51
|
Lee YC, Chang YC, Wu CC, Huang CC. Hypoxia-Preconditioned Human Umbilical Vein Endothelial Cells Protect Against Neurovascular Damage After Hypoxic Ischemia in Neonatal Brain. Mol Neurobiol 2018; 55:7743-7757. [PMID: 29460267 DOI: 10.1007/s12035-018-0867-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Therapy targeting the neurovascular unit may provide effective neuroprotection against neonatal hypoxia-ischemia (HI). We hypothesized that the peripheral injection of hypoxia-preconditioned human umbilical vein endothelial cells (HUVECs) following HI protects against neurovascular damage and provides long-term neuroprotection in a postpartum (P) day-7 rat pup model. Compared with normoxic HUVECs, hypoxic HUVECs showed enhanced migration and angiogenesis in vitro and had augmented migration effects into the brain when administered intraperitoneally in vivo after HI. Moreover, 24 and 72 h post-HI, the hypoxic HUVECs group but not the normoxic HUVECs or culture-medium groups had significantly higher preservation of microvessels and neurons, and attenuation of blood-brain barrier damage than the normal-saline group. Compared to control or normal-saline groups, only the hypoxic HUVECs group had no impaired foot steps and showed a significant reduction of brain area loss at P42. Next-generation sequencing showed hypoxia-induced upregulation and downregulation of 209 and 215 genes in HUVECs, respectively. Upstream regulator analysis by ingenuity pathway analysis (IPA) identified hypoxia-inducible factor 1-alpha as the key predicted activated transcription regulator. After hypoxia, 12 genes (ADAMTS1, EFNA1, HIF1A, LOX, MEOX2, SELE, VEGFA, VEGFC, CX3CL1, HMMR, SDC, and SERPINE) associated with migration and/or angiogenesis were regulated in HUVECs. In addition, 6 genes (VEGFA, VEGFC, NTN4, TGFA, SERPINE1, and CX3CL1) involved in the survival of endothelial and neuronal cells were also markedly altered in hypoxic HUVECs. Thus, cell therapy by using hypoxic HUVECs that enhance migration and neurovascular protection may provide an effective therapeutic strategy for treating neonatal asphyxia.
Collapse
Affiliation(s)
- Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pediatrics Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Pediatrics, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, National Cheng Kung University Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
52
|
Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 2018; 16:31. [PMID: 29448956 PMCID: PMC5815241 DOI: 10.1186/s12967-018-1403-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation remains to be a treatment of choice for patients suffering from irreversible organ failure. Immunosuppressive (IS) drugs employed to maintain the allograft have shown excellent short-term graft survival, but, their long-term use could contribute to immunological and non-immunological risk factors, resulting in graft dysfunctionalities. Upcoming IS regimes have highlighted the use of cell-based therapies, which can eliminate the risk of drug-borne toxicities while maintaining efficacy of the treatment. Mesenchymal stem cells (MSCs) have been considered as an invaluable cell type, owing to their unique immunomodulatory properties, which makes them desirable for application in transplant settings, where hyper-activation of the immune system is evident. The immunoregulatory potential of MSCs holds true for preclinical studies while achieving it in clinical studies continues to be a challenge. Understanding the biological factors responsible for subdued responses of MSCs in vivo would allow uninhibited use of this therapy for countless conditions. In this review, we summarize the variations in the preclinical and clinical studies utilizing MSCs, discuss the factors which might be responsible for variability in outcome and propose the advancements likely to occur in future for using this as a "boutique/personalised therapy" for patient care.
Collapse
Affiliation(s)
- Urvashi Kaundal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Upma Bagai
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|
53
|
Namazi H, Namazi I, Ghiasi P, Ansari H, Rajabi S, Hajizadeh-Saffar E, Aghdami N, Mohit E. Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:377-385. [PMID: 29755568 PMCID: PMC5937107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic human CDCs-derived exosomes on induced apoptosis in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). In this study, CDCs were cultured under normoxic (18% O2) and hypoxic (1% O2) conditions and CDC-exosomes were isolated from conditioned media by differential ultracentrifugation. Cobalt chloride as hypoxia-mimetic agents at a high concentration was used to induce apoptosis in hESC-CMs. The caspase-3/7 activity was determined in apoptosis-induced hESC-CMs. The results indicated that the caspase-positive hESC-CMs were significantly decreased from 30.63 ± 1.44% (normalized against untreated cardiomyocytes) to 1.65 ± 0.1 and 1.1 ± 1.09 in the presence of normoxic exosomes (N-exo) at concentration of 25 and 50 μg/mL, respectively. Furthermore, hypoxic exosomes (H-exo) at concentration of 25 and 50 μg/mL led to 8.75 and 12.86 % reduction in caspase-positive cells, respectively. The anti-apoptotic activity of N-exo at the concentrations of 25 and 50 μg/mL was significantly higher than H-exo. These results could provide insights into optimal preparation of CDCs which would greatly influence the anti-apoptotic effect of CDC-exosomes. Totally, CDC-secreted exosomes have the potential to increase the survival of cardiomyocytes by inhibiting apoptosis. Therefore, CDC-exosomes can be developed as therapeutic strategy in ischemic cardiac disease.
Collapse
Affiliation(s)
- Helia Namazi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Students’ Research committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Iman Namazi
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | - Parisa Ghiasi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hassan Ansari
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | - Sarah Rajabi
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran.
| | | | - Nasser Aghdami
- School of medicine, Mashhad university of medical sciences, Mashhad, Iran. ,Corresponding authors: E-mail: ,
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding authors: E-mail: ,
| |
Collapse
|
54
|
Abstract
Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation.
Collapse
|
55
|
Zhao C, Li Z, Ji L, Ma J, Ge RL, Cui S. PI3K-Akt Signal Transduction Molecules Maybe Involved in Downregulation of Erythroblasts Apoptosis and Perifosine Increased Its Apoptosis in Chronic Mountain Sickness. Med Sci Monit 2017; 23:5637-5649. [PMID: 29176544 PMCID: PMC5713146 DOI: 10.12659/msm.905739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Chronic mountain sickness (CMS) has a higher incidence in the plateau region. The one of its principal characters is excessive erythrocytosis. The PI3K-Akt pathway plays an important role in the process of erythropoiesis, and could downregulate apoptosis by regulating apoptosis-related molecules. In this paper, we explored the change in apoptosis of erythroblasts and the effect of the PI3K-Akt signal pathway on erythroblasts apoptosis in CMS. Material/Methods A total of 22 CMS and 20 non-CMS participants were involved in this study. Bone marrow mononuclear cells were cultured and treated with celecoxib and perifosine in vitro for 72 hours. The apoptotic rate, the mRNA expressions of Akt, Bcl-xl, and caspase-9, and the protein expressions of Akt, p-Akt, Bcl-xl, and caspase-9 were determined by flow cytometry, quantitative RT-PCR, and western-blot technique. Results The apoptotic rate of cultured erythroblasts was lower in the CMS group than in the non-CMS group. It was increased after perifosine intervention. The mRNA and protein expressions of Akt and Bcl-xl were higher and caspase-9 was lower in the CMS group than the non-CMS group. Perifosine induced decreased Bcl-xl mRNA and proteins and p-Akt proteins, and increased caspase-9 mRNA and proteins in vitro. In the CMS group, the hemoglobin concentration was correlated with apoptotic rate negatively and with Bcl-xl mRNA positively in erythroblasts; the erythroblasts apoptotic rate was negatively associated with the Akt mRNA and Bcl-xl mRNA. Conclusion The erythroblasts apoptosis was downregulated and the PI3K-Akt signal pathway appeared to be involved in the mechanism of decreased erythroblasts apoptosis in CMS.
