51
|
Ramalakshmi S, Ramanan RN, Madhavan S, Ooi CW, Chang CCH, Harper IS, Lewis DM, Lee AK, He L, Seenichamy A. Investigation of selective release of periplasmic proteins through pore size analysis and single-cell microscopy in Escherichia coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
52
|
Edelmann D, Oberpaul M, Schäberle TF, Berghoff BA. Post-transcriptional deregulation of the tisB/istR-1 toxin-antitoxin system promotes SOS-independent persister formation in Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:159-168. [PMID: 33350069 DOI: 10.1111/1758-2229.12919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Bacterial dormancy is a valuable strategy to endure unfavourable conditions. The term 'persister' has been coined for cells that tolerate antibiotic treatments due to reduced cellular activity. The type I toxin-antitoxin system tisB/istR-1 is linked to persistence in Escherichia coli, because toxin TisB depolarizes the inner membrane and causes ATP depletion. Transcription of tisB is induced upon activation of the SOS response by DNA-damaging drugs. However, translation is repressed both by a 5' structure within the tisB mRNA and by RNA antitoxin IstR-1. This tight regulation limits TisB production to SOS conditions. Deletion of both regulatory RNA elements produced a 'high persistence' mutant, which was previously assumed to depend on stochastic SOS induction and concomitant TisB production. Here, we demonstrate that the mutant generates a subpopulation of growth-retarded cells during late stationary phase, likely due to SOS-independent TisB accumulation. Cell sorting experiments revealed that the stationary phase-derived subpopulation contains most of the persister cells. Collectively our data show that deletion of the regulatory RNA elements uncouples the persister formation process from the intended stress situation and enables the formation of TisB-dependent persisters in an SOS-independent manner.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Markus Oberpaul
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, 35392, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, 35392, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, 35392, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
53
|
Alternative σ Factors Regulate Overlapping as Well as Distinct Stress Response and Metabolic Functions in Listeria monocytogenes under Stationary Phase Stress Condition. Pathogens 2021; 10:pathogens10040411. [PMID: 33915780 PMCID: PMC8066629 DOI: 10.3390/pathogens10040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes can regulate and fine-tune gene expression, to adapt to diverse stress conditions encountered during foodborne transmission. To further understand the contributions of alternative sigma (σ) factors to the regulation of L. monocytogenes gene expression, RNA-Seq was performed on L. monocytogenes strain 10403S and five isogenic mutants (four strains bearing in-frame null mutations in three out of four alternative σ factor genes, ΔCHL, ΔBHL, ΔBCL, and ΔBCH, and one strain bearing null mutations in all four genes, ΔBCHL), grown to stationary phase. Our data showed that 184, 35, 34, and 20 genes were positively regulated by σB, σL, σH, and σC (posterior probability > 0.9 and Fold Change (FC) > 5.0), respectively. Moreover, σB-dependent genes showed the highest FC (based on comparisons between the ΔCHL and the ΔBCHL strain), with 44 genes showing an FC > 100; only four σL-dependent, and no σH- or σC-dependent genes showed FC >100. While σB-regulated genes identified in this study are involved in stress-associated functions and metabolic pathways, σL appears to largely regulate genes involved in a few specific metabolic pathways, including positive regulation of operons encoding phosphoenolpyruvate (PEP)-dependent phosphotransferase systems (PTSs). Overall, our data show that (i) σB and σL directly and indirectly regulate genes involved in several energy metabolism-related functions; (ii) alternative σ factors are involved in complex regulatory networks and appear to have epistatic effects in stationary phase cells; and (iii) σB regulates multiple stress response pathways, while σL and σH positively regulate a smaller number of specific pathways.
Collapse
|
54
|
The Archaeal Small Heat Shock Protein Hsp17.6 Protects Proteins from Oxidative Inactivation. Int J Mol Sci 2021; 22:ijms22052591. [PMID: 33806708 PMCID: PMC7961418 DOI: 10.3390/ijms22052591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Small heat shock proteins (sHsps) are widely distributed among various types of organisms and function in preventing the irreversible aggregation of thermal denaturing proteins. Here, we report that Hsp17.6 from Methanolobus psychrophilus exhibited protection of proteins from oxidation inactivation. The overexpression of Hsp17.6 in Escherichia coli markedly increased the stationary phase cell density and survivability in HClO and H2O2. Treatments with 0.2 mM HClO or 10 mM H2O2 reduced malate dehydrogenase (MDH) activity to 57% and 77%, whereas the addition of Hsp17.6 recovered the activity to 70-90% and 86-100%, respectively. A similar effect for superoxide dismutase oxidation was determined for Hsp17.6. Non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis assays determined that the Hsp17.6 addition decreased H2O2-caused disulfide-linking protein contents and HClO-induced degradation of MDH; meanwhile, Hsp17.6 protein appeared to be oxidized with increased molecular weights. Mass spectrometry identified oxygen atoms introduced into the larger Hsp17.6 molecules, mainly at the aspartate and methionine residues. Substitution of some aspartate residues reduced Hsp17.6 in alleviating H2O2- and HClO-caused MDH inactivation and in enhancing the E. coli survivability in H2O2 and HClO, suggesting that the archaeal Hsp17.6 oxidation protection might depend on an "oxidant sink" effect, i.e., to consume the oxidants in environments via aspartate oxidation.
Collapse
|
55
|
Daer S, Goodwill JE, Ikuma K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase. WATER RESEARCH 2021; 189:116580. [PMID: 33166917 DOI: 10.1016/j.watres.2020.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log10, 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively. This observed induction of viable but non-culturable (VBNC) state following monochloramine treatment but not ferrate is attributed to slower monochloramine disinfection kinetics (by 2.8 times) compared to ferrate. Transcriptomic analysis of E. coli at 15 min of exposure revealed that 3 times as many genes related to translation and transcription were downregulated by monochloramine compared to ferrate, suggesting that monochloramine treatment may be inducing VBNC through reduced protein synthesis and metabolism. Downregulation of universal stress response genes (rpoS, uspA) was attributed to growth-related physiological stressors during late stationary phase which may have contributed to the elevated expression levels of general stress responses pre-disinfection and, subsequently, their significant downregulation post-disinfection. Both disinfectants upregulated oxidative stress response genes (trxC, grxA, soxS), although levels of upregulation were time sensitive. This work shows that bacterial inactivation responses to disinfectants is mediated by complex molecular and growth-related responses.
Collapse
Affiliation(s)
- Sahar Daer
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.
| |
Collapse
|
56
|
Bashiri S, Lucidi M, Visaggio D, Capecchi G, Persichetti L, Cincotti G, Visca P, Capellini G. Growth Phase- and Desiccation-Dependent Acinetobacter baumannii Morphology: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1110-1119. [PMID: 33433226 DOI: 10.1021/acs.langmuir.0c02980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acinetobacter baumannii has emerged as a major bacterial pathogen during the past three decades. The majority of the A. baumannii infections occur in hospitals and are caused by strains endowed with high desiccation tolerance, which represents an essential feature for the adaptation to the nosocomial environment. This work aims at investigating the desiccation response of the multidrug-resistant A. baumannii strain ACICU as a function of the bacterial growth phase and oxygen availability, by correlating bacterial survival with shape alterations. The three-dimensional morphological analysis of bacteria was carried out by atomic force microscopy (AFM), following the evolution of bacterial shape descriptors, such as the area, volume, roughness of individual cell membranes, and the cell cluster roughness, which exhibited peculiar and distinctive behavior as a function of the growth conditions. AFM images of A. baumannii ACICU cells revealed the prevalence of the coccoid morphology at all growth stages, with a tendency to reduce their size in the stationary phase, accompanied by a higher survival rate to air-drying. Moreover, cells harvested from the logarithmic phase featured a larger volume and resulted to be more sensitive to desiccation compared to the cells harvested at later growth stages. In addition, oxygen deprivation caused a significant decrease in cellular size and was associated with the formation of pores in the cell membrane, accompanied by a relative reduction in culturability after desiccation. Morphological plasticity and multidrug resistance may contribute to desiccation tolerance and therefore to persistence in the hospital setting.
