RNA-dependent RNA polymerase. An entirely distinct pathway is responsible for homology-dependent regulation of developmental genome rearrangements after sexual reproduction. During early meiosis, the DCL2 and DCL3 genes are required for the production of a highly complex population of approximately 25-nt scnRNAs from all types of germline sequences, including both strands of exons, introns, intergenic regions, transposons and Internal Eliminated Sequences. A prominent 5'-UNG signature, and a minor fraction showing the complementary signature at positions 21-23, indicate that scnRNAs are cleaved from dsRNA precursors as duplexes with 2-nt 3' overhangs at both ends, followed by preferential stabilization of the 5'-UNG strand.
Collapse
Affiliation(s)
- Gersende Lepère
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, CNRS, UMR8541, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
55
|
Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ, Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 2008; 9:562. [PMID: 19036158 PMCID: PMC2612030 DOI: 10.1186/1471-2164-9-562] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing. RESULTS We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified. CONCLUSION We report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.
Collapse
Affiliation(s)
- Robert S Coyne
- J. Craig Venter Institute (formerly The Institute for Genomic Research), 9704 Medical Center Dr., Rockville, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Chalker DL. Dynamic nuclear reorganization during genome remodeling of Tetrahymena. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2130-6. [PMID: 18706458 PMCID: PMC2588417 DOI: 10.1016/j.bbamcr.2008.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/06/2008] [Accepted: 07/14/2008] [Indexed: 01/01/2023]
Abstract
The single-celled ciliate Tetrahymena thermophila possesses two versions of its genome, one germline, one somatic, contained within functionally distinct nuclei (called the micronucleus and macronucleus, respectively). These two genomes differentiate from identical zygotic copies. The development of the somatic nucleus involves large-scale DNA rearrangements that eliminate 15 to 20 Mbp of their germline-derived DNA. The genomic regions excised are dispersed throughout the genome and are largely composed of repetitive sequences. These germline-limited sequences are targeted for removal from the genome by a RNA interference (RNAi)-related machinery that directs histone H3 lysine 9 and 27 methylation to their associated chromatin. The targeting small RNAs are generated in the micronucleus during meiosis and then compared against the parental macronucleus to further enrich for germline-limited sequences and ensure that only non-genic DNA segments are eliminated. Once the small RNAs direct these chromatin modifications, the DNA rearrangement machinery, including the chromodomain proteins Pdd1p and Pdd3p, assembles on these dispersed chromosomal sequences, which are then partitioned into nuclear foci where the excision events occur. This DNA rearrangement mechanism is Tetrahymena's equivalent to the silencing of repetitive sequences by the formation of heterochromatin. The dynamic nuclear reorganization that occurs offers an intriguing glimpse into mechanisms that shape nuclear architecture during eukaryotic development.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St Louis, Missouri 63130, USA.
| |
Collapse
|
57
|
Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455:1193-7. [PMID: 18830242 DOI: 10.1038/nature07415] [Citation(s) in RCA: 529] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/12/2008] [Indexed: 12/21/2022]
Abstract
In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs (miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi-interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis (starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small-RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica (sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small-RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla.
Collapse
|
58
|
Abstract
A change in chromosome number that is not the exact multiple of the haploid karyotype is known as aneuploidy. This condition interferes with growth and development of an organism and is a common characteristic of solid tumors. Here, we review the history of studies on aneuploidy and summarize some of its major characteristics. We will then discuss the molecular basis for the defects caused by aneuploidy and end with speculations as to whether and how aneuploidy, despite its deleterious effects on organismal and cellular fitness, contributes to tumorigenesis.
Collapse
|
59
|
Lepère G, Bétermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev 2008; 22:1501-12. [PMID: 18519642 PMCID: PMC2418586 DOI: 10.1101/gad.473008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 12/22/2022]
Abstract
The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.