Collapse
Affiliation(s)
- Chengyu Zhao
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, Qinghai, China (mainland).,Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| | - Zhanquan Li
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, Qinghai, China (mainland).,Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| | - Linhua Ji
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, Qinghai, China (mainland).,Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| | - Jie Ma
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, Qinghai, China (mainland).,Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| | - Sen Cui
- Department of Hematology, Affiliated Hospital of Qinghai University, Xining, Qinghai, China (mainland).,Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China (mainland)
| |
Collapse
|
56
|
Textor JA, Clark KC, Walker NJ, Aristizobal FA, Kol A, LeJeune SS, Bledsoe A, Davidyan A, Gray SN, Bohannon-Worsley LK, Woolard KD, Borjesson DL. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses. Stem Cells Transl Med 2017; 7:98-108. [PMID: 29063737 PMCID: PMC5746157 DOI: 10.1002/sctm.17-0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108.
Collapse
Affiliation(s)
- Jamie A Textor
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kaitlin C Clark
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Fabio A Aristizobal
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Amir Kol
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah S LeJeune
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea Bledsoe
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Arik Davidyan
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sarah N Gray
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Laurie K Bohannon-Worsley
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
57
|
Moreira A, Kahlenberg S, Hornsby P. Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol 2017; 59:R109-R120. [PMID: 28739632 PMCID: PMC5570611 DOI: 10.1530/jme-17-0117] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are self-renewing multipotent cells that have the capacity to secrete multiple biologic factors that can restore and repair injured tissues. Preclinical and clinical evidence have substantiated the therapeutic benefit of MSCs in various medical conditions. Currently, MSCs are the most commonly used cell-based therapy in clinical trials because of their regenerative effects, ease of isolation and low immunogenicity. Experimental and clinical studies have provided promising results using MSCs to treat diabetes. This review will summarize the role of MSCs on tissue repair, provide emerging strategies to improve MSC function and describe how these processes translate to clinical treatments for diabetes.
Collapse
Affiliation(s)
- Alvaro Moreira
- Department of PediatricsUniversity of Texas Health Science Center-San Antonio, San Antonio, Texas, USA
| | - Samuel Kahlenberg
- Department of PediatricsUniversity of Texas Health Science Center-San Antonio, San Antonio, Texas, USA
| | - Peter Hornsby
- Department of PhysiologyTexas Research Park Campus, Barshop Institute for Longevity and Aging Studies, San Antonio, Texas, USA
| |
Collapse
|
58
|
Han KH, Kim AK, Kim MH, Kim DH, Go HN, Kang D, Chang JW, Choi SW, Kang KS, Kim DI. Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia. Tissue Cell 2017; 49:680-690. [PMID: 28958480 DOI: 10.1016/j.tice.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate protein profiles of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) cultured in normoxic (21% O2) and hypoxic (1% O2) conditions, and evaluate oxygenation effects on angiogenesis in an ischemic hindlimb mouse model using a modified ischemic scoring system. Hypoxic conditions did not change the expression of phenotypic markers and increased adipogenesis and chondrogenesis. Epidermal growth factor (EGF), transforming growth factor alpha (TGF-α), TGF-β RII, and vascular endothelial growth factor (VEGF) were upregulated in the conditioned medium of hypoxic hUCB-MSCs, which are commonly related to angiogenesis and proliferation of biological processes by Gene Ontology. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, significant enrichment of the phosphorylation of abelson murine leukemia viral oncogene homolog 1 (ABL1) (Phospho-Tyr204) and B-cell lymphoma-extra large (BCL-XL) (Phospho-Thr47) as anti-apoptotic pathways was observed in hypoxic hUCB-MSCs. Furthermore, hypoxic conditions induced proliferation and migration, and reduced apoptosis of hUCB-MSCs in vitro. Based on the results of protein antibody array, we evaluated the angiogenic effects of injecting normoxic or hypoxic hUCB-MSCs (1×106) into the ischemic hindlimb muscles of mice. Ischemic scores and capillary generation were significantly greater in the hypoxic hUCB-MSC injection group than in the normoxic hUCB-MSC group. Our findings demonstrate that culturing hUCB-MSCs in hypoxic conditions not only significantly enriches phosphorylation in the anti-apoptosis pathway and enhances the secretion of several angiogenic proteins from cells, but also alleviates ischemic injury of hindlimb of mice.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Min-Hee Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Do-Hyung Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Ha-Nl Go
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Donglim Kang
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soon Won Choi
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-747, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-747, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
59
|
Rexius-Hall ML, Rehman J, Eddington DT. A microfluidic oxygen gradient demonstrates differential activation of the hypoxia-regulated transcription factors HIF-1α and HIF-2α. Integr Biol (Camb) 2017; 9:742-750. [PMID: 28840922 PMCID: PMC5603417 DOI: 10.1039/c7ib00099e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 μm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled. We studied the hypoxic activation of the transcription factors HIF-1α and HIF-2α in human endothelial cells within a spatial linear gradient of oxygen. Quantification of the nuclear to cytosolic ratio of HIF immunofluorescent staining demonstrated that the threshold for HIF-1α activation was below 2.5% O2 while HIF-2α was activated throughout the entire linear gradient. We show for the first time HIF-2α is subject to hyproxya, hypoxia by proxy, wherein hypoxic cells activate HIF in close-proximity normoxic cells. These results underscore the differences between HIF-1α and HIF-2α regulation and suggest that a microfluidic oxygen gradient is a novel tool for identifying distinct hypoxic signaling activation and interactions between differentially oxygenated cells.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - David T. Eddington
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
60
|
Dai Y, Li W, Zhong M, Chen J, Cheng Q, Liu Y, Li T. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 2017; 332:99-109. [PMID: 28576310 DOI: 10.1016/j.bbr.2017.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI)-induced perinatal encephalopathy frequently causes chronic neurological morbidities and acute mortality. Bone mesenchymal stem cell (BMSC) transplantation could potentially promote functional and anatomical recovery of ischemic tissue. In vitro hypoxic preconditioning is an effective strategy to improve the survival of BMSCs in ischemic tissue. In this study, cobalt chloride (CoCl2) preconditioned medium from BMSC cultures was injected into the left lateral ventricle of HI rats using a micro-osmotic pump at a flow rate 1.0μl/h for 7 days. The protein levels of HIF-1α and its target genes, vascular endothelial growth factor and erythropoietin, markedly increased after CoCl2 preconditioning in BMSCs. In 7-week-old rats that received CoCl2 preconditioned BMSC medium, results of the Morris water maze test indicated ameliorated spatial working memory function following hypoxia-ischemia damage. Neuronal loss, cellular disorganization, and shrinkage in brain tissue were also ameliorated. Extracellular field excitatory postsynaptic potentials (fEPSPs) in the brain slices of 8-week-old rats were recorded; administration of CoCl2 preconditioned BMSC culture medium induced a progressive increment of baseline and amplitude of the fEPSPs. Immunohistochemical quantification showed that GluR2 protein expression increased. In conclusion, CoCl2 activates HIF-1α signals in BMSCs. CoCl2 preconditioned BMSC culture medium likely effects neuroprotection by inducing long-term potentiation (LTP), which could be associated with GluR2 expression. The paracrine effects of hypoxia preconditioning on BMSCs could have applications in novel cell-based therapeutic strategies for hypoxic and ischemic brain injury.