Collapse
Affiliation(s)
- Shadi Bashiri
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Engineering, University Roma Tre, via Vito Volterra 62, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Giulia Capecchi
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Luca Persichetti
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Gabriella Cincotti
- Department of Engineering, University Roma Tre, via Vito Volterra 62, 00146 Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Giovanni Capellini
- Department of Science, University Roma Tre, viale Guglielmo Marconi 446, 00146 Rome, Italy
| |
Collapse
|
57
|
Madsen MA, Hamilton G, Herzyk P, Amtmann A. Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria. Front Bioeng Biotechnol 2021; 8:619055. [PMID: 33542914 PMCID: PMC7853294 DOI: 10.3389/fbioe.2020.619055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes being developed as sustainable platforms that use renewable resources (light, water, and air) for diverse applications in energy, food, environment, and medicine. Despite the attractive promise that cyanobacteria offer to industrial biotechnology, slow growth rates pose a major challenge in processes which typically require large amounts of biomass and are often toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer methods between stages I and II, and little work has been focussed on using the distinct growth and stationary phases of batch cultures to autoregulate stage transition. In the present study, we identified and characterised a growth phase-specific promoter, which can serve as an auto-inducible switch to regulate two-stage bioprocesses in cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq dataset comparing two growth phases and six nutrient conditions in Synechocystis sp. PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH dehydrogenase (ndbA) showed robust induction when the cultures transitioned from exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence (PndbA600) was then characterised in detail following the expression of PndbA600:GFP in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed that PndbA600 activation was not dependent on increases in culture density per se but on N availability and on another activating factor present in the spent media of stationary phase cultures (Factor X). PndbA600 deactivation was dependent on the changes in culture density and in either N availability or Factor X. Electron transport inhibition studies revealed a photosynthesis-specific enhancement of active PndbA600 levels. Our findings are summarised in a model describing the environmental regulation of PndbA600, which can now inform the rational design of two-stage industrial processes in cyanobacteria.
Collapse
Affiliation(s)
- Mary Ann Madsen
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Amtmann
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
58
|
Faucher C, Mazana V, Kardacz M, Parthuisot N, Ferdy JB, Duneau D. Step-Specific Adaptation and Trade-Off over the Course of an Infection by GASP Mutation Small Colony Variants. mBio 2021; 12:e01399-20. [PMID: 33436427 PMCID: PMC7845629 DOI: 10.1128/mbio.01399-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
During an infection, parasites face a succession of challenges, each decisive for disease outcome. The diversity of challenges requires a series of parasite adaptations to successfully multiply and transmit from host to host. Thus, the pathogen genotypes that succeed during one step might be counterselected in later stages of the infection. Using the bacterium Xenorhabdus nematophila and adult Drosophila melanogaster flies as hosts, we showed that such step-specific adaptations, here linked to GASP (i.e., growth advantage in stationary phase) mutations in the X. nematophila master gene regulator lrp, exist and can trade off with each other. We found that nonsense lrp mutations had lowered the ability to resist the host immune response, while all classes of mutations in lrp were associated with a decrease in the ability to proliferate during early infection. We demonstrate that reduced proliferation of X. nematophila best explains diminished virulence in this infection model. Finally, decreased proliferation during the first step of infection is accompanied by improved proliferation during late infection, suggesting a trade-off between the adaptations to each step. Step-specific adaptations could play a crucial role in the chronic phase of infections in any disease organisms that show similar small colony variants (SCVs) to X. nematophilaIMPORTANCE Within-host evolution has been described in many bacterial diseases, and the genetic basis behind the adaptations has stimulated a lot of interest. Yet, the studied adaptations are generally focused on antibiotic resistance and rarely on the adaptation to the environment given by the host, and the potential trade-offs hindering adaptations to each step of the infection are rarely considered. Those trade-offs are key to understanding intrahost evolution and thus the dynamics of the infection. However, understanding these trade-offs supposes a detailed study of host-pathogen interactions at each step of the infection process, with an adapted methodology for each step. Using Drosophila melanogaster as the host and the bacterium Xenorhabdus nematophila, we investigated the bacterial adaptations resulting from GASP mutations known to induce the small colony variant (SCV) phenotype positively selected within the host over the course of an infection, as well as the trade-off between step-specific adaptations.
Collapse
Affiliation(s)
- Christian Faucher
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Vincent Mazana
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Marion Kardacz
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Nathalie Parthuisot
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Baptiste Ferdy
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - David Duneau
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
59
|
Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE, Huppert A, Jurkevitch E. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. THE ISME JOURNAL 2021; 15:109-123. [PMID: 32884113 PMCID: PMC7852544 DOI: 10.1038/s41396-020-00764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yuval Kushmaro
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Seed-x., Magshimim, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
60
|
Chodkowski JL, Shade A. Exometabolite Dynamics over Stationary Phase Reveal Strain-Specific Responses. mSystems 2020; 5:e00493-20. [PMID: 33361318 PMCID: PMC7762789 DOI: 10.1128/msystems.00493-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Microbial exponential growth is expected to occur infrequently in environments that have long periods of nutrient starvation punctuated by short periods of high nutrient flux. These conditions likely impose nongrowth states for microbes. However, nongrowth states are uncharacterized for the majority of environmental bacteria, especially in regard to exometabolite production. We compared exometabolites produced over stationary phase across three environmental bacteria: Burkholderia thailandensis E264 (ATCC 700388), Chromobacterium violaceum ATCC 31532, and Pseudomonas syringae pv. tomato DC3000 (ATCC BAA-871). We grew each strain in monoculture and investigated exometabolite dynamics from mid-exponential to stationary phases. We focused on exometabolites that were released into the medium and accumulated over 45 h, including approximately 20 h of stationary phase. We also analyzed transcripts (transcriptome sequencing [RNA-seq]) to interpret exometabolite output. We found that the majority of exometabolites released were strain specific, with a subset of identified exometabolites involved in both central and secondary metabolism. Transcript analysis supported that exometabolites were released from intact cells, as various transporters had either increased or consistent transcripts through time. Interestingly, we found that succinate was one of the most abundant identifiable exometabolites for all strains and that each strain rerouted their metabolic pathways involved in succinate production during stationary phase. These results show that nongrowth states can be metabolically dynamic and that environmental bacteria can enrich a minimal environment with diverse chemical compounds as a consequence of growth and postgrowth maintenance in stationary phase. This work provides insights into microbial community interactions via exometabolites under conditions of growth cessation or limitation.IMPORTANCE Nongrowth states are common for bacteria that live in environments that are densely populated and predominantly nutrient exhausted, and yet these states remain largely uncharacterized in cellular metabolism and metabolite output. Here, we investigated and compared stationary-phase exometabolites and RNA transcripts for each of three environmental bacterial strains. We observed that diverse exometabolites were produced and provide evidence that these exometabolites accumulate over time through release by intact cells. Additionally, each bacterial strain had a characteristic exometabolite profile and exhibited dynamics in exometabolite composition. This work affirms that stationary phase is metabolically dynamic, with each strain tested creating a unique chemical signature in the extracellular space and altering metabolism in stationary phase. These findings set the stage for understanding how bacterial populations can support surrounding neighbors in environments with prolonged nutrient exhaustion through exometabolite-mediated interspecies interactions.