Collapse
Affiliation(s)
- Gersende Lepère
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Mireille Bétermier
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Eric Meyer
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| |
Collapse
|
60
|
An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 2008; 4:e1000031. [PMID: 18369450 PMCID: PMC2268245 DOI: 10.1371/journal.pgen.1000031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. For reasons that are still unclear, genetic defects in DNA repair can cause diseases that resemble aspects of premature ageing (“segmental progerias”). Cockayne syndrome (CS) is a particularly devastating progeria most commonly caused by mutations in the CSB chromatin remodeling gene. About 43 million years ago, before humans diverged from marmosets, one of the last PiggyBac transposable elements to invade the human lineage landed within intron 5 of the 21 exon CSB gene. As a result, the CSB locus now encodes two equally abundant proteins generated by alternative mRNA splicing: the original full length CSB protein, and a novel CSB-PiggyBac fusion protein in which the N-terminus of CSB is fused to the complete PiggyBac transposase. Conservation of the CSB-PiggyBac fusion protein since marmoset suggests that it is normally beneficial, demonstrating once again that “selfish” transposable elements can be exploited or “domesticated” by the host. More importantly, almost all CSB mutations that cause CS continue to make the CSB-PiggyBac fusion protein, whereas a mutation that compromises both does not cause CS. Thus the fusion protein which is beneficial in the presence of functional CSB may be harmful in its absence. This may help clarify the cause of CS and other progerias.
Collapse
|
61
|
Maine EM. Studying gene function in Caenorhabditis elegans using RNA-mediated interference. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:184-94. [DOI: 10.1093/bfgp/eln019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
62
|
Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C, Jensen K, Cobb BS, Merkenschlager M, Rajewsky N, Rajewsky K. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132:860-74. [PMID: 18329371 DOI: 10.1016/j.cell.2008.02.020] [Citation(s) in RCA: 450] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/10/2008] [Accepted: 02/13/2008] [Indexed: 01/06/2023]
Abstract
To explore the role of Dicer-dependent control mechanisms in B lymphocyte development, we ablated this enzyme in early B cell progenitors. This resulted in a developmental block at the pro- to pre-B cell transition. Gene-expression profiling revealed a miR-17 approximately 92 signature in the 3'UTRs of genes upregulated in Dicer-deficient pro-B cells; a top miR-17 approximately 92 target, the proapoptotic molecule Bim, was highly upregulated. Accordingly, B cell development could be partially rescued by ablation of Bim or transgenic expression of the prosurvival protein Bcl-2. This allowed us to assess the impact of Dicer deficiency on the V(D)J recombination program in developing B cells. We found intact Ig gene rearrangements in immunoglobulin heavy (IgH) and kappa chain loci, but increased sterile transcription and usage of D(H) elements of the DSP family in IgH, and increased N sequence addition in Igkappa due to deregulated transcription of the terminal deoxynucleotidyl transferase gene.
Collapse
Affiliation(s)
- Sergei B Koralov
- Immune Disease Institute and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Johnson LJ. The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements. Evol Biol 2007. [DOI: 10.1007/s11692-007-9012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
64
|
Abstract
The specificity of RNA silencing is conferred by small RNA guides that are processed from structured RNA or dsRNA. The core components for small RNA biogenesis and effector functions have proliferated and specialized in eukaryotic lineages, resulting in diversified pathways that control expression of endogenous and exogenous genes, invasive elements and viruses, and repeated sequences. Deployment of small RNA pathways for spatiotemporal regulation of the transcriptome has shaped the evolution of eukaryotic genomes and contributed to the complexity of multicellular organisms.
Collapse
|
65
|
Huvos PE. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis. J Eukaryot Microbiol 2007; 54:73-82. [PMID: 17300523 DOI: 10.1111/j.1550-7408.2006.00148.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahymena thermophila has two different types of nuclei in a single cell. The development of the transcriptionally active macronucleus from a transcriptionally inert micronucleus is accompanied by the elimination of numerous DNA segments, called deletion elements or internally eliminated sequences (IESs). To try to distinguish between alternative modes for the generation of IESs during evolution, DNA sequences at three loci that contain IESs in T. thermophila were examined in Tetrahymena malaccensis, the closest relative of T. thermophila. In T. malaccensis, two loci examined do not seem to contain IESs. At one of these sites, the presence of the IES in T. thermophila can be accounted for either by insertion of a novel IES into T. thermophila or its precise deletion from T. malaccensis. At a third locus, the newly discovered EFZ IES (named after neighboring EF-hand/Zinc finger genes), both T. thermophila and T. malaccensis contain IESs, but of different length and sequence content. If the three locations examined are a representative sample, the evolution of IESs seems to have been very rapid, and has led to substantial changes in the IES content of these two closely related species. Although insertion-deletion events are likely to have shaped IES evolution, none of the IESs examined here could be identified as transposon-like elements.