Collapse
MESH Headings
- Animals
- Brain/pathology
- Brain/physiopathology
- Cells, Cultured
- Cobalt/pharmacology
- Culture Media, Conditioned
- Disease Models, Animal
- Excitatory Postsynaptic Potentials
- Female
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/psychology
- Hypoxia-Ischemia, Brain/therapy
- Male
- Maze Learning/physiology
- Memory, Short-Term/physiology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/physiology
- Neuroprotection/physiology
- Protective Agents/pharmacology
- Rats, Sprague-Dawley
- Receptors, AMPA/metabolism
- Spatial Memory/physiology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wendi Li
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Youxue Liu
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|
61
|
Chen J, Yang Y, Shen L, Ding W, Chen X, Wu E, Cai K, Wang G. Hypoxic Preconditioning Augments the Therapeutic Efficacy of Bone Marrow Stromal Cells in a Rat Ischemic Stroke Model. Cell Mol Neurobiol 2017; 37:1115-1129. [PMID: 27858286 PMCID: PMC11482114 DOI: 10.1007/s10571-016-0445-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Transplantation of bone marrow stromal cells (BMSCs) is a promising therapy for ischemic stroke, but the poor oxygen environment in brain lesions limits the efficacy of cell-based therapies. Here, we tested whether hypoxic preconditioning (HP) could augment the efficacy of BMSC transplantation in a rat ischemic stroke model and investigated the underlying mechanism of the effect of HP. In vitro, BMSCs were divided into five passage (P0, P1, P2, P3, and P4) groups, and HP was applied to the groups by incubating the cells with 1% oxygen for 0, 4, 8, 12, and 24 h, respectively. We demonstrated that the expression of hypoxia-inducible factor-1α (HIF-1α) was increased in the HP-treated BMSCs, while their viability was unchanged. We also found that HP decreased the apoptosis of BMSCs during subsequent simulated ischemia-reperfusion (I/R) injury, especially in the 8-h HP group. In vivo, a rat transient focal cerebral ischemia model was established. These rats were administered normal cultured BMSCs (N-BMSCs), HP-treated BMSCs (H-BMSCs), or DMEM cell culture medium (control) at 24 h after the ischemic insult. Compared with the DMEM control group, the two BMSC-transplanted groups exhibited significantly improved functional recovery and reduced infarct volume, especially the H-BMSC group. Moreover, HP decreased neuronal apoptosis and enhanced the expression of BDNF and VEGF in the ischemic brain. Survival and differentiation of transplanted BMSCs were also increased by HP, and the quantity of engrafted BMSCs was significantly correlated with neurological function improvement. These results suggest that HP may enhance the therapeutic efficacy of BMSCs in an ischemic stroke model. The underlying mechanism likely involves the inhibition of caspase-3 activation and an increasing expression of HIF-1α, which promotes angiogenesis and neurogenesis and thereby reduces neuronal death and improves neurological function.
Collapse
Affiliation(s)
- Jin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China
| | - Yuanyuan Yang
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China.
| | - Wensen Ding
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China
| | - Xiang Chen
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China
| | - Erbing Wu
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China
| | - Kefu Cai
- Department of Neurology, Affiliated Hospital of Nantong University, 20 XiSi Road, Nantong, 226001, China
| | - Guohua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China.
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
62
|
Bixel K, Saini U, Kumar Bid H, Fowler J, Riley M, Wanner R, Deepa Priya Dorayappan K, Rajendran S, Konishi I, Matsumura N, Cohn DE, Selvendiran K. Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma. Int J Cancer 2017. [PMID: 28646535 DOI: 10.1002/ijc.30847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advanced ovarian clear cell carcinoma (OCCC) carries a very poor prognosis in large part secondary to the extremely high rate of resistance to standard platinum and taxane chemotherapy. Signal transducer and activator of transcription 3(STAT3) expression and activation has been shown to regulate tumor progression in various human cancers, though has not been well studied in OCCC. Preliminary work in our lab has demonstrated constitutive activation of STAT3 (pSTAT3Tyr705 or pSTAT3727) in OCCC cell lines as well as human OCCC tumor tissue samples. Significantly, pSTAT3 is expressed in the absence of other forms of activated STAT (pSTAT1, 2, 6). Therefore, this work was planned to investigate the role of STAT3 and examine the efficacy of a novel anti-cancer compound -HO-3867, which is an inhibitor of STAT3, using known OCCC cell lines. Results demonstrate that treatment with HO-3867 decreased expression of pSTAT3 Tyr705 as well pSTAT3 Ser727, while total STAT3 remained constant. STAT3 overexpression increased the migration capability in OVTOKO cells in vitro and led to an increased tumor size when injected in vivo. The inhibitory effect of HO-3867 on cell proliferation and cell survival was accompanied by increased apoptosis, within 24 h post treatment. Treatment with HO-3867 resulted in a decrease in Bcl-2 and increase of cleavage of caspase 3, caspase 7, and PARP, confirming induction of apoptosis after treatment with HO-3867. In addition, HO-3867 significantly inhibited formation of human umbilical vein endothelial cells capillary-like structures and invasion at both 5 and 10 µM concentrations. STAT3 expression plays an important role in the spread of OCCC in vitro as well as in vivo. Thus, we can exploit the STAT3 pathway for targeted drug therapy. Inhibition of pSTAT3 using HO-3867in OCCC cell lines appears to be a promising therapy. This is of utmost importance given the poor response of OCCC to standard chemotherapy regimens.
Collapse
Affiliation(s)
- Kristin Bixel
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Uksha Saini
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Hemant Kumar Bid
- Cancer Therapeutics, Life Sciences Institute University of Michigan campus, Ann Arbor, MI
| | - John Fowler
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Maria Riley
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ross Wanner
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sneha Rajendran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ikuo Konishi
- Division of GYN/ONC, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Division of GYN/ONC, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David E Cohn
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
63
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
64
|
Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, Léniz P, Ezquer F. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 2017; 12:e0178011. [PMID: 28542352 PMCID: PMC5438173 DOI: 10.1371/journal.pone.0178011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment.