Collapse
Affiliation(s)
- John L Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
61
|
Interrogation of chemical changes on, and through, the bacterial envelope of
Escherichia coli
FabF mutant using time‐of‐flight secondary ion mass spectrometry. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Arginine-Rich Small Proteins with a Domain of Unknown Function, DUF1127, Play a Role in Phosphate and Carbon Metabolism of Agrobacterium tumefaciens. J Bacteriol 2020; 202:JB.00309-20. [PMID: 33093235 DOI: 10.1128/jb.00309-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.
Collapse
|
63
|
Liu YY, Zhu Y, Wickremasinghe H, Bergen PJ, Lu J, Zhu XQ, Zhou QL, Azad M, Nang SC, Han ML, Lei T, Li J, Liu JH. Metabolic Perturbations Caused by the Over-Expression of mcr-1 in Escherichia coli. Front Microbiol 2020; 11:588658. [PMID: 33162965 PMCID: PMC7581681 DOI: 10.3389/fmicb.2020.588658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rapid dissemination of the plasmid-born polymyxin resistance gene mcr-1 poses a critical medical challenge. MCR-1 expression is tightly controlled and imposes a fitness cost on the bacteria. We used growth studies and metabolomics to examine growth and metabolic changes within E. coli TOP10 at 8 and 24 h in response to different levels of expression of mcr-1. Induction of mcr-1 greatly increased expression at 8 h and markedly reduced bacterial growth; membrane disruption and cell lysis were evident at this time. At 24 h, the expression of mcr-1 dramatically declined with restored growth and membrane integrity, indicating regulation of mcr-1 expression in bacteria to maintain membrane homeostasis. Intermediates of peptide and lipid biosynthesis were the most commonly affected metabolites when mcr-1 was overexpressed in E. coli. Cell wall biosynthesis was dramatically affected with the accumulation of lipids including fatty acids, glycerophospholipids and lysophosphatidylethanolamines, especially at 8 h. In contrast, levels of intermediate metabolites of peptides, amino sugars, carbohydrates and nucleotide metabolism and secondary metabolites significantly decreased. Moreover, the over-expression of mcr-1 resulted in a prolonged reduction in intermediates associated with pentose phosphate pathway and pantothenate and CoA biosynthesis. These findings indicate that over-expression of mcr-1 results in global metabolic perturbations that mainly involve disruption to the bacterial membrane, pentose phosphate pathway as well as pantothenate and CoA biosynthesis.
Collapse
Affiliation(s)
- Yi-Yun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhu
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Jing Lu
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Xiao-Qing Zhu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiao-Li Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mohammad Azad
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Mei-Ling Han
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Jian-Hua Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
64
|
Mohiuddin SG, Kavousi P, Orman MA. Flow-cytometry analysis reveals persister resuscitation characteristics. BMC Microbiol 2020; 20:202. [PMID: 32640993 PMCID: PMC7346475 DOI: 10.1186/s12866-020-01888-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Persisters and viable but non-culturable (VBNC) cells are two phenotypic variants known to be highly tolerant to antibiotics. Although both cell types are stained as live and often appear as nongrowing during antibiotic treatment, the only distinguishing feature is the ability of persisters to recolonize in standard culture media in the absence of antibiotics. Despite considerable progress in the characterization of persister formation mechanisms, their resuscitation mechanisms remain unclear due to technical limitations in detecting and isolating these cell types in culture environments that are highly heterogeneous. Results In this study, we used a methodology integrating flow cytometry, fluorescent protein expression systems and ampicillin-mediated cell lysing technique to monitor persister resuscitation at the single-cell level. With this method, we were able to investigate the effects of various culture conditions (e.g., antibiotic treatment time, the length of the stationary phase in overnight pre-cultures, or pretreatment of cells with a metabolic inhibitor) on persister resuscitation. Although we observed long-term pre-cultures have many more VBNC cells compared to short-term pre-cultures, only a small fraction of non-lysed cells was able to resuscitate in all conditions tested. Regardless of pre-culturing and ampicillin treatment times, these persister cells started to resuscitate within 1 hour, after they were transferred to fresh liquid media, with the same doubling time that normal cells have. Our analysis further showed that ampicillin was not able to lyse the cells in the presence of arsenate, a metabolic inhibitor commonly used to increase bacterial persistence. However, the removal of arsenate during antibiotic treatment resulted in cell lysis and a reduction in persister levels despite the significant decrease in ATP levels in the cells. Conclusions The strategy presented in this study helps us monitor persister resuscitation at the single-cell level, and simultaneously quantify persister, VBNC and dead cell subpopulations in ampicillin-treated cultures. Our results indicate that the characterization of persister resuscitation with flow cytometry will enhance the current molecular-level understanding of persistence and its evolution.
Collapse
Affiliation(s)
- Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, S222 Engineering Bldg 1, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Pouria Kavousi
- Department of Chemical and Biomolecular Engineering, University of Houston, S222 Engineering Bldg 1, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, S222 Engineering Bldg 1, 4726 Calhoun Rd, Houston, TX, 77204, USA.
| |
Collapse
|
65
|
Zhu Y, Mustafi M, Weisshaar JC. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy. mBio 2020; 11:e00143-20. [PMID: 32546611 PMCID: PMC7298701 DOI: 10.1128/mbio.00143-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
In nature, bacteria must survive long periods of nutrient deprivation while maintaining the ability to recover and grow when conditions improve. This quiescent state is called stationary phase. The biochemistry of Escherichia coli in stationary phase is reasonably well understood. Much less is known about the biophysical state of the cytoplasm. Earlier studies of harvested nucleoids concluded that the stationary-phase nucleoid is "compacted" or "supercompacted," and there are suggestions that the cytoplasm is "glass-like." Nevertheless, stationary-phase bacteria support active transcription and translation. Here, we present results of a quantitative superresolution fluorescence study comparing the spatial distributions and diffusive properties of key components of the transcription-translation machinery in intact E. coli cells that were either maintained in 2-day stationary phase or undergoing moderately fast exponential growth. Stationary-phase cells are shorter and exhibit strong heterogeneity in cell length, nucleoid volume, and biopolymer diffusive properties. As in exponential growth, the nucleoid and ribosomes are strongly segregated. The chromosomal DNA is locally more rigid in stationary phase. The population-weighted average of diffusion coefficients estimated from mean-square displacement plots is 2-fold higher in stationary phase for both RNA polymerase (RNAP) and ribosomal species. The average DNA density is roughly twice as high as that in cells undergoing slow exponential growth. The data indicate that the stationary-phase nucleoid is permeable to RNAP and suggest that it is permeable to ribosomal subunits. There appears to be no need to postulate migration of actively transcribed genes to the nucleoid periphery.IMPORTANCE Bacteria in nature usually lack sufficient nutrients to enable growth and replication. Such starved bacteria adapt into a quiescent state known as the stationary phase. The chromosomal DNA is protected against oxidative damage, and ribosomes are stored in a dimeric structure impervious to digestion. Stationary-phase bacteria can recover and grow quickly when better nutrient conditions arise. The biochemistry of stationary-phase E. coli is reasonably well understood. Here, we present results from a study of the biophysical state of starved E. coli Superresolution fluorescence microscopy enables high-resolution location and tracking of a DNA locus and of single copies of RNA polymerase (the transcription machine) and ribosomes (the translation machine) in intact E. coli cells maintained in stationary phase. Evidently, the chromosomal DNA remains sufficiently permeable to enable transcription and translation to occur. This description contrasts with the usual picture of a rigid stationary-phase cytoplasm with highly condensed DNA.