Collapse
Affiliation(s)
- Piroska E Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA.
| |
Collapse
|
66
|
Howard-Till RA, Yao MC. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila. EUKARYOTIC CELL 2007; 6:1795-804. [PMID: 17715366 PMCID: PMC2043382 DOI: 10.1128/ec.00192-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins containing a Tudor domain and domains homologous to staphylococcal nucleases are found in a number of eukaryotes. These "Tudor nucleases" have been found to be associated with the RNA-induced silencing complex (A. A. Caudy, R. F. Ketting, S. M. Hammond, A. M. Denli, A. M. Bathoorn, B. B. Tops, J. M. Silva, M. M. Myers, G. J. Hannon, and R. H. Plasterk, Nature 425:411-414, 2003). We have identified two Tudor nuclease gene homologs, TTN1 and TTN2, in the ciliate Tetrahymena thermophila, which has two distinct small-RNA pathways. Characterization of single and double KOs of TTN1 and TTN2 shows that neither of these genes is essential for growth or sexual reproduction. Progeny of TTN2 KOs and double knockouts occasionally show minor defects in the small-RNA-guided process of DNA deletion but appear to be normal in hairpin RNA-induced gene silencing, suggesting that Tudor nucleases play only a minor role in RNA interference in Tetrahymena. Previous studies of Tetrahymena have shown that inserted copies of the neo gene from Escherichia coli are often deleted from the developing macronucleus during sexual reproduction (Y. Liu, X. Song, M. A. Gorovsky, and K. M. Karrer, Eukaryot. Cell 4:421-431, 2005; M. C. Yao, P. Fuller, and X. Xi, Science 300:1581-1584, 2003). This transgene deletion phenomenon is hypothesized to be a form of genome defense. Analysis of the Tudor nuclease mutants revealed exceptionally high rates of deletion of the neo transgene at the TTN2 locus but no deletion at the TTN1 locus. When present in the same genome, however, the neo gene is deleted at high rates even at the TTN1 locus, further supporting a role for trans-acting RNA in this process. This deletion is not affected by the presence of the same sequence in the macronucleus, thus providing a counterargument for the role of the macronuclear genome in specifying all sequences for deletion.
Collapse
Affiliation(s)
- Rachel A Howard-Till
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
67
|
Lee SR, Collins K. Physical and functional coupling of RNA-dependent RNA polymerase and Dicer in the biogenesis of endogenous siRNAs. Nat Struct Mol Biol 2007; 14:604-10. [PMID: 17603500 DOI: 10.1038/nsmb1262] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 05/22/2007] [Indexed: 12/23/2022]
Abstract
Many classes of small RNA (sRNA) involved in RNA silencing are generated by double-stranded RNA (dsRNA) processing. Although principles of sRNA biogenesis have emerged, newly identified classes of sRNAs have features that suggest additional biogenesis mechanisms. Tetrahymena thermophila expresses one such class, comprising sRNAs of 23 and 24 nucleotides (nt) with an absolute strand bias in accumulation. Here we demonstrate sRNA production by the T. thermophila Dicer Dcr2 and the RNA-dependent RNA polymerase Rdr1, which purifies as a multisubunit RNA-dependent RNA polymerase complex (RDRC). Dcr2 and RDRC interact, stimulating Dcr2 activity. Moreover, Dcr2 specificity is influenced by RDRC beyond this physical interaction, as Dcr2 generates discrete 23- and 24-nt sRNAs only from dsRNA with a 5'-triphosphate. These findings suggest that sRNA strand bias arises from Dcr2 processing polarity, conferred by physical and functional coupling of RDRC and Dicer enzymes.