Collapse
Affiliation(s)
- Carolina Oses
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Belén Olivares
- Centro de Química Médica, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Cristian Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Bosch
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Macarena Donoso
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana. Av. Vitacura, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
- * E-mail:
| |
Collapse
|
65
|
Enhancement of Mitochondrial Transfer by Antioxidants in Human Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8510805. [PMID: 28596814 PMCID: PMC5449759 DOI: 10.1155/2017/8510805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Excessive reactive oxygen species is the major component of a harsh microenvironment after ischemia/reperfusion injury in human tissues. Combined treatment of N-acetyl-L-cysteine (NAC) and L-ascorbic acid 2-phosphate (AAP) promoted the growth of human mesenchymal stem cells (hMSCs) and suppressed oxidative stress-induced cell death by enhancing mitochondrial integrity and function in vitro. In this study, we aimed to determine whether NAC and AAP (termed MCA) could enhance the therapeutic potential of hMSCs. We established a coculture system consisting of MCA-treated and H2O2-treated hMSCs and investigated the role of tunneling nanotubes (TNTs) in the exchange of mitochondria between the 2 cell populations. The consequences of mitochondria exchange were assessed by fluorescence confocal microscopy and flow cytometry. The results showed that MCA could increase the mitochondrial mass, respiratory capacity, and numbers of TNTs in hMSCs. The “energized” mitochondria were transferred to the injured hMSCs via TNTs, the oxidative stress was decreased, and the mitochondrial membrane potential of the H2O2-treated hMSCs was stabilized. The transfer of mitochondria decreased the expression of S616-phosphorylated dynamin-related protein 1, a protein that dictates the fragmentation/fission of mitochondria. Concurrently, MCA also enhanced mitophagy in the coculture system, implicating that damaged mitochondria were eliminated in order to maintain cell physiology.
Collapse
|
66
|
|
67
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|
68
|
Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 2016; 50. [PMID: 27878916 DOI: 10.1111/cpr.12316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.
Collapse
Affiliation(s)
- Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,Department of Pathophysiology, First Pavlov State Medical University of Saint Petersburg, St Petersburg, Russia
| | - Daria V Udalova
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael G Pliss
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,ITMO University, St Petersburg, Russia
| |
Collapse
|
69
|
Hsuan YCY, Lin CH, Chang CP, Lin MT. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 2016; 6:e00526. [PMID: 27781140 PMCID: PMC5064338 DOI: 10.1002/brb3.526] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation has been reported to improve neurological function following neural injury. Many physiological and molecular mechanisms involving MSC therapy-related neuroprotection have been identified. METHODS A review is presented of articles that pertain to MSC therapy and diverse brain injuries including stroke, neural trauma, and heat stroke, which were identified using an electronic search (e.g., PubMed), emphasize mechanisms of MSC therapy-related neuroprotection. We aim to discuss neuroprotective mechanisms that underlie the beneficial effects of MSCs in treating stroke, neural trauma, and heatstroke. RESULTS MSC therapy is promising as a means of augmenting brain repair. Cell incorporation into the injured tissue is not a prerequisite for the beneficial effects exerted by MSCs. Paracrine signaling is believed to be the most important mediator of MSC therapy in brain injury. The multiple mechanisms of action of MSCs include enhanced angiogenesis and neurogenesis, immunomodulation, and anti-inflammatory effects. Microglia are the first source of the inflammatory cascade during brain injury. Cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, are significantly produced by microglia in the brain after experimental brain injury. The proinflammatory M1 phenotype of microglia is associated with tissue destruction, whereas the anti-inflammatory M2 phenotype of microglia facilitates repair and regeneration. MSC therapy may improve outcomes of ischemic stroke, neural trauma, and heatstroke by inhibiting the activity of M1 phenotype of microglia but augmenting the activity of M2 phenotype of microglia. CONCLUSION This review offers a testable platform for targeting microglial-mediated cytokines in clinical trials based upon the rational design of MSC therapy in the future. MSCs that are derived from the placenta provide a great choice for stem cell therapy. Although targeting the microglial activation is an important approach to reduce the burden of the injury, it is not the only one. This review focuses on this specific aspect.
Collapse
Affiliation(s)
| | | | - Ching-Ping Chang
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| |
Collapse
|
70
|
Khan I, Ali A, Akhter MA, Naeem N, Chotani MA, Mustafa T, Salim A. Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats. Life Sci 2016; 162:60-69. [PMID: 27543341 DOI: 10.1016/j.lfs.2016.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
AIMS The aim of this study is to determine if preconditioning of bone marrow derived mesenchymal stem cells (MSCs) with 2,4-dinitrophenol (DNP) improves survival of transplanted stem cells in a rat model of myocardial infarction (MI), and to asses if this strategy has measurable impact on cardiac function. MAIN METHODS MSCs were preconditioned with DNP. In vitro cell adhesion assay and qRT-PCR were performed to analyze the expression of genes involved in cardiomyogenesis, cell adhesion and angiogenesis. MI was produced by occlusion of left anterior descending coronary artery. One million cells were transplanted by intramyocardial injection into the infarcted myocardium. Echocardiography was performed after two and four weeks of cellular transplantation. Hearts were harvested after four weeks and processed for histological analysis. KEY FINDINGS DNP treated MSCs adhered to the surface more (p<0.001) as compared to the normal MSCs. Gene expression levels were significantly upregulated in case of DNP treatment. The number of viable MSCs was more (p<0.001) in animals that received DNP treated MSCs, leading to significant improvement in cardiac function. Histological analysis revealed significant reduction in scar formation (p<0.001), maintenance of left ventricular wall thickness (p<0.001), and increased angiogenesis (p<0.01). SIGNIFICANCE The study evidenced for the first time that MSCs preconditioned with DNP improved cardiac function after transplantation. This can be attributed to improved survival, homing, adhesion, and cardiomyogenic and angiogenic differentiation of DNP treated MSCs in vivo.
Collapse
Affiliation(s)
- Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Anwar Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan; Department of Physiology, University of Karachi, 75270 Karachi, Pakistan
| | - Muhammad Aleem Akhter
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Maqsood Ahmed Chotani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan; Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Tuba Mustafa
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, 75270 Karachi, Pakistan.
| |
Collapse
|
71
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|
72
|
Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway. Sci Rep 2016; 6:30922. [PMID: 27488808 PMCID: PMC4973228 DOI: 10.1038/srep30922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/11/2016] [Indexed: 01/22/2023] Open
Abstract
Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus.