Collapse
Affiliation(s)
- Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
66
|
Variations in the Morphology, Mechanics and Adhesion of Persister and Resister E. coli Cells in Response to Ampicillin: AFM Study. Antibiotics (Basel) 2020; 9:antibiotics9050235. [PMID: 32392749 PMCID: PMC7277365 DOI: 10.3390/antibiotics9050235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Persister bacterial cells are great at surviving antibiotics. The phenotypic means by which they do that are underexplored. As such, atomic force microscope (AFM) was used to quantify the contributions of the surface properties of the outer membrane of multidrug resistance (MDR)-Escherichia coli Strains (A5 and A9) in the presence of ampicillin at minimum inhibitory concentration (MIC) (resistant cells) and at 20× MIC (persistent cells). The properties quantified were morphology, root mean square (RMS) roughness, adhesion, elasticity, and bacterial surface biopolymers' thickness and grafting density. Compared to untreated cells, persister cells of E. coli A5 increased their RMS, adhesion, apparent grafting density, and elasticity by 1.2, 3.4, 2.0, and 3.3 folds, respectively, and decreased their surface area and brush thickness by 1.3 and 1.2 folds, respectively. Similarly, compared to untreated cells, persister cells of E. coli A9 increased their RMS, adhesion and elasticity by 1.6, 4.4, and 4.5 folds, respectively; decreased their surface area and brush thickness by 1.4 and 1.6 folds, respectively; and did not change their grafting densities. Our results indicate that resistant and persistent E. coli A5 cells battled ampicillin by decreasing their size and going through dormancy. The resistant E. coli A9 cells resisted ampicillin through elongation, increased surface area, and adhesion. In contrast, the persistent E. coli A9 cells resisted ampicillin through increased roughness, increased surface biopolymers' grafting densities, increased cellular elasticities, and decreased surface areas. Mechanistic insights into how the resistant and persistent E. coli cells respond to ampicillin's treatment are instrumental to guide design efforts exploring the development of new antibiotics or renovating the existing antibiotics that may kill persistent bacteria by combining more than one mechanism of action.
Collapse
|
67
|
Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane. Nat Commun 2020; 11:1859. [PMID: 32313019 PMCID: PMC7171179 DOI: 10.1038/s41467-020-15758-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). In Bacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. Here, we study further the roles played by TasA in B. subtilis physiology and biofilm formation on plant leaves and in vitro. We show that ΔtasA cells exhibit a range of cytological symptoms indicative of excessive cellular stress leading to increased cell death. TasA associates to the detergent-resistant fraction of the cell membrane, and the distribution of the flotillin-like protein FloT is altered in ΔtasA cells. We propose that, in addition to a structural function during ECM assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics as cells enter stationary phase. The amyloid protein TasA is a main component of the extracellular matrix in Bacillus subtilis biofilms. Here the authors show that, in addition to a structural function during biofilm assembly and interactions with plants, TasA contributes to the stabilization of membrane dynamics during stationary phase.
Collapse
|
68
|
Metabolic Profiles of Clinical Strain of Staphylococcus aureus to Subtle Changes in the Environmental Parameters at Different Phases of Growth. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
69
|
Mohiuddin SG, Hoang T, Saba A, Karki P, Orman MA. Identifying Metabolic Inhibitors to Reduce Bacterial Persistence. Front Microbiol 2020; 11:472. [PMID: 32292393 PMCID: PMC7118205 DOI: 10.3389/fmicb.2020.00472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial persisters are rare phenotypic variants that are temporarily tolerant to high concentrations of antibiotics. We have previously discovered that stationary-phase-cell subpopulations exhibiting high redox activities were less capable of producing proteins and resuming growth upon their dilution into fresh media. The redox activities of these cells were maintained by endogenous protein and RNA degradation, resulting in self-inflicted damage that transiently repressed the cellular functions targeted by antibiotics. Here, we showed that pretreatment of stationary-phase cells with an ATP synthase inhibitor, chlorpromazine hydrochloride (CPZ), significantly reduced stationary-phase-redox activities and protein degradation, and yielded cells that were more susceptible to cell death when exposed to antibiotics in fresh media. Leveraging this knowledge, we developed an assay integrating a degradable fluorescent protein system and a small library, containing FDA-approved drugs and antibiotics, to detect medically relevant drugs that potentially target persister metabolism. We identified a subset of chemical inhibitors, including polymyxin B, poly-L-lysine and phenothiazine anti-psychotic drugs, that were able to reduce the persistence phenotype in Escherichia coli. These chemical inhibitors also reduced Pseudomonas aeruginosa persistence, potentially verifying the existence of similar mechanisms in a medically relevant organism.
Collapse
Affiliation(s)
- Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Thuy Hoang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Adesola Saba
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Prashant Karki
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
70
|
Pech-Canul ÁDLC, Rivera-Hernández G, Nogales J, Geiger O, Soto MJ, López-Lara IM. Role of Sinorhizobium meliloti and Escherichia coli Long-Chain Acyl-CoA Synthetase FadD in Long-Term Survival. Microorganisms 2020; 8:microorganisms8040470. [PMID: 32225039 PMCID: PMC7232532 DOI: 10.3390/microorganisms8040470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
FadD is an acyl-coenzyme A (CoA) synthetase specific for long-chain fatty acids (LCFA). Strains mutated in fadD cannot produce acyl-CoA and thus cannot grow on exogenous LCFA as the sole carbon source. Mutants in the fadD (smc02162) of Sinorhizobium meliloti are unable to grow on oleate as the sole carbon source and present an increased surface motility and accumulation of free fatty acids at the entry of the stationary phase of growth. In this study, we found that constitutive expression of the closest FadD homologues of S. meliloti, encoded by sma0150 and smb20650, could not revert any of the mutant phenotypes. In contrast, the expression of Escherichia coli fadD could restore the same functions as S. meliloti fadD. Previously, we demonstrated that FadD is required for the degradation of endogenous fatty acids released from membrane lipids. Here, we show that absence of a functional fadD provokes a significant loss of viability in cultures of E. coli and of S. meliloti in the stationary phase, demonstrating a crucial role of fatty acid degradation in survival capacity.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - Geovanny Rivera-Hernández
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - Joaquina Nogales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.N.); (M.J.S.)
| | - Otto Geiger
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - María J. Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.N.); (M.J.S.)