Collapse
Affiliation(s)
- Suzanne R Lee
- Department of Molecular and Cell Biology, University of California - Berkeley, 142 Life Sciences Addition 3200, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
68
|
Rexer CH, Chalker DL. Lia1p, a novel protein required during nuclear differentiation for genome-wide DNA rearrangements in Tetrahymena thermophila. EUKARYOTIC CELL 2007; 6:1320-9. [PMID: 17586719 PMCID: PMC1951122 DOI: 10.1128/ec.00157-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive genome-wide rearrangements occur during somatic macronuclear development in Tetrahymena thermophila. These events are guided by RNA interference-directed chromatin modification including histone H3 lysine 9 methylation, which marks specific germ line-limited internal eliminated sequences (IESs) for excision. Several genes putatively involved in these developmental genome rearrangements were identified based on their proteins' localization to differentiating somatic nuclei, and here we demonstrate that one, LIA1, encodes a novel protein that is an essential component of the genome rearrangement machinery. A green fluorescent protein-Lia1 fusion protein exhibited dynamic nuclear localization during development that has striking similarity to that of the dual chromodomain-containing DNA rearrangement protein, Pdd1p. Coimmunoprecipitation experiments showed that Lia1p associates with Pdd1p and IES chromatin during macronuclear development. Cell lines in which we disrupted both the germ line and somatic copies of LIA1 (DeltaLIA1) grew normally but were unable to generate viable progeny, arresting late in development just prior to returning to vegetative growth. These mutant lines failed to properly form Pdd1p-containing nuclear structures and eliminate IESs despite showing normal levels of H3K9 methylation. These data indicate that Lia1p is required late in conjugation for the reorganization of the Tetrahymena genome.
Collapse
Affiliation(s)
- Charles H Rexer
- Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
69
|
Yao MC, Yao CH, Halasz LM, Fuller P, Rexer CH, Wang SH, Jain R, Coyne RS, Chalker DL. Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena. J Cell Sci 2007; 120:1978-89. [PMID: 17519286 DOI: 10.1242/jcs.006502] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive DNA rearrangements occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome of Tetrahymena thermophila. To identify genes encoding proteins likely to be involved in this process, we devised a cytological screen to find proteins that specifically localize in macronuclear anlagen (Lia proteins) at the stage when rearrangements occur. We compared the localization of these with that of the chromodomain protein, Pdd1p, which is the most abundant known participant in this genome reorganization. We show that in live cells, Pdd1p exhibits dynamic localization, apparently shuttling from the parental to the developing nuclei through cytoplasmic bodies called conjusomes. Visualization of GFP-tagged Pdd1p also highlights the substantial three-dimensional nuclear reorganization in the formation of nuclear foci that occur coincident with DNA rearrangements. We found that late in macronuclear differentiation, four of the newly identified proteins are organized into nuclear foci that also contain Pdd1p. These Lia proteins are encoded by primarily novel genes expressed at the beginning of macronuclear differentiation and have properties or recognizable domains that implicate them in chromatin or nucleic acid binding. Three of the Lia proteins also localize to conjusomes, a result that further implicates this structure in the regulation of DNA rearrangement.
Collapse
Affiliation(s)
- Meng-Chao Yao
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, and Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 2007; 21:1190-203. [PMID: 17470535 PMCID: PMC1865491 DOI: 10.1101/gad.1543507] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show that Chlamydomonas reinhardtii, a unicellular green alga, encodes many miRNAs. We also show that a Chlamydomonas miRNA can direct the cleavage of its target mRNA in vivo and in vitro. We further show that the expression of some miRNAs/Candidates increases or decreases during Chlamydomonas gametogenesis. In addition to miRNAs, Chlamydomonas harbors other types of small RNAs including phased small interfering RNAs (siRNAs) that are reminiscent of plant trans-acting siRNAs, as well as siRNAs originating from protein-coding genes and transposons. Our findings suggest that the miRNA pathway and some siRNA pathways are ancient mechanisms of gene regulation that evolved prior to the emergence of multicellularity.