Collapse
|
73
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
74
|
Zhu J, Song J, Yu L, Zheng H, Zhou B, Weng S, Fu G. Safety and efficacy of autologous thymosin β4 pre-treated endothelial progenitor cell transplantation in patients with acute ST segment elevation myocardial infarction: A pilot study. Cytotherapy 2016; 18:1037-1042. [PMID: 27288307 DOI: 10.1016/j.jcyt.2016.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/07/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Experimental studies and clinical trials suggest that endothelial progenitor cell (EPC) transplantation can repair "broken" heart. However, transplantation of autologous EPCs has numerous limitations, including the limited supply of expanded EPCs, the impaired function and activity of the transplanted cells and so on. Therefore, we investigated the feasibility, safety and initial clinical outcome of autologous thymosin β4 (Tβ4) pre-treated EPC transplantation in patients with acute ST segment elevation myocardial infarction (STEMI). METHODS Ten patients with STEMI were included; they were randomized to 2 groups: EPC transplantation group (control group; n = 5) and Tβ4-pre-treated EPC transplantation group (experimental group; n = 5). EPCs were pre-treated with Tβ4 24 hours before transplantation in experimental group. Cardiac function was evaluated using echocardiography and emission computed tomography, as well as the 6-min walking test before and 6 months after the intervention. RESULTS After 6 months of follow-up, the average 6-min walking distance was increased by 38.2 m (from 263 ± 42 m to 302 ± 34 m) in the control group and 75.7 m (from 264 ± 42 m to 340 ± 44 m) in the experimental group; the average difference of the 6-min walking distance was 37.5 m (95% confidence interval [CI], 28.7-56.3 m; P < 0.01). In addition, the cardiac function in the experimental group was more significantly improved than that of the control group. There were no severe complications related to the procedure in either group during the follow-up. DISCUSSION Our pilot study suggested that Tβ4-optimized EPC transplantation appeared to be feasible and safe, and might have beneficial effects on exercise capacity and left ventricular function in patients with STEMI.
Collapse
Affiliation(s)
- Junhui Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiale Song
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Zheng
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shaoxiang Weng
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
75
|
Sanz-Nogués C, O'Brien T. In vitro models for assessing therapeutic angiogenesis. Drug Discov Today 2016; 21:1495-1503. [PMID: 27262402 DOI: 10.1016/j.drudis.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
Arterial obstruction leading to ischemia causes a reduction of oxygen and nutrient supply to distal tissues. The physiological response to tissue ischemia triggers a cascade of events that results in the development of accessory vasculature to increase local tissue perfusion and to salvage tissue. However, this adaptive mechanism of repair is suboptimal in some patients. Therapeutic angiogenesis aims to stimulate new blood vessel formation via the local administration of proangiogenic agents or cell therapy products (CTPs). In this review, we provide a summary of the current understanding of in vitro models for assessing the angiogenic potential of a product.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
76
|
Lee JH, Han YS, Lee SH. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells. Biomol Ther (Seoul) 2016; 24:260-7. [PMID: 26869524 PMCID: PMC4859789 DOI: 10.4062/biomolther.2015.146] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.
Collapse
Affiliation(s)
- Jun Hee Lee
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.,Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.,Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| |
Collapse
|
77
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
78
|
Archibald PR, Chandra A, Thomas D, Morley G, Lekishvili T, Devonshire A, Williams DJ. Comparability of scalable, automated hMSC culture using manual and automated process steps. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
79
|
Binder BYK, Sagun JE, Leach JK. Reduced serum and hypoxic culture conditions enhance the osteogenic potential of human mesenchymal stem cells. Stem Cell Rev Rep 2016; 11:387-93. [PMID: 25173881 DOI: 10.1007/s12015-014-9555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Current protocols for inducing osteogenic differentiation in mesenchymal stem/stromal cells (MSCs) in culture for tissue engineering applications depend on the use of biochemical supplements. However, standard in vitro culture conditions expose cells to ambient oxygen concentrations and high levels of serum (21% O2, 10% FBS) that do not accurately recapitulate the physiological milieu. While we and others have examined MSC behavior under hypoxia, the synergistic effect of low serum levels, such as those present in ischemic injury sites, on osteogenic differentiation has not been clearly examined. We hypothesized that a concomitant reduction of serum and O2 would enhance in vitro osteogenic differentiation of MSCs by more accurately mimicking the fracture microenvironment. We show that serum deprivation, in conjunction with hypoxia, potentiates osteogenic differentiation in MSCs. These data demonstrate the role of serum levels in regulating osteogenesis and its importance in optimizing MSC differentiation strategies. HIGHLIGHTS Serum levels, in addition to hypoxia, have a significant effect on MSC osteogenic differentiation. Both naïve and osteogenically induced MSCs exhibit higher osteogenic markers in reduced serum. MSCs deposit the most calcium under 5% O2 in osteogenic media supplemented with 5% FBS. Standard culture conditions (21% O2, 10% FBS) may not be optimal for MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Bernard Y K Binder
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | | | | |
Collapse
|
80
|
Brewster L, Robinson S, Wang R, Griffiths S, Li H, Peister A, Copland I, McDevitt T. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J Vasc Surg 2016; 65:826-838.e1. [PMID: 26921003 DOI: 10.1016/j.jvs.2015.02.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/18/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Critical limb ischemia (CLI) is a life- and limb-threatening condition affecting 1% to 10% of the population with peripheral arterial disease. Traditional revascularization options are not possible for up to 50% of CLI patients, in which case, the use of cellular therapies, such as bone marrow-derived mesenchymal stem cells (MSCs), hold great promise as an alternative revascularization therapy. However, no randomized, controlled phase 3 trials to date have demonstrated an improvement in limb salvage with cellular therapies. This may be due to poor cell quality (ie, inability to generate a sufficient number of angiogenic MSCs) or to the inadequate retention and viability of MSCs after delivery, or both. Because concerns remain about the expansion and angiogenic potential of autologous MSCs in the CLI population, the objective of this study was to examine the effect of our novel culture media supplement, pooled human platelet lysate (PL), in lieu of the standard fetal bovine serum (FBS), to improve the expansion potential of MSCs from CLI patients. We also characterized the in vitro angiogenic activity of MSCs from the tibia of amputated CLI limbs compared with MSCs from healthy donors. METHODS MSCs were obtained from the tibia of four CLI patients (ISC) and four ISC patients with diabetes mellitus (ISC+DM) undergoing major amputation. Healthy MSCs were aspirated from the iliac crest of four young and healthy donors. MSCs were isolated and expanded in culture with PL or FBS. MSCs from passage 3 to 6 were used for phenotypic marker expression and for adipogenic and osteogenic differentiation and were tested for their in vitro angiogenic activity on human microdermal endothelial cells. In parallel MSCs were cultured to passage 11 for population-doubling calculations. RESULTS MSCs from ISC and ISC+DM patients and from healthy patients exhibited appropriate expression of cell surface markers and differentiation capacity. Population doublings were significantly greater for PL-stimulated compared with FBS-stimulated MSCs in all groups. Biologically active amounts of angiogens were identified in the secretome of all MSCs without consistent trends among groups. PL expansion did not adversely affect the angiogenic activity of MSCs compared with FBS. The ISC and ISC+DM MSCs demonstrated angiogenic effects on endothelial cells similar to those of healthy and ISC MSCs. CONCLUSIONS PL promotes the rapid expansion of MSCs from CLI and healthy persons. Importantly, MSCs expanded from CLI patients demonstrate the desired angiogenic activity compared with their healthy counterparts. We conclude that autologous MSCs from CLI patients can be sufficiently expanded with PL and be expected to deliver requisite angiogenic effects in vivo. We expect the improved expansion of ISC and ISC+DM with PL to be helpful in improving the successful delivery of autologous MSCs to patients with CLI.