| | - Isabel M. López-Lara
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
- Correspondence: ; Tel.: +52-7773291703
| |
Collapse
|
71
|
Zhu M, Dai X. Bacterial stress defense: the crucial role of ribosome speed. Cell Mol Life Sci 2020; 77:853-858. [PMID: 31552449 PMCID: PMC11105067 DOI: 10.1007/s00018-019-03304-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/10/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
In nature, bacteria are constantly adapting to various stressful conditions. Timely activation of stress response programs is crucial for bacteria to smoothly survive under stressful conditions. Stress response, demanding the de novo synthesis of many defense proteins, is generally activated at the transcriptional level by specific regulators. However, the effect of the global protein translational status on stress response has been largely overlooked. The translational capacity is limited by the number of translating ribosomes and the translational elongation rate. Recent work has shown that certain environmental stressors (e.g. oxidative stress) could severely compromise the stress response progress of bacteria by causing either slow-down or even complete stalling of the translational elongation process. The maintenance of ribosome elongation rate, being crucial for timely synthesis of stress defense proteins, becomes the physiological bottleneck that limits the survival of bacteria in some stressful conditions. Here, we briefly summarize some recent progress on the translational status of bacteria under two distinct stress conditions, nutrient deprivation and oxidative stress. We further discuss several important open questions on the translational regulation of bacteria during stress. The ribosome translation should be investigated in parallel with traditional transcriptional regulation in order to gain a better understanding on bacterial stress defense.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
72
|
Mycobacterium smegmatis moxifloxacin persister cells produce high levels of hydroxyl radical, generating genetic resisters selectable not only with moxifloxacin, but also with ethambutol and isoniazid. Microbiology (Reading) 2020; 166:180-198. [DOI: 10.1099/mic.0.000874] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
73
|
Alreshidi MM, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front Microbiol 2020; 10:3059. [PMID: 32038532 PMCID: PMC6990410 DOI: 10.3389/fmicb.2019.03059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that is associated with nosocomial infections, as well as food poisoning. This bacterium is resistant to antimicrobial agents and can survive in a wide range of environmental conditions. The aim of this study was to measure the uptake and release of amino acids by S. aureus at mid-exponential and stationary phases of growth following exposure to a combination of conditions including variations in temperature, pH and NaCl. Bacterial cells were grown up to mid-exponential and stationary phases in tryptic soy broth (TSB), where the supernatants were collected for analyses of amino acids to determine the uptake and release characteristics. The uptake/release of amino acids was estimated by subtracting the initial levels of the free amino acids in the media from those measured at mid-exponential and stationary phases of growth. When cells were grown at ideal conditions, the analyses revealed that significant uptake of amino acids had occurred by stationary phase compared with the mid-exponential phase. A substantial release of valine and tyrosine into the external media was observed by cells at stationary phase. At both phases, the uptake and release patterns were significantly different between cells grown under ideal control conditions, when compared with those grown under various combinations of sub-optimal environmental conditions. The analyses of the supernatants harvested from controls and treatment groups at exponential phase indicated that the total uptake of amino acids was reduced approximately five times by cells grown with addition of 2.5% NaCl or with pH6 at 35°C, and 2-fold by cells grown at pH8 at 35°C. However, the final quantities of amino acids taken up by cells grown to stationary phase did not significantly alter between control and treated samples. Valine was found to be the most abundant amino acid that was significantly released into the media at stationary phase by both control and treated samples. It was evident that diverse environmental conditions resulted in differential patterns of amino acid uptake and release during adaptation to designated conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Johan Gottfries
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tim K Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
74
|
Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli. Sci Rep 2019; 9:18043. [PMID: 31792329 PMCID: PMC6888817 DOI: 10.1038/s41598-019-54646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
When nutrients run out, bacteria enter a dormant metabolic state. This low or undetectable metabolic activity helps bacteria to preserve their scant reserves for the future needs, yet it also diminishes their ability to scan the environment for new growth-promoting substrates. However, neighboring microbial growth is a reliable indicator of a favorable environment and can thus serve as a cue for exiting dormancy. Here we report that for Escherichia coli and Pseudomonas aeruginosa this cue is provided by the basic peptidoglycan unit (i.e. muropeptide). We show that several forms of muropeptides from a variety of bacterial species can stimulate growth resumption of dormant cells and the sugar – peptide bond is crucial for this activity. These results, together with previous research that identifies muropeptides as a germination signal for bacterial spores, and their detection by mammalian immune cells, show that muropeptides are a universal cue for bacterial growth.
Collapse
|
75
|
Costello KM, Gutierrez‐Merino J, Bussemaker M, Smet C, Van Impe JF, Velliou EG. A multi‐scale analysis of the effect of complex viscoelastic models on
Listeria
dynamics and adaptation in co‐culture systems. AIChE J 2019. [DOI: 10.1002/aic.16761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katherine M. Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+) KU Leuven, Sustainable Chemical Process Technology Ghent Belgium
| | - Jan F. Van Impe
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+) KU Leuven, Sustainable Chemical Process Technology Ghent Belgium
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| |
Collapse
|
76
|
Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res 2019; 47:7592-7604. [PMID: 31131413 PMCID: PMC6698664 DOI: 10.1093/nar/gkz467] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
To cope with harsh circumstances, bacterial cells must initiate cellular stress response programs, which demands the de novo synthesis of many stress defense proteins. Reactive oxygen species (ROS) is a universal environmental stressor for both prokaryotic cells and eukaryotic cells. However, the physiological burden that limits the survival of bacterial cells during oxidative stress remains elusive. Here we quantitatively characterize the cell growth and translational elongation rate of Escherichia coli cells treated with different doses of hydrogen peroxide. Cell growth is immediately arrested by low to moderate levels of hydrogen peroxide, but completely recovers after a certain lag time. The lag time depends positively on the dose of hydrogen peroxide. During the lag time, translational elongation rate drops by as much as ∼90% at initial stage and recovers to its normal state later, a phenomenon resulting from the dramatic alteration in cellular tRNA pools during oxidative stress. However, translational elongation is completely stalled at a certain threshold-level of hydrogen peroxide, at which cells ultimately fail to resume growth. Although the mRNA transcription of oxidative defense genes in oxyR regulon is dramatically induced upon hydrogen peroxide treatment, the extreme slow-down of translational elongation during high levels of hydrogen peroxide has severely compromised the timely synthesis of those oxidative defense proteins. Our study demonstrates that the tRNA-limited translational elongation is a key physiological bottleneck that the bacteria must overcome to counteract ROS, and the maintenance of translational elongation rate for timely synthesis of stress defense proteins is crucial for cells to smoothly get over the oxidative stress.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| |
Collapse
|
77
|
Saito M, Ishiki K, Nguyen DQ, Shiigi H. A Microbial Platform Based on Conducting Polymers for Evaluating Metabolic Activity. Anal Chem 2019; 91:12793-12798. [DOI: 10.1021/acs.analchem.9b02350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maki Saito
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Kengo Ishiki
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Dung Q. Nguyen
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
78
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
79
|
Herr CQ, Macomber L, Kalliri E, Hausinger RP. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:63-90. [PMID: 31564307 DOI: 10.1016/bs.apcsb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli gene initially named ygaT is located adjacent to lhgO, encoding L-2-hydroxyglutarate oxidase/dehydrogenase, and the gabDTP gene cluster, utilized for γ-aminobutyric acid (GABA) metabolism. Because this gene is transcribed specifically during periods of carbon starvation, it was renamed csiD for carbon starvation induced. The CsiD protein was structurally characterized and shown to possess a double-stranded ß-helix fold, characteristic of a large family of non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Consistent with a role in producing the substrate for LhgO, CsiD was shown to be a glutarate L-2-hydroxylase. We review the kinetic and structural properties of glutarate L-2-hydroxylase from E. coli and other species, and we propose a catalytic mechanism for this archetype 2OG-dependent hydroxylase. Glutarate can be derived from l-lysine within the cell, with the gabDT genes exhibiting expanded reactivities beyond those known for GABA metabolism. The complete CsiD-containing pathway provides a means for the cell to obtain energy from the metabolism of l-lysine during periods of carbon starvation. To reflect the role of this protein in the cell, a renaming of csiD to glaH has been proposed.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Efthalia Kalliri
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
80
|
Agrawal A, Rangarajan N, Weisshaar JC. Resistance of early stationary phase E. coli to membrane permeabilization by the antimicrobial peptide Cecropin A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182990. [PMID: 31129116 DOI: 10.1016/j.bbamem.2019.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/16/2023]
Abstract
Antimicrobial peptides (AMPs) cause bacterial membrane permeabilization and ultimately cell death at low μM concentrations. The membrane permeabilization action of a moth derived AMP Cecropin A on E. coli cells in exponential growth (mid-log phase) is well studied. At 1× MIC concentration, Cecropin A penetrates the lipopolysaccharide (LPS) barrier and causes outer membrane (OM) and cytoplasmic membrane (CM) permeabilization. For non-septating cells, permeabilization of both membranes begins at one pole. For septating cells, OM permeabilization begins at the septal region and CM permeabilization begins at one pole. However, in nature bacteria are frequently found in nutrient-starved conditions. Here we extend our single-cell microscopy assays to the attack of Cecropin A on E. coli cells in early stationary phase. Stationary phase E. coli is much more resistant to membrane permeabilization by Cecropin A than mid-log phase E. coli. A tenfold higher concentration of Cecropin A is required to observe CM permeabilization in the majority of stationary phase cells, and even then permeabilization proceeds more slowly. In addition, the spatial pattern of initial CM permeabilization changes from localized at one pole to global. Studies of lipid mutant strains suggest that a sufficient localized concentration of the anionic phospholipid phosphatidylglycerol (PG) guides the position of initial attack of the cationic AMP Cecropin A on the CM.