Collapse
Affiliation(s)
- Tao Zhao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Guanglin Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijun Mi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Shan Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- E-MAIL ; FAX 86-10-64873428
| | - Yijun Qi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
- Corresponding author.E-mail ; FAX 86-10-80727873
| |
Collapse
|
71
|
Weide T, Bockau U, Rave A, Herrmann L, Hartmann MWW. A recombinase system facilitates cloning of expression cassettes in the ciliate Tetrahymena thermophila. BMC Microbiol 2007; 7:12. [PMID: 17328820 PMCID: PMC1839094 DOI: 10.1186/1471-2180-7-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 03/01/2007] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tetrahymena thermophila is one of the best characterized unicellular eukaryotes and its genome is sequenced in its entirety. However, the AT-richness of the genome and an unusual codon usage cause problems in cloning and expression of the ciliate DNA. To overcome these technical hiatuses we developed a Cre-dependent recombinase system. RESULTS We created novel donor and acceptor vectors that facilitate the transfer of expression cassettes from the donor into novel acceptor plasmid. Expression vectors were used that encode the 19 kDa C-terminus of the MSP1 protein of Plasmodium falciparum and a blasticidin S (bsdR) resistance gene, respectively. The functional expression of these genes was demonstrated by western blot analysis with MSP1 specific antibodies and by a blasticidin growing assay. CONCLUSION The Cre dependent recombinase system in combination with the modular structure of the donor vectors ease cloning and expression of foreign genes in the ciliate system, providing a powerful tool for protistology research in future.
Collapse
Affiliation(s)
- Thomas Weide
- Universitaetskliniken Muenster (UKM), Abteilung für Molekulare Nephrologie, Domagkstr. 3a, D-48149 Muenster, Germany
| | - Ulrike Bockau
- Cilian AG, Johann-Krane-Weg 42, D-48149 Muenster, Germany
- Institut für allgemeine Zoologie und Genetik, Universitaet Muenster, Schloßplatz 5, D-48149 Muenster, Germany
| | - Angelika Rave
- Cilian AG, Johann-Krane-Weg 42, D-48149 Muenster, Germany
| | - Lutz Herrmann
- Cilian AG, Johann-Krane-Weg 42, D-48149 Muenster, Germany
- Provendis GmbH, Eppinghofer Str. 50, 48468 Muelheim an der Ruhr, Germany
| | | |
Collapse
|
72
|
Song X, Gjoneska E, Ren Q, Taverna SD, Allis CD, Gorovsky MA. Phosphorylation of the SQ H2A.X motif is required for proper meiosis and mitosis in Tetrahymena thermophila. Mol Cell Biol 2007; 27:2648-60. [PMID: 17242195 PMCID: PMC1899910 DOI: 10.1128/mcb.01910-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of the C terminus SQ motif that defines H2A.X variants is required for efficient DNA double-strand break (DSB) repair in diverse organisms but has not been studied in ciliated protozoa. Tetrahymena H2A.X is one of two similarly expressed major H2As, thereby differing both from mammals, where H2A.X is a quantitatively minor component, and from Saccharomyces cerevisiae where it is the only type of major H2A. Tetrahymena H2A.X is phosphorylated in the SQ motif in both the mitotic micronucleus and the amitotic macronucleus in response to DSBs induced by chemical agents and in the micronucleus during prophase of meiosis, which occurs in the absence of a synaptonemal complex. H2A.X is phosphorylated when programmed DNA rearrangements occur in developing macronuclei, as for immunoglobulin gene rearrangements in mammals, but not during the DNA fragmentation that accompanies breakdown of the parental macronucleus during conjugation, correcting the previous interpretation that this process is apoptosis-like. Using strains containing a mutated (S134A) SQ motif, we demonstrate that phosphorylation of this motif is important for Tetrahymena cells to recover from exogenous DNA damage and is required for normal micronuclear meiosis and mitosis and, to a lesser extent, for normal amitotic macronuclear division; its absence, while not lethal, leads to the accumulation of DSBs in both micro- and macronuclei. These results demonstrate multiple roles of H2A.X phosphorylation in maintaining genomic integrity in different phases of the Tetrahymena life cycle.
