51
|
Dohno C, Yamamoto T, Nakatani K. Photoswitchable Unsymmetrical Ligand for DNA Hetero-Mismatches. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900323] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
52
|
Amato J, Oliviero G, De Pauw E, Gabelica V. Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: An electrospray mass spectrometry study. Biopolymers 2009; 91:244-55. [PMID: 19065573 DOI: 10.1002/bip.21124] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the interaction of the short peptide nucleic acid (PNA) strand [acccca]-PNA with oligodeoxynucleotides containing one, two, or four tracts of TGGGGT units. Electrospray ionization mass spectrometry allowed exploring the wide variety of complex stoichiometries that were found to coexist in solution. In water, the PNA strand forms short heteroduplexes with the complementary DNA sequences, but higher-order structures are also found, with PNA(2n).DNA(n) triplex units, culminating in precipitation at very low ionic strength. In the presence of ammonium acetate, there is a competition between PNA.DNA heteroduplex formation and DNA G-quadruplex formation. Heteroduplex formation is favored when the PNA + DNA mixture in ammonium acetate is heated and cooled at room temperature, but not if the PNA is added at room temperature to the preformed G-quadruplex. We also found that the short [acccca]-PNA strand binds to G-quadruplexes.
Collapse
Affiliation(s)
- Jussara Amato
- Dipartimento di Chimica delle Sostanze Naturali, Facoltà di Scienze Biotecnologiche, Università di Napoli Federico II, Italy
| | | | | | | |
Collapse
|
53
|
Yunt Z, Reinhardt K, Li A, Engeser M, Dahse HM, Gütschow M, Bruhn T, Bringmann G, Piel J. Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore. J Am Chem Soc 2009; 131:2297-305. [PMID: 19175308 DOI: 10.1021/ja807827k] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rubromycins, such as gamma-rubromycin, heliquinomycin, and griseorhodin A, are a family of extensively modified aromatic polyketides that inhibit HIV reverse transcriptase and human telomerase. Telomerase inhibition crucially depends on the presence of a spiroketal moiety that is unique among aromatic polyketides. Biosynthetic incorporation of this pharmacophore into the rubromycins results in a dramatic distortion of the overall polyketide structure, but how this process is achieved by the cell has been obscure. To identify the enzymes involved in spiroketal construction, we generated 14 gene-deletion variants of the griseorhodin A biosynthetic gene cluster isolated from the tunicate-associated bacterium Streptomyces sp. JP95. Heterologous expression and metabolic analysis allowed for an assignment of most genes to various stages of griseorhodin tailoring and pharmacophore generation. The isolation of the novel advanced intermediate lenticulone, which exhibits cytotoxic, antibacterial, and elastase-inhibiting activity, provided direct evidence that the spiroketal is formed by cleavage of four carbon-carbon bonds in a pentangular polyketide precursor. This remarkable transformation is followed by an epoxidation catalyzed by an unusual cytochrome P450/NADPH:ubiquinone oxidoreductase pair that utilizes a saturated substrate. In addition, the absolute configuration of griseorhodin A was determined by quantum-chemical circular dichroism (CD) calculations in combination with experimental CD measurements.
Collapse
Affiliation(s)
- Zeynep Yunt
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Reed JE, White AJP, Neidle S, Vilar R. Effect of metal coordination on the interaction of substituted phenanthroline and pyridine ligands with quadruplex DNA. Dalton Trans 2009:2558-68. [DOI: 10.1039/b820086f] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
55
|
Zins EL, Rochut S, Pepe C. Theoretical and experimental studies of cationized uracil complexes in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:40-49. [PMID: 18698558 DOI: 10.1002/jms.1468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cationized uracil clusters were generated in the gas phase by electrospray ionization (ESI). Mass spectrometry experiments showed that with particular experimental conditions, decameric uracil clusters are magic number clusters. MS/MS experiments demonstrated that the structure of these decameric uracil clusters depends substantially on the size and the charge of the cation. On the basis of the ab initio and density functional theory (DFT) quantum chemistry calculations, structures for these decameric clusters were proposed. These structures are in agreement with the experimental mass spectra of modified nucleobases. Theoretical calculations showed that complexes experimentally observed using ESI-MS techniques, are not naturally the most stable in the gas phase.
Collapse
Affiliation(s)
- Emilie-Laure Zins
- Université Pierre et Marie Curie, Paris 6, Laboratoire de Dynamique, Interactions et Réactivité, CNRS, UMR 7075, Paris, France.
| | | | | |
Collapse
|
56
|
Intercalating, cytotoxic, antitumour activity of 8-chloro and 4-morpholinopyrimido [4′,5′:4,5]thieno(2,3-b)quinolines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 94:13-9. [DOI: 10.1016/j.jphotobiol.2008.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 09/02/2008] [Accepted: 09/07/2008] [Indexed: 11/22/2022]
|
57
|
Arola-Arnal A, Benet-Buchholz J, Neidle S, Vilar R. Effects of Metal Coordination Geometry on Stabilization of Human Telomeric Quadruplex DNA by Square-Planar and Square-Pyramidal Metal Complexes. Inorg Chem 2008; 47:11910-9. [DOI: 10.1021/ic8016547] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna Arola-Arnal
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, CRUK Biomolecular Structure Group, The School of Pharmacy University of London, London WC1N 1AX, United Kingdom, and Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, CRUK Biomolecular Structure Group, The School of Pharmacy University of London, London WC1N 1AX, United Kingdom, and Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Stephen Neidle
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, CRUK Biomolecular Structure Group, The School of Pharmacy University of London, London WC1N 1AX, United Kingdom, and Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Ramón Vilar
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, CRUK Biomolecular Structure Group, The School of Pharmacy University of London, London WC1N 1AX, United Kingdom, and Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
58
|
Cetinkol OP, Engelhart AE, Nanjunda RK, Wilson WD, Hud NV. Submicromolar, selective G-quadruplex ligands from one pot: thermodynamic and structural studies of human telomeric DNA binding by azacyanines. Chembiochem 2008; 9:1889-92. [PMID: 18600816 DOI: 10.1002/cbic.200800234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ozgül Persil Cetinkol
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | | | | | | | |
Collapse
|
59
|
Shi S, Liu J, Yao T, Geng X, Jiang L, Yang Q, Cheng L, Ji L. Promoting the Formation and Stabilization of G-Quadruplex by Dinuclear RuII Complex Ru2(obip)L4. Inorg Chem 2008; 47:2910-2. [DOI: 10.1021/ic7021209] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo Shi
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Jie Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Tianming Yao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiaoting Geng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Lingfeng Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Qingyuan Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Lin Cheng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| | - Liangnian Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and Department of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
60
|
Monchaud D, Allain C, Bertrand H, Smargiasso N, Rosu F, Gabelica V, De Cian A, Mergny JL, Teulade-Fichou MP. Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie 2008; 90:1207-23. [PMID: 18343231 DOI: 10.1016/j.biochi.2008.02.019] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/19/2008] [Indexed: 01/19/2023]
Abstract
We report here the details of G4-FID (G-quadruplex fluorescent intercalator displacement), a simple method aiming at evaluating quadruplex-DNA binding affinity and quadruplex- over duplex-DNA selectivity of putative ligands. This assay is based on the loss of fluorescence upon displacement of thiazole orange from quadruplex- and duplex-DNA matrices. The original protocol was tested using various quadruplex- and duplex-DNA targets, and with a wide panel of G-quadruplex ligands belonging to different families (i.e. from quinacridines to metallo-organic ligands) likely to display various binding modes. The reliability of the assay is further supported by comparisons with FRET-melting and ESI-MS assays.