Collapse
Affiliation(s)
- Luke Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga; Surgical and Research Services, Atlanta Veterans Affairs Medical Center, Atlanta, Ga; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga.
| | - Scott Robinson
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Ruoya Wang
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Sarah Griffiths
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga
| | - Haiyan Li
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | | | - Ian Copland
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Ga
| | - Todd McDevitt
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Ga; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology, Atlanta, Ga
| |
Collapse
|
81
|
Kay AG, Dale TP, Akram KM, Mohan P, Hampson K, Maffulli N, Spiteri MA, El Haj AJ, Forsyth NR. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation. Regen Med 2016; 10:109-25. [PMID: 25835477 DOI: 10.2217/rme.14.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. MATERIALS & METHODS We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. RESULTS In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. CONCLUSION We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.
Collapse
Affiliation(s)
- Alasdair Gawain Kay
- Institute for Science & Technology in Medicine, Guy Hilton Research Centre, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Bigot N, Mouche A, Preti M, Loisel S, Renoud ML, Le Guével R, Sensebé L, Tarte K, Pedeux R. Hypoxia Differentially Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs in Long-Term Culture. Stem Cells 2015; 33:3608-20. [PMID: 26422646 DOI: 10.1002/stem.2195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022]
Abstract
Long-term cultures under hypoxic conditions have been demonstrated to maintain the phenotype of mesenchymal stromal/stem cells (MSCs) and to prevent the emergence of senescence. According to several studies, hypoxia has frequently been reported to drive genomic instability in cancer cells and in MSCs by hindering the DNA damage response and DNA repair. Thus, we evaluated the occurrence of DNA damage and repair events during the ex vivo expansion of clinical-grade adipose-derived stromal cells (ADSCs) and bone marrow (BM)-derived MSCs cultured with platelet lysate under 21% (normoxia) or 1% (hypoxia) O2 conditions. Hypoxia did not impair cell survival after DNA damage, regardless of MSC origin. However, ADSCs, unlike BM-MSCs, displayed altered γH2AX signaling and increased ubiquitylated γH2AX levels under hypoxic conditions, indicating an impaired resolution of DNA damage-induced foci. Moreover, hypoxia specifically promoted BM-MSC DNA integrity, with increased Ku80, TP53BP1, BRCA1, and RAD51 expression levels and more efficient nonhomologous end joining and homologous recombination repair. We further observed that hypoxia favored mtDNA stability and maintenance of differentiation potential after genotoxic stress. We conclude that long-term cultures under 1% O2 were more suitable for BM-MSCs as suggested by improved genomic stability compared with ADSCs.
Collapse
Affiliation(s)
- Nicolas Bigot
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Mouche
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Milena Preti
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Séverine Loisel
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Rémy Le Guével
- Université de Rennes 1, Rennes, France.,ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Karin Tarte
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France.,Service ITeCH, CHU Pontchaillou, Rennes, France
| | - Rémy Pedeux
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
83
|
Andreeva ER, Lobanova MV, Udartseva OO, Buravkova LB. Response of Adipose Tissue-Derived Stromal Cells in Tissue-Related O2 Microenvironment to Short-Term Hypoxic Stress. Cells Tissues Organs 2015; 200:307-15. [PMID: 26407140 DOI: 10.1159/000438921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
A microenvironment low in O2 ('physiological' hypoxia) governs the functions of perivascular multipotent mesenchymal stromal cells, defining their involvement in tissue physiological homeostasis and regenerative remodelling. Acute hypoxic stress is considered as one of the important factors inducing tissue damage. Here, we evaluate the influence of short-term hypoxia (1% O2 for 24 h) on perivascular adipose tissue-derived cells (ASCs) permanently expanded in tissue-related O2 (5%) microenvironment. After hypoxic exposure, ASCs retained high viability, stromal cell morphology and mesenchymal phenotype (CD73+, CD90+, CD105+ and CD45-). Mild oxidative damage was unveiled as elevation of reactive oxygen species and thiobarbituric acid-active products, while no reduction in the activity of the antioxidant enzymes catalase and glutathione peroxidase and a 20% statistically significant increase in superoxide dismutase activity was detected. Expression of hypoxia-inducible factor (HIF)-1α and HIF-3α isoforms was differently regulated. HIF-1α displayed transient up-regulation, with maximum levels 30 min after acute hypoxic exposure, while HIF-3α was significantly up-regulated after 24 h. Up-regulation of ERK7, MEK1 and c-fos, and down-regulation of MKK6, p53, CCNA2, CCNB1 and CCNB2 were observed after 24 h of oxygen deprivation. Acute hypoxic exposure did not affect the gene expression of other mitogen-activated protein kinases (MAPKs) and MAPK kinases, MAPK/ERK kinase-interacting proteins, MAPK-activated transcription factors and scaffolding proteins. Significant stimulation of vascular endothelial growth factor α and interleukin-6 production was detected in ASC-conditioned medium. Thus, tissue O2-adapted ASCs are resistant to hypoxic stress, which can ensure their effective involvement in the regeneration of tissue damage under significant oxygen deprivation.
Collapse
Affiliation(s)
- Elena R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
84
|
Bader AM, Klose K, Bieback K, Korinth D, Schneider M, Seifert M, Choi YH, Kurtz A, Falk V, Stamm C. Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS One 2015; 10:e0138477. [PMID: 26380983 PMCID: PMC4575058 DOI: 10.1371/journal.pone.0138477] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hypoxic preconditioning was shown to improve the therapeutic efficacy of bone marrow-derived multipotent mesenchymal stromal cells (MSCs) upon transplantation in ischemic tissue. Given the interest in clinical applications of umbilical cord blood-derived MSCs, we developed a specific hypoxic preconditioning protocol and investigated its anti-apoptotic and pro-angiogenic effects on cord blood MSCs undergoing simulated ischemia in vitro by subjecting them to hypoxia and nutrient deprivation with or without preceding hypoxic preconditioning. Cell number, metabolic activity, surface marker expression, chromosomal stability, apoptosis (caspases-3/7 activity) and necrosis were determined, and phosphorylation, mRNA expression and protein secretion of selected apoptosis and angiogenesis-regulating factors were quantified. Then, human umbilical vein endothelial cells (HUVEC) were subjected to simulated ischemia in co-culture with hypoxically preconditioned or naïve cord blood MSCs, and HUVEC proliferation was measured. Migration, proliferation and nitric oxide production of HUVECs were determined in presence of cord blood MSC-conditioned medium. Cord blood MSCs proved least sensitive to simulated ischemia when they were preconditioned for 24 h, while their basic behavior, immunophenotype and karyotype in culture remained unchanged. Here, “post-ischemic” cell number and metabolic activity were enhanced and caspase-3/7 activity and lactate dehydrogenase release were reduced as compared to non-preconditioned cells. Phosphorylation of AKT and BAD, mRNA expression of BCL-XL, BAG1 and VEGF, and VEGF protein secretion were higher in preconditioned cells. Hypoxically preconditioned cord blood MSCs enhanced HUVEC proliferation and migration, while nitric oxide production remained unchanged. We conclude that hypoxic preconditioning protects cord blood MSCs by activation of anti-apoptotic signaling mechanisms and enhances their angiogenic potential. Hence, hypoxic preconditioning might be a translationally relevant strategy to increase the tolerance of cord blood MSCs to ischemia and improve their therapeutic efficacy in clinical applications.