Collapse
Affiliation(s)
- Xiaoyuan Song
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | |
Collapse
|
73
|
Witkin KL, Prathapam R, Collins K. Positive and negative regulation of Tetrahymena telomerase holoenzyme. Mol Cell Biol 2007; 27:2074-83. [PMID: 17220281 PMCID: PMC1820490 DOI: 10.1128/mcb.02105-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomerase replenishes the telomeric repeats that cap eukaryotic chromosome ends. To perform DNA synthesis, the active site of telomerase reverse transcriptase (TERT) copies a template within the integral telomerase RNA (TER). In vivo, TERT and TER and additional subunits form a telomerase holoenzyme capable of telomere elongation. We previously purified epitope-tagged Tetrahymena thermophila TERT and characterized two of the associated proteins. Here we characterize the remaining two proteins that were enriched by TERT purification. The primary sequence of the p75 polypeptide lacks evident homology with other proteins, whereas the p20 polypeptide is the Tetrahymena ortholog of a conserved multifunctional protein, Skp1. Genetic depletion of p75 induced telomere shortening without affecting the accumulation of TER or TERT, suggesting that p75 promotes telomerase function at the telomere. Affinity purification of p75 coenriched telomerase activity and each other known telomerase holoenzyme protein. On the other hand, genetic depletion of Skp1p induced telomere elongation, suggesting that this protein plays a negative regulatory role in the maintenance of telomere length homeostasis. Affinity purification of Skp1p did not detectably enrich active telomerase but did copurify ubiquitin ligase machinery. These studies reveal additional complexity in the positive and negative regulation of Tetrahymena telomerase function.
Collapse
Affiliation(s)
- Keren L Witkin
- Department of Molecular and Cell Biology, University of California at Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
74
|
Abstract
When eukaryotic cells encounter double-stranded RNA, genes of matching sequence are silenced through RNA interference. Surprisingly, in some animals and plants, the same gene is specifically silenced even in cells that did not encounter the double-stranded RNA, due to the transport of a gene-specific silencing signal between cells. This silencing signal likely has an RNA component that gives it sequence-specificity, however its precise identity remains unknown. Studies in the worm Caenorhabditis elegans and in plants have revealed parts of a complex protein machinery that transports this silencing signal. Some of these proteins are conserved in vertebrates, including mammals, raising the possibility that higher animals can communicate gene-specific silencing information between cells. Such communication provides antiviral immunity in plants and perhaps in C. elegans. Identifying the transported silencing signal and deciphering the evolutionarily selected role of the transport machinery are some of the key challenges for the future.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
75
|
Kowalczyk CA, Anderson AM, Arce-Larreta M, Chalker DL. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism. Nucleic Acids Res 2006; 34:5778-89. [PMID: 17053100 PMCID: PMC1635302 DOI: 10.1093/nar/gkl699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A RNA interference (RNAi) like mechanism is involved in elimination of thousands of DNA segments from the developing somatic macronucleus of Tetrahymena, yet how specific internal eliminated sequences (IESs) are recognized remains to be fully elucidated. To define requirements for DNA rearrangement, we performed mutagenesis of the M element, a well-studied IES. While sequences within the macronucleus-retained DNA are known to determine the excision boundaries, we show that sequences internal to these boundaries are required to promote this IES's rearrangement. However, this element does not contain any specific sequence required in cis as removal of its entire left or right side was insufficient to abolish all rearrangement. Instead, rearrangement efficiency correlated with the overall size of the M element sequence within a given construct, with a lower limit of nearly 300 bp. Also, the observed minimal region necessary to epigenetically block excision supports this size limit. Truncated M element constructs that exhibited impaired rearrangement still showed full transcriptional activity, which suggests that their defect was due to inefficient recognition. This study indicates that IESs are targeted for elimination upon their recognition by homologous small RNAs and further supports the idea that DNA elimination is a RNAi-related mechanism involved in genome surveillance.