Collapse
Affiliation(s)
- D Monchaud
- Institut Curie, Section Recherche, CNRS UMR176, Centre Universitaire Paris XI, Bat. 110, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Sponer J, Spacková N. Molecular dynamics simulations and their application to four-stranded DNA. Methods 2007; 43:278-90. [PMID: 17967698 PMCID: PMC2431124 DOI: 10.1016/j.ymeth.2007.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022] Open
Abstract
This review provides a critical assessment of the advantages and limitations of modeling methods available for guanine quadruplex (G-DNA) molecules. We characterize the relations of simulations to the experimental techniques and explain the actual meaning and significance of the results. The following aspects are discussed: pair-additive approximation of the empirical force fields, sampling limitations stemming from the simulation time and accuracy of description of base stacking, H-bonding, sugar-phosphate backbone and ions by force fields. Several methodological approaches complementing the classical explicit solvent molecular dynamics simulations are commented on, including enhanced sampling methods, continuum solvent methods, free energy calculations and gas phase simulations. The successes and pitfalls of recent simulation studies of G-DNA are demonstrated on selected results, including studies of cation interactions and dynamics of G-DNA stems, studies of base substitutions (inosine, thioguanine and mixed tetrads), analysis of possible kinetic intermediates in folding pathway of a G-DNA stem and analysis of loop regions of G-DNA molecules.
Collapse
Affiliation(s)
- Jirí Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | | |
Collapse
|
62
|
Abstract
Over the past decade, nucleic acid chemists have seen the spectacular emergence of molecules designed to interact efficiently and selectively with a peculiar DNA structure named G-quadruplex. Initially derived from classical DNA intercalators, these G-quadruplex ligands progressively became the focal point of new excitement since they appear to inhibit selectively the growth of cancer cells thereby opening interesting perspectives towards the development of novel anti-cancer drugs. The present article aims to help researchers enter this exciting research field, and to highlight recent advances in the design of G-quadruplex ligands.
Collapse
Affiliation(s)
- David Monchaud
- Institut Curie, CNRS UMR176, Section Recherche, Centre Universitaire Paris XI, Bât. 110, 91405, Orsay, France
| | | |
Collapse
|
63
|
Pedroso IM, Duarte LF, Yanez G, Burkewitz K, Fletcher TM. Sequence specificity of inter- and intramolecular G-quadruplex formation by human telomeric DNA. Biopolymers 2007; 87:74-84. [PMID: 17549693 DOI: 10.1002/bip.20790] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human telomeric DNA consists of tandem repeats of the sequence 5'-d(TTAGGG)-3'. Guanine-rich DNA, such as that seen at telomeres, forms G-quadruplex secondary structures. Alternative forms of G-quadruplex structures can have differential effects on activities involved in telomere maintenance. With this in mind, we analyzed the effect of sequence and length of human telomeric DNA on G-quadruplex structures by native polyacrylamide gel electrophoresis and circular dichroism. Telomeric oligonucleotides shorter than four, 5'-d(TTAGGG)-3' repeats formed intermolecular G-quadruplexes. However, longer telomeric repeats formed intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in any one of the repeats of 5'-d(TTAGGG)(4)-3' converted an intramolecular structure to intermolecular G-quadruplexes with varying degrees of parallel or anti-parallel-stranded character, depending on the length of incubation time and DNA sequence. These structures were most abundant in K(+)-containing buffers. Higher-order structures that exhibited ladders on polyacrylamide gels were observed only for oligonucleotides with the first telomeric repeat altered. Altering the sequence of 5'-d(TTAGGG)(8)-3' did not result in the substantial formation of intermolecular structures even when the oligonucleotide lacked four consecutive telomeric repeats. However, many of these intramolecular structures shared common features with intermolecular structures formed by the shorter oligonucleotides. The wide variability in structure formed by human telomeric sequence suggests that telomeric DNA structure can be easily modulated by proteins, oxidative damage, or point mutations resulting in conversion from one form of G-quadruplex to another.
Collapse
Affiliation(s)
- Ilene M Pedroso
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101-6129, USA
| | | | | | | | | |
Collapse
|
64
|
Mazzitelli CL, Wang J, Smith SI, Brodbelt JS. Gas-phase stability of G-quadruplex DNA determined by electrospray ionization tandem mass spectrometry and molecular dynamics simulations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1760-73. [PMID: 17719795 PMCID: PMC2077085 DOI: 10.1016/j.jasms.2007.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/27/2007] [Accepted: 07/02/2007] [Indexed: 05/16/2023]
Abstract
The relative gas-phase stabilities of seven quadruplex DNA structures, [d(TG(4)T)](4), [d(T(2)G(3)T)](4), [d(G(4)T(4)G(4))](2), [d(T(2)AG(3))(2)](2), d(T(2)AG(3))(4), d(T(2)G(4))(4), and d(G(2)T(4))(4), were investigated using molecular dynamics simulations and electrospray ionization mass spectrometry (ESI-MS). MD simulations revealed that the G-quadruplexes maintained their structures in the gas phase although the G-quartets were distorted to some degree and ammonium ions, retained by [d(TG(4)T)](4) and [d(T(2)G(3)T)](4), played a key role in stabilizing the tetrad structure. Energy-variable collisional activated dissociation was used to assess the relative stabilities of each quadruplex based on E(1/2) values, and the resulting order of relative stabilities was found to be [d(TG(4)T)](4) >> d(T(2)AG(3))(4) approximately d(T(2)G(4))(4) > [d(T(2)G(3)T)](4) > [d(T(2)AG(3))(2)](2) approximately d(G(2)T(4))(4) approximately [d(G(4)T(4)G(4))](2.) The stabilities from the E(1/2) values generally paralleled the RMSD and relative free energies of the quadruplexes based on the MD energy analysis. One exception to the general agreement is [d(G(4)T(4)G(4))](2), which had the lowest E(1/2) value, but was determined to be the most stable quadruplex according to the free-energy analysis and ranked fourth based on the RMSD comparison. This discrepancy is attributed to differences in the fragmentation pathway of the quadruplex.