Collapse
Affiliation(s)
- Andreas Matthäus Bader
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | | | - Maria Schneider
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
85
|
Cardioprotection by PI3K-mediated signaling is required for anti-arrhythmia and myocardial repair in response to ischemic preconditioning in infarcted pig hearts. J Transl Med 2015; 95:860-71. [PMID: 26006021 DOI: 10.1038/labinvest.2015.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/08/2022] Open
Abstract
Although the phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway is essential for conferring cardioprotection in response to ischemic preconditioning (IP), the role of PI3K/Akt signaling in the infarcted heart for mediating the anti-arrhythmic effects in response to IP remains unclear. We explored the involvement of PI3K/Akt in the IP-like effect of connexin 43 and proangiogenic factors with particular regard to its role in protecting against ischemia-induced arrhythmia, heart failure, and myocardial remodeling. Groups of pigs were administered phosphate-buffered saline (PBS) or LY294002 solution. Before induction of myocardial infarction (MI), pigs were grouped according to whether or not they underwent IP. Next, all animals underwent MI induction by ligation of the left anterior descending (LAD) coronary artery. Myocardial tissues from the pig hearts at 7 days after MI were used to assess myocardium myeloperoxidase and reaction oxygen species, infarct size, collagen content, blood vascular density, expression of Akt, connexin 43, and proangiogenic growth factors, using spectrophotometer, histology, immunohistochemistry, real-time RT-PCR, and western blot. At 7 days after MI, IP significantly reduced animal mortality and malignant ventricular arrhythmia, myocardial inflammation, infarct size, and collagen content, and improved cardiac function and remodeling; use of the PI3K inhibitor LY294002 diminished these effects. In parallel with a decline in Akt expression and phosphorylation by MI, LY294002 injection resulted in significant suppression of connexin 43 and proangiogenic factor expression, and a reduction of angiogenesis and collateral circulation. These findings demonstrate that the cardioprotective effects of IP on antiventricular arrhythmia and myocardial repair occur through upregulation of PI3K/Akt-mediated connexin 43 and growth factor signaling.
Collapse
|
86
|
Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther 2015; 151:8-15. [DOI: 10.1016/j.pharmthera.2015.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
|
87
|
Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015; 33:1818-28. [PMID: 25702874 PMCID: PMC10757456 DOI: 10.1002/stem.1976] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells/multipotent stromal cells (MSCs) are promising therapeutics for a variety of conditions. However, after transplantation, cell retention remains extremely challenging. Given that many hypoxic signals are transitory and that the therapeutic administration of MSCs is typically into tissues that are normally hypoxic, we studied the effect of hypoxic preconditioning (HP) prior to new exposure to hypoxia. We show that preincubation for 2 days or more in 1% oxygen reduces serum deprivation-mediated cell death, as observed by higher cell numbers and lower incorporation of EthD-III and Annexin V. Consistently, HP-MSCs expressed significantly lower levels of cytochrome c and heme oxygenase 1 as compared to controls. Most importantly, HP-MSCs showed enhanced survival in vivo after intramuscular injection into immune deficient NOD/SCID-IL2Rgamma(-/-) mice. Interestingly, HP-MSCs consume glucose and secrete lactate at a slower rate than controls, possibly promoting cell survival, as glucose remains available to the cells for longer periods of time. In addition, we compared the metabolome of HP-MSCs to controls, before and after hypoxia and serum deprivation, and identified several possible mediators for HP-mediated cell survival. Overall, our findings suggest that preincubation of MSCs for 2 days or more in hypoxia induces metabolic changes that yield higher retention after transplantation.
Collapse
Affiliation(s)
- Julie Beegle
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Kinga Lakatos
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Stefanos Kalomoiris
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Heather Stewart
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - R Rivkah Isseroff
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Jan A Nolta
- Institute for Regenerative Cures, University of California, Davis, California, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures, University of California, Davis, California, USA
| |
Collapse
|
88
|
Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis 2015; 6:e1765. [PMID: 25996292 PMCID: PMC4669719 DOI: 10.1038/cddis.2015.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has achieved only modest success in the treatment of ischemic heart disease owing to poor cell viability in the diseased microenvironment. Activation of the NRG1 (neuregulin1)-ERBB4 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) signaling pathway has been shown to stimulate mature cardiomyocyte cell cycle re-entry and cell division. In this connection, we aimed to determine whether overexpression of ERBB4 in MSCs can enhance their cardio-protective effects following myocardial infarction. NRG1, MSCs or MSC-ERBB4 (MSC with ERBB4 overexpression), were transplanted into mice following myocardial infarction. Superior to that of MSCs and solely NRG1, MSC-ERBB4 transplantation significantly preserved heart functions accompanied with reduced infarct size, enhanced cardiomyocyte division and less apoptosis during early phase of infarction. The transduction of ERBB4 into MSCs indeed increased cell mobility and apoptotic resistance under hypoxic and glucose-deprived conditions via a PI3K/Akt signaling pathway in the presence of NRG1. Unexpectedly, introduction of ERBB4 into MSC in turn potentiates NRG1 synthesis and secretion, thus forming a novel NRG1-ERBB4-NRG1 autocrine loop. Conditioned medium of MSC-ERBB4 containing elevated NRG1, promoted cardiomyocyte growth and division, whereas neutralization of NRG1 blunted this proliferation. These findings collectively suggest that ERBB4 overexpression potentiates MSC survival in the infarcted heart, enhances NRG1 generation to restore declining NRG1 in the infarcted region and stimulates cardiomyocyte division. ERBB4 has an important role in MSC-mediated myocardial repairs.
Collapse
|
89
|
Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 2015; 10:e0126715. [PMID: 25996677 PMCID: PMC4440823 DOI: 10.1371/journal.pone.0126715] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.