Collapse
Affiliation(s)
| | | | | | - Douglas L. Chalker
- To whom correspondence should be addressed. Tel: +1 314 935 8838; Fax: +1 314 935 4432; E-mail:
| |
Collapse
|
76
|
Howard-Till RA, Yao MC. Induction of gene silencing by hairpin RNA expression in Tetrahymena thermophila reveals a second small RNA pathway. Mol Cell Biol 2006; 26:8731-42. [PMID: 17000759 PMCID: PMC1636817 DOI: 10.1128/mcb.01430-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike in other eukaryotes, in which it causes gene silencing, RNA interference (RNAi) has been linked to programmed DNA deletion in the ciliate Tetrahymena thermophila. Here we have developed an efficient method to inducibly express double-stranded RNA hairpins and demonstrated that they cause gene silencing through targeted mRNA degradation in all phases of the life cycle, including growth, starvation, and mating. This technique offers a new tool for gene silencing in this model organism. Induction of RNA hairpins causes dramatic upregulation of Dicer and Argonaute family genes, revealing a system capable of rapidly responding to double-stranded RNA. These hairpins are processed into 23- to 24-nucleotide (nt) small RNAs, which are distinctly different from the 28- to 30-nt small RNAs known to be associated with DNA deletion. Thus, two different small RNA pathways appear to be responsible for gene silencing and DNA deletion. Surprisingly, expression of the RNA hairpin also causes targeted DNA deletion during conjugation, although at low efficiencies, which suggests a possible crossover of these two molecular paths.
Collapse
Affiliation(s)
- Rachel A Howard-Till
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA
| | | |
Collapse
|
77
|
Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2006; 4:e286. [PMID: 16933976 PMCID: PMC1557398 DOI: 10.1371/journal.pbio.0040286] [Citation(s) in RCA: 563] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 06/23/2006] [Indexed: 01/05/2023] Open
Abstract
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
Collapse
Affiliation(s)
- Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 2006; 50:81-99. [PMID: 16691418 PMCID: PMC2583075 DOI: 10.1007/s00294-006-0078-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/15/2006] [Accepted: 04/19/2006] [Indexed: 12/11/2022]
Abstract
Double-stranded RNA has been shown to induce gene silencing in diverse eukaryotes and by a variety of pathways. We have examined the taxonomic distribution and the phylogenetic relationship of key components of the RNA interference (RNAi) machinery in members of five eukaryotic supergroups. On the basis of the parsimony principle, our analyses suggest that a relatively complex RNAi machinery was already present in the last common ancestor of eukaryotes and consisted, at a minimum, of one Argonaute-like polypeptide, one Piwi-like protein, one Dicer, and one RNA-dependent RNA polymerase. As proposed before, the ancestral (but non-essential) role of these components may have been in defense responses against genomic parasites such as transposable elements and viruses. From a mechanistic perspective, the RNAi machinery in the eukaryotic ancestor may have been capable of both small-RNA-guided transcript degradation as well as transcriptional repression, most likely through histone modifications. Both roles appear to be widespread among living eukaryotes and this diversification of function could account for the evolutionary conservation of duplicated Argonaute-Piwi proteins. In contrast, additional RNAi-mediated pathways such as RNA-directed DNA methylation, programmed genome rearrangements, meiotic silencing by unpaired DNA, and miRNA-mediated gene regulation may have evolved independently in specific lineages.
Collapse
Affiliation(s)
- Heriberto Cerutti
- School of Biological Sciences and Plant Science Initiative, University of Nebraska, Lincoln, 68588-0666, USA.
| | | |
Collapse
|
79
|
Cervantes MD, Coyne RS, Xi X, Yao MC. The condensin complex is essential for amitotic segregation of bulk chromosomes, but not nucleoli, in the ciliate Tetrahymena thermophila. Mol Cell Biol 2006; 26:4690-700. [PMID: 16738332 PMCID: PMC1489118 DOI: 10.1128/mcb.02315-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The macronucleus of the binucleate ciliate Tetrahymena thermophila contains fragmented and amplified chromosomes that do not have centromeres, eliminating the possibility of mitotic nuclear division. Instead, the macronucleus divides by amitosis with random segregation of these chromosomes without detectable chromatin condensation. This amitotic division provides a special opportunity for studying the roles of mitotic proteins in segregating acentric chromatin. The Smc4 protein is a core component of the condensin complex that plays a role in chromatin condensation and has also been associated with nucleolar segregation, DNA repair, and maintenance of the chromatin scaffold. Mutants of Tetrahymena SMC4 have remarkable characteristics during amitosis. They do not form microtubules inside the macronucleus as normal cells do, and there is little or no bulk DNA segregation during cell division. Nevertheless, segregation of nucleoli to daughter cells still occurs, indicating the independence of this process and bulk DNA segregation in ciliate amitosis.