Collapse
Affiliation(s)
- Carolyn L. Mazzitelli
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, TX 78712
| | - Junmei Wang
- Encysive Pharmaceuticals Inc., 7000 Fannin St. Houston, TX 77030
| | - Suncerae I. Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, TX 78712
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, TX 78712
| |
Collapse
|
65
|
Zhou J, Yuan G. Specific recognition of human telomeric G-quadruplex DNA with small molecules and the conformational analysis by ESI mass spectrometry and circular dichroism spectropolarimetry. Chemistry 2007; 13:5018-23. [PMID: 17373004 DOI: 10.1002/chem.200601605] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the binding affinity and stoichiometry of small molecules with human telomeric G-quadruplex DNA. The binding-affinity order obtained for the (AGGGTT)(4) quadruplex was: Tel01>ImImImbetaDp>>PyPyPygammaImImImbetaDp. The specific binding of Tel01 and PyPyPygammaImImImbetaDp in one system consisting of human telomeric G-quadruplex and duplex DNA was observed directly for the first time. This revealed that PyPyPygammaImImImbetaDp has a binding specificity for the duplex DNA, whereas Tel01 selectively recognizes the G-quadruplex DNA. Moreover, both ESI-MS and circular dichroism (CD) spectra indicated that Tel01 favored the formation and stabilization of the antiparallel G-quadruplex, and a structural transition of the (AGGGTT)(4) sequence from a coexistence of parallel and antiparallel G-quadruplexes to a parallel G-quadruplex induced by annealing.
Collapse
Affiliation(s)
- Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
66
|
Guo X, Liu S, Yu Z. Bimolecular quadruplexes and their transitions to higher-order molecular structures detected by ESI-FTICR-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1467-76. [PMID: 17572101 DOI: 10.1016/j.jasms.2007.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 05/15/2023]
Abstract
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands--d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3))--have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH(4)(+) in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH(4)(+) in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.
Collapse
Affiliation(s)
- Xinhua Guo
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | | | | |
Collapse
|
67
|
Bertrand H, Bombard S, Monchaud D, Teulade-Fichou MP. A platinum–quinacridine hybrid as a G-quadruplex ligand. J Biol Inorg Chem 2007; 12:1003-14. [PMID: 17638029 DOI: 10.1007/s00775-007-0273-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/12/2007] [Indexed: 11/26/2022]
Abstract
A novel platinum-quinacridine hybrid, comprising a monofunctional Pt moiety and a G-quadruplex ligand (mono-para-quinacridine or MPQ), has been synthesized and shown to interact with quadruplex DNA via a dual noncovalent/covalent binding mode. Denaturing gel electrophoresis was used to separate the various platination products of 22AG (an oligonucleotide that mimics the human telomeric repeat) by Pt-MPQ, and it was shown that two platinated adducts are highly stable quadruplex structures. Dimethylsulfate/piperidine treatment and 3'-exonuclease digestion of the isolated adducts allowed us to precisely determine the platination pattern of 22AG by Pt-MPQ, which displays three main sites G2, G10 and G22. Data presented herein support the hypothesis that Pt-MPQ traps preferentially the antiparallel structure of the 22AG quadruplex. Finally, the kinetics of Pt-MPQ platination using a construct containing both quadruplex DNA and a duplex DNA parts provide the first insights into the Pt-MPQ preference for quadruplex DNA over duplex DNA.
Collapse
Affiliation(s)
- Hélène Bertrand
- Institut Curie, Section Recherche, CNRS UMR176, Centre Universitaire Paris XI, Bat. 110, 91405 Orsay, France
| | | | | | | |
Collapse
|
68
|
Hounsou C, Guittat L, Monchaud D, Jourdan M, Saettel N, Mergny JL, Teulade-Fichou MP. G-Quadruplex Recognition by Quinacridines: a SAR, NMR, and Biological Study. ChemMedChem 2007; 2:655-66. [PMID: 17385760 DOI: 10.1002/cmdc.200600286] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of a novel group of quinacridine-based ligands (MMQs) is described along with an evaluation of their G-quadruplex binding properties. A set of biophysical assays was applied to characterize their interaction with DNA quadruplexes: FRET-melting experiments and equilibrium microdialysis were used to evaluate their quadruplex affinity and their ability to discriminate quadruplexes across a broad panel of DNA structures. All data collected support the proposed model of interaction of these compounds with G-quadruplexes, which is furthermore confirmed by a solution structure determined by 2D NMR experiments. Finally, the activity of the MMQ series against tumor cell growth is reported, and the data support the potential of quadruplex-interactive compounds for use in anticancer approaches.
Collapse
Affiliation(s)
- Candide Hounsou
- Laboratoire de Chimie des Interactions Moléculaires, CNRS UPR 285, Collège de France, 11, place Marcellin Berthelot, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
69
|
Slim M, Durisic N, Grutter P, Sleiman HF. DNA–Protein Noncovalent Cross-Linking: Ruthenium Dipyridophenazine Biotin Complex for the Assembly of Proteins and Gold Nanoparticles on DNA Templates. Chembiochem 2007; 8:804-12. [PMID: 17407126 DOI: 10.1002/cbic.200600550] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the first example of a small molecule that can noncovalently cross-link DNA with streptavidin and streptavidin-labeled materials. Molecule 1 possesses a ruthenium dipyridophenazine DNA-intercalating moiety and a biotin unit; these two units are adequately separated to ensure efficient cross-linking of DNA with protein. Complex 1 is essentially nonemissive in aqueous solution and when bound to streptavidin, however, its luminescence is turned "on" when it binds to DNA. We have used these properties to establish that this complex can simultaneously bind to DNA and streptavidin, and can thus bring these two biomolecules together. We also synthesized a related molecule, 3, in which the biotin and DNA-intercalating moieties are covalently bound. While complex 3 can intercalate into DNA through a threading mechanism, luminescence experiments show that it cannot simultaneously bind DNA and streptavidin, most likely due to the proximity of its two molecular-recognition units. The cross-linking ability of molecule 1 was used to template the assembly of streptavidin molecules on circular plasmid DNA, as visualized by atomic force microscopy. In addition, using 1, we show the organization of discrete groups of gold nanoparticles labeled with streptavidin on a linear DNA template of finite size, with transmission electron microscopy. In these experiments the DNA template acted as a "molecular ruler" that dictated the number of particles in the assembly.
Collapse
Affiliation(s)
- Mohamed Slim
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal QC, H3A 2K6, Canada
| | | | | | | |
Collapse
|
70
|
Zhou J, Yuan G, Liu J, Zhan CG. Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chemistry 2007; 13:945-9. [PMID: 17036297 DOI: 10.1002/chem.200600424] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the formation and stability of G-quadruplexes. For the 15 6-nt oligonucleotides tested, ESI-MS indicated that formation of a parallel tetramer quadruplex requires at least four continuous guanines in the 6-nt sequence. In addition, the G-rich strands prefer to employ "self-association" in the formation of the G-quadruplex rather than hybridized integration, and the thermodynamic-stability order of these three G-quadruplexes is Q(2)>Q(1)>Q(3).