Collapse
Affiliation(s)
- Anurag Agrawal
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706 Madison, WI, USA
| | - Nambirajan Rangarajan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706 Madison, WI, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706 Madison, WI, USA.
| |
Collapse
|
81
|
Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics 2019; 20:358. [PMID: 31072330 PMCID: PMC6509803 DOI: 10.1186/s12864-019-5749-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background In natural environments, bacteria must frequently cope with extremely scarce nutrients. Most studies focus on bacterial growth in nutrient replete conditions, while less is known about the stationary phase. Here, we are interested in global gene expression throughout all growth phases, including the adjustment to deep stationary phase. Results We monitored both the transcriptome and the proteome in cultures of the alphaproteobacterium Rhodobacter sphaeroides, beginning with the transition to stationary phase and at different points of the stationary phase and finally during exit from stationary phase (outgrowth) following dilution with fresh medium. Correlation between the transcriptomic and proteomic changes was very low throughout the growth phases. Surprisingly, even in deep stationary phase, the abundance of many proteins continued to adjust, while the transcriptome analysis revealed fewer adjustments. This pattern was reversed during the first 90 min of outgrowth, although this depended upon the duration of the stationary phase. We provide a detailed analysis of proteomic changes based on the clustering of orthologous groups (COGs), and compare these with the transcriptome. Conclusions The low correlation between transcriptome and proteome supports the view that post-transcriptional processes play a major role in the adaptation to growth conditions. Our data revealed that many proteins with functions in transcription, energy production and conversion and the metabolism and transport of amino acids, carbohydrates, lipids, and secondary metabolites continually increased in deep stationary phase. Based on these findings, we conclude that the bacterium responds to sudden changes in environmental conditions by a radical and rapid reprogramming of the transcriptome in the first 90 min, while the proteome changes were modest. In response to gradually deteriorating conditions, however, the transcriptome remains mostly at a steady state while the bacterium continues to adjust its proteome. Even long after the population has entered stationary phase, cells are still actively adjusting their proteomes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5749-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Bioinformatics, University of Giessen, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany.
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| |
Collapse
|
82
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
83
|
Morgunova GV, Klebanov AA. Age-related AMP-activated protein kinase alterations: From cellular energetics to longevity. Cell Biochem Funct 2019; 37:169-176. [PMID: 30895648 DOI: 10.1002/cbf.3384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
5' adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of energy in the cell, which allows the cell/organism to survive with deficit of ATP. Since AMPK is involved in the adaptation to caloric restriction, the role of age-related changes in AMPK activity in both the aging organism and the aging cell is actively investigated in gerontology. Studies on yeast, worms, flies, rodents, and primates have demonstrated an important effect of this regulator on key signalling pathways involved in the aging process. In some cases, researchers conclude that AMPK promotes aging. However, in our opinion, in such cases, we observe a disturbance in the adaptive ability because of the prolonged cell/organism presence in stressful conditions because the functional capacity of any adaptation system is limited. Interestingly, AMPK can regulate metabolic processes in noncell-autonomous manner. The main effects of AMPK activation in the cell are realized in restriction of proliferation and launching autophagy. In tissues of an aging organism, the ability of AMPK to respond to energy deficit decreases; this fact is especially critical for organs that contain postmitotic cells. In this review, we have tried to consider the involvement of AMPK in age-related changes in the cell and in the organism.
Collapse
Affiliation(s)
- Galina V Morgunova
- Evolutionary Cytogerontology Sector, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Klebanov
- Evolutionary Cytogerontology Sector, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
84
|
Prajapati D, Kumari N, Dave K, Chatupale V, Pohnerkar J. Chromomycin, an antibiotic produced by Streptomyces flaviscleroticus might play a role in the resistance to oxidative stress and is essential for viability in stationary phase. Environ Microbiol 2019; 21:814-826. [PMID: 30585380 DOI: 10.1111/1462-2920.14515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The well-known role of antibiotics in killing sensitive organisms has been challenged by the effects they exert at subinhibitory concentrations. Unfortunately, there are very few published reports on the advantages these molecules may confer to their producers. This study describes the construction of a genetically verified deletion mutant of Streptomyces flaviscleroticus unable to synthesize chromomycin. This mutant was characterized by a rapid loss of viability in stationary phase that was correlated with high oxidative stress and altered antioxidant defences. Altered levels of key metabolites in the mutant signalled a redistribution of the glycolytic flux toward the PPP to generate NADPH to fight oxidative stress as well as reduction of ATP-phosphofructokinase and Krebs cycle enzymes activities. These changes were correlated with a shift in the preference for carbon utilization from glucose to amino acids. Remarkably, chromomycin at subinhibitory concentration increased longevity of the non-producer and restored most of the phenotypic features' characteristic of the wild type strain. Altogether these observations suggest that chromomycin may have antioxidant properties that would explain, at least in part, some of the phenotypes of the mutant. Our observations warrant reconsideration of the secondary metabolite definition and raise the possibility of crucial roles for their producers.