Collapse
Affiliation(s)
- Marcella D Cervantes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
80
|
Abstract
Chromosome stability requires a dynamic balance of DNA loss and gain in each terminal tract of telomeric repeats. Repeat addition by a specialized reverse transcriptase, telomerase, has an important role in maintaining this equilibrium. Insights that have been gained into the cellular pathways for biogenesis and regulation of telomerase ribonucleoproteins raise new questions, particularly concerning the dynamic nature of this unique polymerase.
Collapse
Affiliation(s)
- Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA.
| |
Collapse
|
81
|
Herrmann L, Bockau U, Tiedtke A, Hartmann MWW, Weide T. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications. BMC Biotechnol 2006; 6:21. [PMID: 16549005 PMCID: PMC1435751 DOI: 10.1186/1472-6750-6-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 03/20/2006] [Indexed: 11/22/2022] Open
Abstract
Background Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are crucial enzymes in DNA synthesis. In alveolata both enzymes are expressed as one bifunctional enzyme. Results Loss of this essential enzyme activities after successful allelic assortment of knock out alleles yields an auxotrophic marker in ciliates. Here the cloning, characterisation and functional analysis of Tetrahymena thermophila's DHFR-TS is presented. A first aspect of the presented work relates to destruction of DHFR-TS enzyme function in an alveolate thereby causing an auxotrophy for thymidine. A second aspect is to knock in an expression cassette encoding for a foreign gene with subsequent expression of the target protein. Conclusion This system avoids the use of antibiotics or other drugs and therefore is of high interest for biotechnological applications.
Collapse
Affiliation(s)
- Lutz Herrmann
- Cilian AG, Johann-Krane Weg 42, D-48149 Münster, Germany
| | - Ulrike Bockau
- Cilian AG, Johann-Krane Weg 42, D-48149 Münster, Germany
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | - Arno Tiedtke
- Institut für allgemeine Zoologie und Genetik, Universität Münster, Schloßplatz 5, D-48149 Münster, Germany
| | | | - Thomas Weide
- Cilian AG, Johann-Krane Weg 42, D-48149 Münster, Germany
| |
Collapse
|
82
|
Lee SR, Collins K. Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev 2006; 20:28-33. [PMID: 16357212 PMCID: PMC1356098 DOI: 10.1101/gad.1377006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/02/2005] [Indexed: 11/24/2022]
Abstract
Endogenous small RNAs function in RNA interference (RNAi) pathways to guide RNA cleavage, translational repression, or methylation of DNA or chromatin. In Tetrahymena thermophila, developmentally regulated DNA elimination is governed by an RNAi mechanism involving approximately 27-30-nucleotide (nt) RNAs. Here we characterize the sequence features of the approximately 27-30-nt RNAs and a approximately 23-24-nt RNA class representing a second RNAi pathway. The approximately 23-24-nt RNAs accumulate strain-specifically manner and map to the genome in clusters that are antisense to predicted genes. These findings reveal the existence of distinct endogenous RNAi pathways in the unicellular T. thermophila, a complexity previously demonstrated only in multicellular organisms.
Collapse
Affiliation(s)
- Suzanne R Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3204, USA
| | | |
Collapse
|
83
|
Chang WJ, Bryson PD, Liang H, Shin MK, Landweber LF. The evolutionary origin of a complex scrambled gene. Proc Natl Acad Sci U S A 2005; 102:15149-54. [PMID: 16217011 PMCID: PMC1257744 DOI: 10.1073/pnas.0507682102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some species of ciliates undergo massive DNA elimination and genome rearrangement to construct gene-sized "chromosomes" in their somatic nucleus. An example is the extensively scrambled DNA polymerase alpha gene that is broken into 48 pieces and distributed over two unlinked loci in Stylonychia. To understand the emergence of this complex phenomenon during evolution, we examined DNA polymerase alpha genes in several earlier diverging species, representing evolutionary intermediates. Mapping these data onto an evolutionary tree suggests that this gene became extensively fragmented and scrambled over evolutionary time through a series of steps, each leading to greater complexity. Our results also suggest a possible mechanism for intron loss by deletion of intron sequences as DNA during development of the somatic nucleus.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|