Collapse
Affiliation(s)
- Jiang Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
71
|
Jackson SR, Zhu CH, Paulson V, Watkins L, Dikmen ZG, Gryaznov SM, Wright WE, Shay JW. Antiadhesive effects of GRN163L--an oligonucleotide N3'->P5' thio-phosphoramidate targeting telomerase. Cancer Res 2007; 67:1121-9. [PMID: 17283146 DOI: 10.1158/0008-5472.can-06-2306] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We determined previously that a novel human telomerase RNA (hTR) antagonist, GRN163L, inhibited the tumorigenic potential of A549-luciferase (A549-luc) lung cancer cells in vitro and in vivo. Further studies revealed that A549-luc cells were also morphologically altered by GRN163L. A549-luc cells treated before cell attachment with a single dose of GRN163L only weakly attached to the substrate and remained rounded, whereas control mismatch-treated cells exhibited typical epitheloid appearance and adhesion properties. These morphologic changes were independent of hTR expression and telomerase inhibition and were unrelated to telomere length. This effect is dependent on the molecular properties of the lipid moiety, the phosphorothioate backbone, and the presence of triplet-G sequences within the GRN163L structure. Altered adhesion was manifested by a 50% reduction in rapid cellular attachment and a 3-fold decrease in total cell spreading surface area. Administration of a single dose of GRN163L (15 mg/kg) at the time of cell inoculation, using an in vivo model of lung cancer metastasis, resulted in significant reductions in tumor burden at days 13, 20, and 27 of tumor progression. Thus, the potent antimetastatic effects of GRN163L may be related, in part, to the antiadhesive effects of this novel cancer therapeutic conferred via specific structural determinants and that these effects are independent of telomerase inhibition or telomere shortening.
Collapse
Affiliation(s)
- Shalmica R Jackson
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Gornall KC, Samosorn S, Talib J, Bremner JB, Beck JL. Selectivity of an indolyl berberine derivative for tetrameric G-quadruplex DNA. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1759-66. [PMID: 17486674 DOI: 10.1002/rcm.3019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Negative ion electrospray ionization mass spectrometry (ESI-MS) was used to compare the binding affinities and stoichiometries of the alkaloid berberine, a 13-substituted indolyl berberine derivative, SS14, and the chemotherapeutic agent, daunomycin, for 16-mer double-stranded (ds) DNA (D1 and D2) and for an 8-mer tetrameric quadruplex, Q1 (d(TTGGGGGT)(4)). Under the experimental conditions presented here, ESI mass spectra of Q1 showed that the major ions were from Q1 with three ammonium ions bound in the structure. Ions from Q1 with four ammonium ions were of lower abundance. In agreement with other work, there were multiple binding sites on the dsDNA and the quadruplex for daunomycin and berberine. The binding of SS14 to both dsDNA and Q1 was less extensive. Although the binding affinity of SS14 for Q1 was modest, this compound showed a clear preference for Q1 DNA over D1 or D2 DNA. Berberine and daunomycin bound with greater affinity to both types of DNA secondary structure, with the former showing a slight preference for Q1 over D1 while the latter showed a slight preference for D1 over Q1. While at least five berberine molecules bound to Q1, this quadruplex could accommodate only two SS14 molecules. These investigations show that SS14 is a promising lead compound for drugs that may selectively bind quadruplex over duplex DNA.
Collapse
Affiliation(s)
- Karina C Gornall
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | | | | | |
Collapse
|
73
|
Mezzache S, Alves S, Paumard JP, Pepe C, Tabet JC. Theoretical and gas-phase studies of specific cationized purine base quartet. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1075-82. [PMID: 17310504 DOI: 10.1002/rcm.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Guanine tetraplexes are biological non-covalent systems stabilized by alkali cations. Thus, self-clustering of guanine, xanthine and hypoxanthine with alkali cations (Na(+), K(+) and Li(+)) is investigated by electrospray ionization mass spectrometry (ESI-MS) in order to provide new insights into G-quartets, hydrogen-bonded complexes. ESI assays displayed magic numbers of tetramer adducts with Na(+), Li(+) and K(+), not only for guanine, but also for xanthine bases. The optimized structures of guanine and xanthine quartets have been determined by B3LYP hybrid density functional theory calculations. Complexes of metal ions with quartets are classified into different structure types. The optimized structures obtained for each quartet explain the gas-phase results. The gas-phase binding sequence between the monovalent cations and the xanthine quartet follows the order Li(+) > Na(+) > K(+), which is consistent with that obtained for the guanine quartet in the literature. The smallest stabilization energy of K(+) and its position versus the other alkali metal ions in guanine and xanthine quartets is consistent with the fact that the potassium cation can be located between two guanine or xanthine quartets, for providing a [gua(or (xan))(8)+K](+) octamer adduct. Even if an abundant octamer adduct with K(+) for xanthine was detected by ESI-MS, it was not the case for guanine.
Collapse
Affiliation(s)
- Sakina Mezzache
- Université Pierre et Marie Curie-Paris 6, CNRS Synthèse, Structure et Fonction de Molécules Bioactives, UMR 7613, 4 place Jussieu, 75252 Cedex Paris, France
| | | | | | | | | |
Collapse
|
74
|
Bertrand H, Monchaud D, De Cian A, Guillot R, Mergny JL, Teulade-Fichou MP. The importance of metal geometry in the recognition of G-quadruplex-DNA by metal-terpyridine complexes. Org Biomol Chem 2007; 5:2555-9. [PMID: 18019527 DOI: 10.1039/b708635k] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hélène Bertrand
- Institut Curie, Section Recherche, CNRS UMR176, Centre Universitaire Paris XI, Bât. 110, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
75
|
Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 2007; 29:155-65. [PMID: 17226803 DOI: 10.1002/bies.20523] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concept of a G-quartet, a unique structural arrangement intrinsic to guanine-rich DNA, was first introduced by Gellert and colleagues over 40 years ago. For decades, it has been uncertain whether the G-quartet and the structure that it gives rise to, the G-quadruplex, are purely in vitro phenomena. Nevertheless, the presence of signature G-rich motifs in the eukaryotic genome, and the plethora of proteins that bind to, modify or resolve this nucleic acid structure in vitro have provided circumstantial evidence for its physiological relevance. More recently, direct visualisation of G-quadruplex DNA at native telomeres was achieved, bolstering the evidence for its existence in the cell. Furthermore, G-quadruplex folded telomeric DNA has been found to perturb telomere function and to impede the action of telomerase, an enzyme overexpressed in >85% of human cancers, hence opening up a novel avenue for cancer therapy in the form of G-quadruplex stabilising agents.