Collapse
Affiliation(s)
- Divya Prajapati
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, DC, 20059
| | - Keyur Dave
- Cellcys Labs Pvt. Ltd., Mumbai, 400104, India
| | - Vaidehi Chatupale
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| | - Jayashree Pohnerkar
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| |
Collapse
|
85
|
Bedoya J, Dealis M, Silva C, Niekawa E, Navarro M, Simionato A, Modolon F, Chryssafidis A, Andrade G. Enhanced production of target bioactive metabolites produced by Pseudomonas Aeruginosa LV strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
86
|
Bedoya J, Dealis M, Silva C, Niekawa E, Navarro M, Simionato A, Modolon F, Chryssafidis A, Andrade G. Enhanced production of target bioactive metabolites produced by Pseudomonas aeruginosa LV strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Venayak N, Raj K, Jaydeep R, Mahadevan R. An Optimized Bistable Metabolic Switch To Decouple Phenotypic States during Anaerobic Fermentation. ACS Synth Biol 2018; 7:2854-2866. [PMID: 30376634 DOI: 10.1021/acssynbio.8b00284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic engineers aim to genetically modify microorganisms to improve their ability to produce valuable compounds. Despite the prevalence of growth-coupled production processes, these strategies can significantly limit production rates. Instead, rates can be improved by decoupling and optimizing growth and production independently, and operating with a growth stage followed by a production stage. Here, we implement a bistable transcriptional controller to decouple and switch between these two states. We optimize the controller in anaerobic conditions, typical of industrial fermentations, to ensure stability and tight expression control, while improving switching dynamics. The stability of this controller can be maintained through a simulated seed train scale-up from 5 mL to 500 000 L, indicating industrial feasibility. Finally, we demonstrate a two-stage production process using our optimal construct to improve the instantaneous rate of lactate production by over 50%, motivating the use of these systems in broad metabolic engineering applications.
Collapse
Affiliation(s)
- Naveen Venayak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Kaushik Raj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Rohil Jaydeep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- The Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| |
Collapse
|
88
|
Misztal PK, Lymperopoulou DS, Adams RI, Scott RA, Lindow SE, Bruns T, Taylor JW, Uehling J, Bonito G, Vilgalys R, Goldstein AH. Emission Factors of Microbial Volatile Organic Compounds from Environmental Bacteria and Fungi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8272-8282. [PMID: 29947506 DOI: 10.1021/acs.est.8b00806] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Knowledge of the factors controlling the diverse chemical emissions of common environmental bacteria and fungi is crucial because they are important signal molecules for these microbes that also could influence humans. We show here not only a high diversity of mVOCs but that their abundance can differ greatly in different environmental contexts. Microbial volatiles exhibit dynamic changes across microbial growth phases, resulting in variance of composition and emission rate of species-specific and generic mVOCs. In vitro experiments documented emissions of a wide range of mVOCs (>400 different chemicals) at high time resolution from diverse microbial species grown under different controlled conditions on nutrient media, or residential structural materials ( N = 54, Ncontrol = 23). Emissions of mVOCs varied not only between microbial taxa at a given condition but also as a function of life stage and substrate type. We quantify emission factors for total and specific mVOCs normalized for respiration rates to account for the microbial activity during their stationary phase. Our VOC measurements of different microbial taxa indicate that a variety of factors beyond temperature and water activity, such as substrate type, microbial symbiosis, growth phase, and lifecycle affect the magnitude and composition of mVOC emission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jessie Uehling
- Department of Biology , Duke University , Durham , North Carolina 27708 , United States
| | - Gregory Bonito
- Plant Soil and Microbial Sciences , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Rytas Vilgalys
- Department of Biology , Duke University , Durham , North Carolina 27708 , United States
| | | |
Collapse
|
89
|
How Do Chaperones Protect a Cell's Proteins from Oxidative Damage? Cell Syst 2018; 6:743-751.e3. [DOI: 10.1016/j.cels.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022]
|
90
|
Garcia DC, Mohr BP, Dovgan JT, Hurst GB, Standaert RF, Doktycz MJ. Elucidating the potential of crude cell extracts for producing pyruvate from glucose. Synth Biol (Oxf) 2018; 3:ysy006. [PMID: 32995514 PMCID: PMC7445776 DOI: 10.1093/synbio/ysy006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/05/2023] Open
Abstract
Living systems possess a rich biochemistry that can be harnessed through metabolic engineering to produce valuable therapeutics, fuels and fine chemicals. In spite of the tools created for this purpose, many organisms tend to be recalcitrant to modification or difficult to optimize. Crude cellular extracts, made by lysis of cells, possess much of the same biochemical capability, but in an easier to manipulate context. Metabolic engineering in crude extracts, or cell-free metabolic engineering, can harness these capabilities to feed heterologous pathways for metabolite production and serve as a platform for pathway optimization. However, the inherent biochemical potential of a crude extract remains ill-defined, and consequently, the use of such extracts can result in inefficient processes and unintended side products. Herein, we show that changes in cell growth conditions lead to changes in the enzymatic activity of crude cell extracts and result in different abilities to produce the central biochemical precursor pyruvate when fed glucose. Proteomic analyses coupled with metabolite measurements uncover the diverse biochemical capabilities of these different crude extract preparations and provide a framework for how analytical measurements can be used to inform and improve crude extract performance. Such informed developments can allow enrichment of crude extracts with pathways that promote or deplete particular metabolic processes and aid in the metabolic engineering of defined products.
Collapse
Affiliation(s)
- David C Garcia
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Benjamin P Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jakob T Dovgan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Mitchel J Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
91
|
Tomasek K, Bergmiller T, Guet CC. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. J Biotechnol 2018; 268:40-52. [DOI: 10.1016/j.jbiotec.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
92
|
Felletti M, Omnus DJ, Jonas K. Regulation of the replication initiator DnaA in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:697-705. [PMID: 29382570 DOI: 10.1016/j.bbagrm.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Deike J Omnus
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
93
|
Ihling N, Bittner N, Diederichs S, Schelden M, Korona A, Höfler GT, Fulton A, Jaeger KE, Honda K, Ohtake H, Büchs J. Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating recombinant protein production in various Escherichia coli host strains. Biotechnol Prog 2018; 34:315-327. [PMID: 29314728 DOI: 10.1002/btpr.2600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7-RNA polymerase-dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315-327, 2018.
Collapse
Affiliation(s)
- Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Natalie Bittner
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Sylvia Diederichs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Maximilian Schelden
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Anna Korona
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Georg Theo Höfler
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich D-52426, Germany
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich D-52426, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52426, Germany
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| |
Collapse
|
94
|
Failmezger J, Rauter M, Nitschel R, Kraml M, Siemann-Herzberg M. Cell-free protein synthesis from non-growing, stressed Escherichia coli. Sci Rep 2017; 7:16524. [PMID: 29184159 PMCID: PMC5705671 DOI: 10.1038/s41598-017-16767-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Cell-free protein synthesis is a versatile protein production system. Performance of the protein synthesis depends on highly active cytoplasmic extracts. Extracts from E. coli are believed to work best; they are routinely obtained from exponential growing cells, aiming to capture the most active translation system. Here, we report an active cell-free protein synthesis system derived from cells harvested at non-growth, stressed conditions. We found a downshift of ribosomes and proteins. However, a characterization revealed that the stoichiometry of ribosomes and key translation factors was conserved, pointing to a fully intact translation system. This was emphasized by synthesis rates, which were comparable to those of systems obtained from fast-growing cells. Our approach is less laborious than traditional extract preparation methods and multiplies the yield of extract per cultivation. This simplified growth protocol has the potential to attract new entrants to cell-free protein synthesis and to broaden the pool of applications. In this respect, a translation system originating from heat stressed, non-growing E. coli enabled an extension of endogenous transcription units. This was demonstrated by the sigma factor depending activation of parallel transcription. Our cell-free expression platform adds to the existing versatility of cell-free translation systems and presents a tool for cell-free biology.