Collapse
Affiliation(s)
- Liana Oganesian
- Children's Medical Research Institute, Westmead, Sydney Australia
| | | |
Collapse
|
76
|
Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 2006; 34:3887-96. [PMID: 16914419 PMCID: PMC1557811 DOI: 10.1093/nar/gkl529] [Citation(s) in RCA: 409] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
G-rich genomic regions can form G4 DNA upon transcription or replication. We have quantified the potential for G4 DNA formation (G4P) of the 16 654 genes in the human RefSeq database, and then correlated gene function with G4P. We have found that very low and very high G4P correlates with specific functional classes of genes. Notably, tumor suppressor genes have very low G4P and proto-oncogenes have very high G4P. G4P of these genes is evenly distributed between exons and introns, and it does not reflect enrichment for CpG islands or local chromosomal environment. These results show that genomic structure undergoes selection based on gene function. Selection based on G4P could promote genomic stability (or instability) of specific classes of genes; or reflect mechanisms for global regulation of gene expression.
Collapse
Affiliation(s)
- Johanna Eddy
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
| | - Nancy Maizels
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- Department of Immunology, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- Department of Biochemistry, University of Washington School of Medicine1959 NE Pacific Street, Seattle, WA 98195-7650, USA
- To whom correspondence should be addressed. Tel: +1 206 221 6876; Fax: +1 206 221 6781;
| |
Collapse
|
77
|
Zhou J, Yuan G. Analysis of noncovalent complexes between human telomeric DNA and polyamides containing N-methylpyrrole and N-methylimidazole by using electrospray ionization mass spectrometry. Chemistry 2006; 11:1157-62. [PMID: 15624127 DOI: 10.1002/chem.200400803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate noncovalent complexes formed between four novel polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im), and human telomeric DNA. Of the four polyamides investigated, PyPyPygammaImImImbetaDp (3) had the highest binding affinity towards the duplex d(TTAGGGTTAGGG/CCCTAACCCTAA) (D1). Results of competition analysis showed that the polyamides had binding affinities with D1 in the order PyPyPygammaImImImbetaDp (3)>PyPyPyPygammaPyImImPybetaDp (4)>PyPyPybetaImImImbetaDp (2)>>ImImImbetaDp (1). MS/MS spectra confirmed that binding between D1 and the hairpin polyamides is more stable than that with the three-ring polyamides. By contrast, in the case of single-stranded d(TTAGGGTTAGGG)(D2), the binding order changes to ImImImbetaDp (1)>PyPyPygammaImImImbetaDp (3)>PyPyPybetaImImImbetaDp (2).
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Chemical Biology, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | | |
Collapse
|
78
|
Mansilla S, Priebe W, Portugal J. Transcriptional changes facilitate mitotic catastrophe in tumour cells that contain functional p53. Eur J Pharmacol 2006; 540:34-45. [PMID: 16735036 DOI: 10.1016/j.ejphar.2006.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 01/11/2023]
Abstract
Exposure of Jurkat T lymphocytes containing functional p53 to nanomolar concentrations of bisanthracycline WP631 resulted in arrest at the G2/M checkpoint and transient senescence-like phenotype in the presence of DNA synthesis. The cells entered crisis, became polyploid, showed aberrant mitotic figures, and died through mitotic catastrophe. Cell death was accompanied by changes in the expression profile of various oncogenes and tumour suppressor genes including the down-regulation of p53. The changed expression was confirmed for some of these genes using semi-quantitative RT-PCR, and the decline in p53 protein levels was established. Our results suggest that WP631 induced changes in cell cycle control pathways leading to death of Jurkat T cells through mitotic catastrophe, which occurred in the absence of caspase-2 and caspase-3 activities, rather than apoptosis.
Collapse
Affiliation(s)
- Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Josep Samitier, 1-5, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
79
|
White EW, Tanious F, Ismail MA, Reszka AP, Neidle S, Boykin DW, Wilson WD. Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge. Biophys Chem 2006; 126:140-53. [PMID: 16831507 DOI: 10.1016/j.bpc.2006.06.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 01/17/2023]
Abstract
Combining structure-specific recognition of nucleic acids with limited sequence reading is a promising method to reduce the size of the recognition unit required to achieve the necessary selectivity and binding affinity to control function. It has been demonstrated recently that G-quadruplex DNA structures can be targeted by organic cations in a structure-specific manner. Structural targets of quadruplexes include the planar end surfaces of the G-tetrad stacked columns and four grooves. These provide different geometries and functional groups relative to duplex DNA. We have used surface plasmon resonance and isothermal titration calorimetry to show that binding affinity and selectivity of a series of quadruplex end-stacking molecules to human telomeric DNA are sensitive to compound shape as well as substituent type and position. ITC results indicate that binding is largely enthalpy driven. Circular dichroism was also used to identify a group of structurally related compounds that selectively target quadruplex grooves.
Collapse
Affiliation(s)
- Elizabeth W White
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Nielsen JT, Arar K, Petersen M. NMR solution structures of LNA (locked nucleic acid) modified quadruplexes. Nucleic Acids Res 2006; 34:2006-14. [PMID: 16614450 PMCID: PMC1435981 DOI: 10.1093/nar/gkl144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the NMR solution structures of the quadruplexes formed by d(TGLGLT) and d(TL4T), where L denotes LNA (locked nucleic acid) modified G-residues. Both structures are tetrameric, parallel and right-handed and the native global fold of the corresponding DNA quadruplex is retained upon introduction of the LNA nucleotides. However, local structural alterations are observed owing to the locked LNA sugars. In particular, a distinct change in the sugar–phosphate backbone is observed at the G2pL3 and L2pL3 base steps and sequence dependent changes in the twist between tetrads are also seen. Both the LNA modified quadruplexes have raised thermostability as compared to the DNA quadruplex. The quadruplex-forming capability of d(TGLGLT) is of particular interest as it expands the design flexibility for stable parallel LNA quadruplexes and shows that LNA nucleotides can be mixed with DNA or other modified nucleic acids. As such, LNA-based quadruplexes can be decorated by a variety of chemical modifications. Such LNA quadruplex scaffolds might find applications in the developing field of nanobiotechnology.
Collapse
Affiliation(s)
| | - Khalil Arar
- Proligo LLC1 Rue Delaunay, 75011 Paris, France
| | - Michael Petersen
- To whom correspondence should be addressed. Tel: +45 65 50 25 30; Fax: +45 66 15 87 80;
| |
Collapse
|
81
|
Liu W, Sun D, Hurley LH. Binding of G-quadruplex-interactive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1801-15. [PMID: 16438049 DOI: 10.1080/15257770500267238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our previous studies have demonstrated the preference of telomestatin for intramolecular, rather than the intermolecular, G-quadruplex structures, while TiMPyP4 has selectivity for intermolecular over intramolecular G-quadruplex structures. However, it was not clear whether the difference in the selectivity between two different G-quadruplex-interactive agents could determine the corresponding biological effects in cultured human tumor cells. Here we evaluated the biological effects of both TMPyP4 and telomestatin in the human pancreatic carcinoma cell line (MiaPaCa) using subtoxic and cytotoxic concentrations. The cytotoxicity of these agents against MiaPaCa cells is quite different, and the IC50 of telomestatin (0.5 microM) is about 100 times less than that of TMPyP4 (50 microM). At IC50 concentrations, TMPyP4 induced anaphase bridge formation in MiaPaCa cells, while telomestatin failed to induce anaphase bridge formation. At subtoxic concentrations, TMPyP4 induced MiaPaCa cell growth arrest, senescence, apoptosis, and telomere length shortening within 5 weeks, while similar biological effects were evident after 12 weeks following treatment with telomestatin. Our data suggest that binding of G-quadruplex-interactive agents to distinct G-quadruplexes could induce different biological effects in human cancer cells.