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Rauter
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
95
|
Pokhilko A. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC SYSTEMS BIOLOGY 2017; 11:106. [PMID: 29157236 PMCID: PMC5697348 DOI: 10.1186/s12918-017-0490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 11/26/2022]
Abstract
Background E. coli can be used as bacterial cell factories for production of biofuels and other useful compounds. The efficient production of the desired products requires careful monitoring of growth conditions and the optimization of metabolic fluxes. To avoid nutrient depletion and maximize product yields we suggest using a natural mechanism for sensing nutrient limitation, related to biosynthesis of an intracellular messenger - guanosine tetraphosphate (ppGpp). Results We propose a design for a biosensor, which monitors changes in the intracellular concentration of ppGpp by coupling it to a fluorescent output. We used mathematical modelling to analyse the intracellular dynamics of ppGpp, its fluorescent reporter, and cell growth in normal and fatty acid-producing E. coli lines. The model integrates existing mechanisms of ppGpp regulation and predicts the biosensor response to changes in nutrient state. In particular, the model predicts that excessive stimulation of fatty acid production depletes fatty acid intermediates, downregulates growth and increases the levels of ppGpp-related fluorescence. Conclusions Our analysis demonstrates that the ppGpp sensor can be used for early detection of nutrient limitation during cell growth and for testing productivity of engineered lines. Electronic supplementary material The online version of this article (10.1186/s12918-017-0490-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
96
|
Santander RD, Biosca EG. Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures. PeerJ 2017; 5:e3931. [PMID: 29085749 PMCID: PMC5660878 DOI: 10.7717/peerj.3931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora, revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight.
Collapse
Affiliation(s)
- Ricardo D. Santander
- Department of Microbiology and Ecology, Universitat de València, Burjassot, Spain
| | - Elena G. Biosca
- Department of Microbiology and Ecology, Universitat de València, Burjassot, Spain
| |
Collapse
|
97
|
Jaishankar J, Srivastava P. Molecular Basis of Stationary Phase Survival and Applications. Front Microbiol 2017; 8:2000. [PMID: 29085349 PMCID: PMC5650638 DOI: 10.3389/fmicb.2017.02000] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Stationary phase is the stage when growth ceases but cells remain metabolically active. Several physical and molecular changes take place during this stage that makes them interesting to explore. The characteristic proteins synthesized in the stationary phase are indispensable as they confer viability to the bacteria. Detailed knowledge of these proteins and the genes synthesizing them is required to understand the survival in such nutrient deprived conditions. The promoters, which drive the expression of these genes, are called stationary phase promoters. These promoters exhibit increased activity in the stationary phase and less or no activity in the exponential phase. The vectors constructed based on these promoters are ideal for large-scale protein production due to the absence of any external inducers. A number of recombinant protein production systems have been developed using these promoters. This review describes the stationary phase survival of bacteria, the promoters involved, their importance, regulation, and applications.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
98
|
Zhai P, Yang L, Guo X, Wang Z, Guo J, Wang X, Zhu H. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics. BMC Bioinformatics 2017; 18:434. [PMID: 28969605 PMCID: PMC5625784 DOI: 10.1186/s12859-017-1849-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. RESULTS We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. CONCLUSION MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis. Moreover, since the automatically chosen two-group sample test is verified to be outperformed, MetaComp is friendly to users without adequate statistical training. These improvements are aiming to overcome the new challenges under big data era for all meta-omics data. MetaComp is available at: http://cqb.pku.edu.cn/ZhuLab/MetaComp/ and https://github.com/pzhaipku/MetaComp/ .
Collapse
Affiliation(s)
- Peng Zhai
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Longshu Yang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
| | - Xiao Guo
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
| | - Zhe Wang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
| | - Jiangtao Guo
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
| | - Xiaoqi Wang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Center for Protein Science, Peking University, Beijing, 100871 China
| |
Collapse
|
99
|
Kathera C, Dulla EL, Chinahadri VP, Ramesh TSM, Basavaraju S, Jasti P. Proteomic characterization and bio-informatic analysis of differentially expressed E. coli Nissle 1917 proteins with response to cocoti wine stress. 3 Biotech 2017; 7:151. [PMID: 28597165 DOI: 10.1007/s13205-017-0787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/21/2017] [Indexed: 10/19/2022] Open
Abstract
The present study emphases the comparative proteomic analysis of Escherichia coli Nissle 1917 under cocoti palm wine stress and identified differentially expressed proteins. Protein samples were analyzed by 2-D, MALDI-TOF combined with MS access. In 2-D electrophoresis, eight differentially expressed proteins were identified: five up-regulated, two down-regulated and one newly expressed protein. Protein spots were digested with trypsin for MALDI-TOF-MS analysis; protein sequences were obtained from MASCOT search. Sequences were aligned with template using Swiss Model server. Phyre-2 was used to predict homology modeling, RasMol was used to analyze the modeling structures, PSVS server was utilized to validate the protein structure by Ramachandran's plot analysis, physical and chemical properties were analyzed using ProtParam server, Phylogenetic tree was constructed by Mega4. UniProt search helps to find protein functional information of differentially expressed proteins, involved in catalytic activities, regulation mechanisms, DNA damage stimulus, anti-termination and termination process, protein binding, electron transport mechanism, and cell signaling process functions. A detailed exploration of the proteins under cocoti palm wine stress have provided the composition, structure and functions of the expressed proteins for further investigation.
Collapse
|
100
|
Wang J, Guo J, Wang S, Zeng Z, Zheng D, Yao X, Yu H, Ruan L. The global strategy employed by Xanthomonas oryzae pv. oryzae to conquer low-oxygen tension. J Proteomics 2017; 161:68-77. [PMID: 28412528 DOI: 10.1016/j.jprot.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious rice pathogen that causes bacterial leaf blight (BLB), a destructive rice disease. Low-oxygen tension in the xylem vessels of rice stresses Xoo during infection. In this study, differentially expressed proteins under normoxic and hypoxic conditions were identified using high-performance liquid chromatography (HPLC) coupled with LC-MS/MS to investigate the global effects of low oxygen environment on Xoo PXO99A. A statistically validated list of 187 (normoxia) and 140 (hypoxia) proteins with functional assignments was generated, allowing the reconstruction of central metabolic pathways. Ten proteins involved in aromatic amino acid biosynthesis, glycolysis, butanoate metabolism, propanoate metabolism and biological adhesion were significantly modulated under low-oxygen tension. The genes encoded by these proteins were in-frame deleted, and three of them were determined to be required for full virulence in Xoo. The contributions of these three genes to important virulence-associated functions, including extracellular polysaccharide, cell motility and antioxidative ability, are presented. BIOLOGICAL SIGNIFICANCE To study how Xanthomonas oryzae pv. oryzae (Xoo) conquers low-oxygen tension in the xylem of rice, we identified differentially expressed proteins under normoxic and hypoxia. We found 140 proteins that uniquely expressed under the hypoxia were involved in 33 metabolism pathways. We identified 3 proteins were required for full virulence in Xoo and related to the ability of extracellular polysaccharide, cell motility, and antioxidative. This study is helpful for broadening our knowledge of the metabolism processed of Xoo in the xylem of rice.
Collapse
Affiliation(s)
- Jianliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|