Collapse
Affiliation(s)
- Weijun Liu
- College of Pharmacy, The University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
82
|
Kaiser M, De Cian A, Sainlos M, Renner C, Mergny JL, Teulade-Fichou MP. Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. Org Biomol Chem 2006; 4:1049-57. [PMID: 16525549 DOI: 10.1039/b516378a] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of aminoglycoside-capped macrocyclic structures has been prepared using intramolecular bis-tethering of neomycin on three aromatic platforms (phenanthroline, acridine, quinacridine). Based on NMR and calculations studies, it was found that the cyclic compounds adopt a highly flexible structure without conformational restriction of the aminoglycoside moiety. FRET-melting stabilization measurements showed that the series displays moderate to high affinity for the G4-conformation of human telomeric repeats, this effect being correlated with the size of the aromatic moiety. In addition, a FRET competition assay evidenced the poor binding ability of all macrocycles for duplex DNA and a clear binding preference for loop-containing intramolecular G4 structures compared to tetramolecular parallel G4 DNA. Finally, TRAP experiments demonstrated that the best G4-binder (quinacridine ) is also a potent and selective telomerase inhibitor with an IC(50) in the submicromolar range (200 nM).
Collapse
Affiliation(s)
- Markus Kaiser
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11, place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
83
|
Zhou J, Yuan G, Tang FL. Estimation of binding constants for complexes of polyamides and human telomeric DNA sequences by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2365-7. [PMID: 16835848 DOI: 10.1002/rcm.2597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
84
|
Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD, Hurley LH. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J Am Chem Soc 2005; 127:9439-47. [PMID: 15984871 DOI: 10.1021/ja0505088] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
Collapse
Affiliation(s)
- Evonne M Rezler
- College of Pharmacy, The University of Arizona, 1703 East Mabel, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Piotrowska K, Kleideiter E, Mürdter TE, Taetz S, Baldes C, Schaefer U, Lehr CM, Klotz U. Optimization of the TRAP assay to evaluate specificity of telomerase inhibitors. J Transl Med 2005; 85:1565-9. [PMID: 16170334 DOI: 10.1038/labinvest.3700352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Telomerase inhibition represents a promising approach to anticancer treatment. In order to clarify the therapeutic potential of telomerase inhibitors we examined different substances (small molecule compounds BIBR1532 and BRACO19, as well as hTR antisense oligonucleotides 2'-O-methyl RNA and PNA) in A-549, MCF-7, and Calu-3 cell lines in a cell-free TRAP assay. We demonstrated that each of the tested agents inhibited telomerase in all used cell lines and that the antisense oligonucleotides represent the most potent inhibitors. Interestingly, upon evaluating the specificity of telomerase inhibitors we found out that not all agents acted specifically against telomerase. We observed that BRACO19 and PNA had an inhibitory effect also on PCR amplification of the TSR8 oligonucleotide which is provided in the TRAP(EZE) kit as a PCR control. By modifying the experimental protocol and using a different reverse primer we were able to enhance PNA selectivity, although the PCR inhibition of the TSR8 control template by BRACO19 could not be prevented. We propose an explanation for the lack of target specificity and suggest caution when testing putative telomerase inhibitors, as it appears that some of those substances may not affect specifically telomerase or telomeric G-rich sequences and thus can lead to the misinterpretation of experimental results.
Collapse
Affiliation(s)
- Kamilla Piotrowska
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Wojciechowski M, Fogolari F, Baginski M. Thermodynamic and electrostatic properties of ternary Oxytricha nova TEBP-DNA complex. J Struct Biol 2005; 152:169-84. [PMID: 16314111 DOI: 10.1016/j.jsb.2005.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/18/2022]
Abstract
Telomeres constitute the nucleoprotein ends of eukaryotic chromosomes which are essential for their proper function. Telomere end binding protein (TEBP) from Oxytricha nova was among the first telomeric proteins, which were well characterized biologically. TEBP consists of two protein subunits (alpha, beta) and forms a ternary complex with single stranded telomeric DNA containing tandem repeats TTTTGGGG. This work presents the characterization of the thermodynamic and electrostatic properties of this complex by computational chemistry methods (continuum Poisson-Boltzmann and solvent accessible surface calculations). Our calculations give a new insight into molecular properties of studied system. Based on the thermodynamic analysis we provide a rationale for the experimental observation that alpha and ssDNA forms a binary complex and the beta subunit joins alpha:ssDNA complex only after the latter is formed. Calculations of distribution of the molecular electrostatic potential for protein subunits alone and for all possible binary complexes revealed the important role of the "guiding funnel" potential generated by alpha:ssDNA complex. This potential may help the beta subunit to dock to the already formed alpha:DNA intermediate in highly steric and electrostatic favorable manner. Our pK(a) calculations of TEBP are able to explain the experimental mobility shifts of the complex in electrophoretic non-denaturating gels.
Collapse
Affiliation(s)
- M Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-952 Gdansk, Poland
| | | | | |
Collapse
|
87
|
Guittat L, De Cian A, Rosu F, Gabelica V, De Pauw E, Delfourne E, Mergny JL. Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro. Biochim Biophys Acta Gen Subj 2005; 1724:375-84. [PMID: 15950388 DOI: 10.1016/j.bbagen.2005.04.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/07/2005] [Accepted: 04/22/2005] [Indexed: 12/11/2022]
Abstract
Ascididemin and Meridine are two marine compounds with pyridoacridine skeletons known to exhibit interesting antitumour activities. These molecules have been reported to behave like DNA intercalators. In this study, dialysis competition assay and mass spectrometry experiments were used to determine the affinity of ascididemin and meridine for DNA structures among duplexes, triplexes, quadruplexes and single-strands. Our data confirm that ascididemin and meridine interact with DNA but also recognize triplex and quadruplex structures. These molecules exhibit a significant preference for quadruplexes over duplexes or single-strands. Meridine is a stronger quadruplex ligand and therefore a stronger telomerase inhibitor than ascididemin (IC50=11 and >80 muM, respectively in a standard TRAP assay).
Collapse
Affiliation(s)
- Lionel Guittat
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM UR 565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
88
|
McHugh MM, Gawron LS, Matsui SI, Beerman TA. The Antitumor Enediyne C-1027 Alters Cell Cycle Progression and Induces Chromosomal Aberrations and Telomere Dysfunction. Cancer Res 2005; 65:5344-51. [PMID: 15958582 DOI: 10.1158/0008-5472.can-05-0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the extent of chromosome instability induced in cultured human colon carcinoma HCT116 cells by the antitumor radiomimetic enediyne antibiotic C-1027. Spectral karyotype analysis showed frequent intrachromosomal fusions and fragmentations 26 hours after addition of as little as 0.035 nmol/L C-1027. When the concentration was increased to 0.14 nmol/L C-1027, 92% of cells showed chromosomal aberrations compared with only 2.9% after treatment with an equivalent growth inhibitory dose of ionizing radiation (20 Gy). Thus, chromosome misrejoining was associated to a much greater extent with C-1027-induced than with ionizing radiation-induced cell growth inhibition. Despite these aberrations, a large fraction of C-1027-treated cells progressed into G1. Comet analysis showed that these extensive chromosomal anomalies were not due to increased induction or reduced repair of C-1027-induced compared with ionizing radiation-induced strand breaks. Fluorescence in situ hybridization analysis showed that misrejoining of telomere repeats (i.e., chromosomes joined end to end at their telomeres or fused together after complete loss of telomere sequences) was observed within 26 hours of C-1027 addition. The extreme cytotoxicity of C-1027 may reflect both induction and erroneous repair of DNA double-strand break in the whole genome and/or in subgenomic targets such as telomere sequences.
Collapse
Affiliation(s)
- Mary M McHugh
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
89
|
|
90
|
Ye J, Wu YL, Zhang S, Chen Z, Guo LX, Zhou RY, Xie H. Inhibitory effect of human telomerase antisense oligodeoxyribonucleotides on the growth of gastric cancer cell lines in variant tumor pathological subtype. World J Gastroenterol 2005; 11:2230-7. [PMID: 15818731 PMCID: PMC4305804 DOI: 10.3748/wjg.v11.i15.2230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effect of specialized human telomerase antisense oligodeoxyribonucleotides on the growth of well (MKN-28), moderately (SGC-7901) and poorly (MKN-45) differentiated gastric cancer cell lines under specific conditions and its inhibition mechanism, and to observe the correlation between the growth inhibition ratio and the tumor pathologic subtype of gastric cancer cells.
METHODS: Telomerase activity in three gastric cancer cell lines of variant tumor pathologic subtype was determined by modified TRAP assay before and after the specialized human telomerase antisense oligodeoxyribonucleotides were dealt with under specific conditions. Effect of antisense oligomer under specific conditions of the growth and viability of gastric cancer cell lines was explored by using trypan blue dye exclusion assay, and cell apoptosis was detected by cell morphology observation, flow cytometry and TUNEL assay.
RESULTS: Telomerase activity was detected in well, moderately and poorly differentiated gastric cancer cell lines (the quantification expression of telomerase activity was 43.7TPG, 56.5TPG, 76.7TPG, respectively).Telomerase activity was controlled to 30.2TPG, 36.3TPG and 35.2TPG for MKN-28, SGC-7901 and MKN-45 cell lines respectively after treatment with human telomerase antisense oligomers at the concentration of 5 μmol/L, and was entirely inhibited at 10 μmol/L, against the template region of telomerase RNA component, whereas no inhibition effect was detected in missense oligomers (P<0.05). After treatment with antisense oligomers at different concentrations under specific conditions for 96 h, significant growth inhibition effects were found in MKN-45 and SGC-7901 gastric cancer cell lines (the inhibition ratio was 40.89% and 71.28%), but not in MKN-28 cell lines (15.86%). The ratio of inactive SGC-7901 cells increased according to the prolongation of treatment from 48 to 96 h. Missense oligomers could not lead to the same effect (P<0.05). Apoptosis of SGC-7901 and MKN-45 cells was detected not only by morphology and TUNEL assay but also by flow cytometry. The apoptotic rate reached 33.56% for SGC-7901 cells and 44.75% for MKN-45 cells.
CONCLUSION: The viability and proliferation of gastric cancer cells can be inhibited by antisense telomerase oligomers. The growth inhibition of gastric cancer cells is correlated with concentration, time and sequence specialty of antisense oligomers. The inhibition mechanism of antisense human telomerase oligomers depends not only on the sequence specialty but also on the biological characteristics of gastric cancer cell lines.
Collapse
Affiliation(s)
- Jing Ye
- Department of Gastroenterology, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Seenisamy J, Bashyam S, Gokhale V, Vankayalapati H, Sun D, Siddiqui-Jain A, Streiner N, Shin-Ya K, White E, Wilson WD, Hurley LH. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J Am Chem Soc 2005; 127:2944-59. [PMID: 15740131 DOI: 10.1021/ja0444482] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic porphyrins are known to bind to and stabilize different types of G-quadruplexes. Recent studies have shown the biological relevance of the intramolecular parallel G-quadruplex as a transcriptional silencer in the c-MYC promoter. TMPyP4 also binds to this G-quadruplex and most likely converts it to a mixed parallel/antiparallel G-quadruplex with two external lateral loops and one internal propeller loop, suppressing c-MYC transcriptional activation. To achieve therapeutic selectivity by targeting G-quadruplexes, it is necessary to synthesize drugs that can differentiate among the different types of G-quadruplexes. We have designed and synthesized a core-modified expanded porphyrin analogue, 5,10,15,20-[tetra(N-methyl-3-pyridyl)]-26,28-diselenasapphyrin chloride (Se2SAP). Se2SAP converts the parallel c-MYC G-quadruplex into a mixed parallel/antiparallel G-quadruplex with one external lateral loop and two internal propeller loops, resulting in strong and selective binding to this G-quadruplex. A Taq polymerase stop assay was used to evaluate the binding of TMPyP4 and Se2SAP to G-quadruplex DNA. Compared to TMPyP4, Se2SAP shows a greater selectivity for and a 40-fold increase in stabilization of the single lateral-loop hybrid. Surface plasmon resonance and competition experiments with duplex DNA and other G-quadruplexes further confirmed the selectivity of Se2SAP for the c-MYC G-quadruplex. Significantly, Se2SAP was found to be less photoactive and noncytotoxic in comparison to TMPyP4. From this study, we have identified an expanded porphyrin that selectively binds with the c-MYC G-quadruplex in the presence of duplex DNA and other G-quadruplexes.
Collapse
|
92
|
Yanez GH, Khan SJ, Locovei AM, Pedroso IM, Fletcher TM. DNA structure-dependent recruitment of telomeric proteins to single-stranded/double-stranded DNA junctions. Biochem Biophys Res Commun 2005; 328:49-56. [PMID: 15670749 DOI: 10.1016/j.bbrc.2004.12.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Indexed: 11/19/2022]
Abstract
Telomeres protect chromosome ends by assembling unique protein-DNA complexes. TRF2 is a telomere binding protein that is involved in protecting the G-strand overhang, a 3', guanine-rich, overhang at the telomere terminus. TRF2 may protect the G-strand overhang by recognizing some organizational aspect of the telomeric single-stranded/double-stranded (ss/ds) DNA junction. This work demonstrates that TRF2, purified or in crude extracts, recognizes telomeric ss/ds DNA junctions containing wild type telomeric sequence in the ds region and a G-strand overhang with at least one telomeric repeat. Telomeric complexes containing TRF2 and pot1 assemble less efficiently when the G-strand overhang is in the form of an intramolecular G-quadruplex. However, recruitment of the DNA repair proteins, WRN, Mre11, and Ku86, is not inhibited by a G-quadruplex. This suggests that an intramolecular G-quadruplex has the potential to disrupt certain telomeric assemblies, but efficient recruitment of appropriate DNA repair proteins provides the means to overcome this obstacle.
Collapse
Affiliation(s)
- Giscard H Yanez
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | |
Collapse
|
93
|
Greenberg RA, Rudolph KL. Telomere structural dynamics in genome integrity control and carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:311-341. [PMID: 18727506 DOI: 10.1007/1-4020-3764-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Roger A Greenberg
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massasuchsetts 02115, USA
| | | |
Collapse
|
94
|
Lemarteleur T, Gomez D, Paterski R, Mandine E, Mailliet P, Riou JF. Stabilization of the c-myc gene promoter quadruplex by specific ligands' inhibitors of telomerase. Biochem Biophys Res Commun 2004; 323:802-8. [PMID: 15381071 DOI: 10.1016/j.bbrc.2004.08.150] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 11/29/2022]
Abstract
A parallel G-quadruplex structure was recently identified in the NHE III(1) element of the c-myc gene promoter that functioned as a transcriptional repressor. Different series of telomeric G-quadruplex interacting ligands reported to block telomerase activity were evaluated in a new PCR stop assay on the c-myc quadruplex (Pu22myc). Results indicated that the cationic porphyrin TMPyP4 previously described to stabilize c-myc quadruplex and to cause transcription inhibition efficiently inhibited the assay but with a narrow selectivity when parallel experiments were performed with an oligonucleotide (Pu22mu) containing mutations in the guanine repeat which is unable to form a quadruplex. Other ligands presented potent inhibitory properties with IC(50) in the submicromolar range. 307A, a new 2,6-pyridin-dicarboxamide derivative was found to present the highest selectivity as compared to Pu22mu oligonucleotide (>90-fold). Comparison with telomeric G-quadruplex using TRAP-G4 and PCR stop assays also indicated that ligands 307A, telomestatin, and TMPyP4 are equipotent against both c-myc and telomeric sequences while other ligands displayed some partial selectivity (2- to 6-fold) towards one of these sequences. This work provides evidence that G-quadruplex ligands reported as telomerase inhibitors efficiently stabilized c-myc promoter intramolecular quadruplex and may also potentially be used to inhibit c-myc gene transcription in tumor cells.
Collapse
Affiliation(s)
- Thibault Lemarteleur
- Laboratoire d'Onco-Pharmacologie, JE 2428, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | | | | | | | | | | |
Collapse
|
95
|
Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome - varied targets for chemotherapy. CELL & CHROMOSOME 2004; 3:2. [PMID: 15157277 PMCID: PMC421739 DOI: 10.1186/1475-9268-3-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/24/2004] [Indexed: 12/29/2022]
Abstract
The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells.
Collapse
Affiliation(s)
- Stephanie M Nelson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| |
Collapse
|
96
|
Abstract
DNA conjugates containing adjacent duplex and guanine quadruplex assemblies have been designed to explore charge transport into quadruplex architectures. The quadruplex assemblies have been characterized structurally using circular dichroism and by assaying for chemical protection. Using an intercalating rhodium photooxidant, noncovalently bound or tethered to the duplex end, oxidizing radicals are found to be trapped in the folded quadruplex. Damage is observed almost exclusively at the external tetrads of the quadruplex. Little damage of the center tetrad is observed, due most likely to lowered efficiency of radical trapping within the quadruplex core. This pattern of damage is distinct from that observed for repetitive G sequences within duplex DNA. The data indicate, furthermore, that in the conjugates examined, the guanine quadruplex provides a more effective trap than a 5'-GG-3' guanine doublet within duplex DNA. Within these assemblies, sufficient base-base overlap must exist at the duplex/quadruplex junction to allow for charge migration. This funneling of damage to the quadruplex, as well as the unique pattern of damage within the quadruplex, requires consideration with respect to the analysis of oxidative DNA damage within the cell.
Collapse
Affiliation(s)
- Sarah Delaney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
97
|
Gomez D, Lemarteleur T, Lacroix L, Mailliet P, Mergny JL, Riou JF. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 2004; 32:371-9. [PMID: 14729921 PMCID: PMC373291 DOI: 10.1093/nar/gkh181] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ligand 12459, a potent G-quadruplex-interacting agent that belongs to the triazine series, was previously shown to downregulate telomerase activity in the human A549 lung carcinoma cell line. We show here that the downregulation of telomerase activity is caused by an alteration of the hTERT splicing pattern induced by 12459, i.e. an almost complete disappearance of the active (+alpha,+beta) transcript and an over-expression of the inactive -beta transcript. Spliced intron 6 forming the -beta hTERT transcript contained several tracks of G-rich sequences able to form G-quadruplexes. By using a specific PCR-stop assay, we show that 12459 is able to stabilize the formation of these G-quadruplex structures. A549 cell line clones selected for resistance to 12459 have been analyzed for their hTERT splicing pattern. Resistant clones are able to maintain the active hTERT transcript under 12459 treatment, suggesting the appearance of mechanisms able to bypass the 12459-induced splicing alterations. In contrast to 12459, telomestatin and BRACO19, two other G-quadruplex-interacting agents, have no effect on the hTERT splicing pattern in A549 cells, are cytotoxic against the A549-resistant clones and display a lower efficiency to stabilize hTERT G-quadruplexes. These results lead us to propose that 12459 impairs the splicing machinery of hTERT through stabilization of quadruplexes located in the hTERT intron 6. Differences of selectivity between 12459, BRACO19 and telomestatin for these hTERT quadruplexes may be important to explain their respective activity and inactivity against hTERT splicing.
Collapse
Affiliation(s)
- Dennis Gomez
- Onco-Pharmacologie, IFR53, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
The telomere is a nucleoprotein complex located at the ends of eukaryotic chromosomes. It is essential for maintaining the integrity of the genome. It is not a linear structure and, for much of the cell cycle, telomeric DNA is maintained in a loop structure, which serves to protect the vulnerable ends of chromosomes. Many of the key proteins in the telomere have been identified, although their interplay is still imperfectly understood and structural data are only available on a few. Telomeric DNA itself comprises simple guanine-rich repeats for most of its length, culminating in a short overhang of single-stranded sequence at the extreme 3' ends. This can, at least in vitro, fold into a wide variety of four-stranded quadruplex structures, many of whose arrangements are being revealed by crystallographic and NMR studies.
Collapse
Affiliation(s)
- Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK.
| | | |
Collapse
|