Collapse
Affiliation(s)
- Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Lei Xia
- Department of Medical Administration, Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Hong Huang
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| |
Collapse
|
90
|
Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, Kuo HP, Chong KY. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 2015; 6:97. [PMID: 25986930 PMCID: PMC4487587 DOI: 10.1186/s13287-015-0081-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs. METHODS Hypoxic preconditioning was achieved in MSCs under an optimal hypoxic environment. The expression levels of cytoprotective factors and their biological effects on damaged alveolar epithelial cells or transforming growth factor-beta 1-treated fibroblast cells were studied in co-culture experiments in vitro. Furthermore, hypoxia-preconditioned MSCs (HP-MSCs) were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice at day 3, and lung functions, cellular, molecular and pathological changes were assessed at 7 and 21 days after bleomycin administration. RESULTS The expression of genes for pro-survival, anti-apoptotic, anti-oxidant and growth factors was upregulated in MSCs under hypoxic conditions. In transforming growth factor-beta 1-treated MRC-5 fibroblast cells, hypoxia-preconditioned MSCs attenuated extracellular matrix production through paracrine effects. The pulmonary respiratory functions significantly improved for up to 18 days of hypoxia-preconditioned MSC treatment. Expression of inflammatory factors and fibrotic factor were all downregulated in the lung tissues of the hypoxia-preconditioned MSC-treated mice. Histopathologic examination observed a significant amelioration of the lung fibrosis. Several LacZ-labeled MSCs were observed within the lungs in the hypoxia-preconditioned MSC treatment groups at day 21, but no signals were detected in the normoxic MSC group. Our data further demonstrated that upregulation of hepatocyte growth factor possibly played an important role in mediating the therapeutic effects of transplanted hypoxia-preconditioned MSCs. CONCLUSION Transplantation of hypoxia-preconditioned MSCs exerted better therapeutic effects in bleomycin-induced pulmonary fibrotic mice and enhanced the survival rate of engrafted MSCs, partially due to the upregulation of hepatocyte growth factor.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Rong-Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | - Tsai-Hsien Hung
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Young-Bin Chen
- Institute of Biotechnology, National Taiwan University, Taichung, Taiwan, Republic of China.
| | - Chung-Hsing Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, St Paul's Hospital, Taoyuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, Ton-Yen General Hospital, Hsinchu, Taiwan, Republic of China.
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Pulmonary Disease Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China.
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kowit-Yu Chong
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| |
Collapse
|
91
|
Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA, Demaree CM, Vasko R, Chugh SS, Lamba R, Goligorsky MS, Ratliff BB. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia. Stem Cells Transl Med 2015; 4:852-61. [PMID: 25947337 DOI: 10.5966/sctm.2014-0111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/16/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED : We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation). Cytokine/chemokine release from embedded stem cells was examined, including effects on macrophage polarization and release of proinflammatory molecules. EPC-MSC coculturing improved stem cell viability during LPS exposure, an effect augmented by MSC hypoxic preconditioning. The delivery of coembedded EPCs with hypoxic preconditioned MSCs to AKI mice demonstrated additive improvement (compared with EPC delivery alone) in medullary RBF and proteinuria, with comparable effects on serum creatinine, MAP, and angiogenesis. Exposure of proinflammatory M1 macrophages to EPC-MSC conditioned medium changed their polarization to anti-inflammatory M2. Incubation of coembedded EPCs-MSCs with macrophages altered their release of cytokines/chemokines, including enhanced release of anti-inflammatory interleukin (IL)-4 and IL-10. EPC-MSC delivery to endotoxemic mice elevated the levels of circulating M2 macrophages and reduced the circulating cytokines/chemokines. In conclusion, coembedding EPCs-MSCs improved their resistance to stress, impelled macrophage polarization from M1 to M2 while altering their cytokine/chemokines release, reduced circulating cytokines/chemokines, and improved renal and vascular function when MSCs were hypoxically preconditioned. SIGNIFICANCE This report provides insight into a new therapeutic approach for treatment of sepsis and provides a new and improved strategy using hydrogels for the delivery of stem cells to treat sepsis and, potentially, other injuries and/or diseases. The delivery of two different stem cell lines (endothelial progenitor cells and mesenchymal stem cells; delivered alone and together) embedded in a protective bioengineered scaffolding (hydrogel) offers many therapeutic benefits for the treatment of sepsis. This study shows how hydrogel-delivered stem cells elicit their effects and how hydrogel embedding enhances the therapeutic efficacy of delivered stem cells. Hydrogel-delivered stem cells influence the components of the overactive immune system during sepsis and work to counterbalance the release of many proinflammatory and prodamage substances from immune cells, thereby improving the associated vascular and kidney damage.
Collapse
Affiliation(s)
- Joseph A Zullo
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Ellen P Nadel
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - May M Rabadi
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Matthew J Baskind
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Maharshi A Rajdev
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Cameron M Demaree
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Radovan Vasko
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Savneek S Chugh
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Rajat Lamba
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael S Goligorsky
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| | - Brian B Ratliff
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York, USA; Department of Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
92
|
Andreeva ER, Pogodina MV, Buravkova LB. Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s0362119715020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
93
|
Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, Chen D, Zhao Y, Liu H, Han W, Fu X. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. INT J LOW EXTR WOUND 2015; 14:63-72. [PMID: 25759412 DOI: 10.1177/1534734615573660] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs)have great therapeutic potential for the repair of diabetic lower-limb ischemia because of their proangiogenic properties. However, cells transplanted into an ischemic environment have reduced cell survival rates and impaired angiogenic capacity in vivo. We explored hypoxia pretreatment as a method to promote BM-MSC survival by inducing autophagy. Our results showed that hypoxic pretreatment has no effect on the phenotype or differentiation capacity of BM-MSCs; however, hypoxia increased viability and reduced apoptosis in cells treated with lipopolysaccharide. Immunofluorescence and western blot results showed that hypoxia pretreatment enhances cell autophagy mediated by elevated expression of hypoxia inducible factor-1α (HIF-1α). The AMPK/mTOR (adenosine monophosphate-activated protein kinase/mammalian target of rapamycin) signaling pathway was also activated in BM-MSCs during hypoxia-enhanced autophagy. It is important to note that hypoxia pretreatment in BM-MSCs significantly enhanced cell survival and promoted angiogenesis in the lower limb of ischemic diabetic rats. In conclusion, hypoxia pretreatment enhances survival in BM-MSCs, promoting angiogenesis by increasing autophagy and significantly decreasing apoptosis. Therefore, modulation of autophagy with hypoxic pretreatment may provide a novel strategy to improve MSC-based therapies.
Collapse
Affiliation(s)
- Jiejie Liu
- Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Chinese PLA General Hospital, Beijing, China
| | - Hong Huang
- Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Chinese PLA General Hospital, Beijing, China
| | - Deyun Chen
- Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Huiling Liu
- Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
94
|
Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:632902. [PMID: 25722795 PMCID: PMC4333334 DOI: 10.1155/2015/632902] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| |
Collapse
|
95
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
96
|
Jiang CM, Liu J, Zhao JY, Xiao L, An S, Gou YC, Quan HX, Cheng Q, Zhang YL, He W, Wang YT, Yu WJ, Huang YF, Yi YT, Chen Y, Wang J. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J Dent Res 2014; 94:69-77. [PMID: 25403565 DOI: 10.1177/0022034514557671] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The environment of bone marrow mesenchymal stem cells (MSCs) is hypoxic, which plays an important role in maintaining their self-renewal potential and undifferentiated state. MSCs have been proven to possess immunomodulatory properties and have been used clinically to treat autoimmune diseases. Here, we tested the effects of hypoxia on the immunomodulatory properties of MSCs and examined its possible underlying mechanisms. We found that hypoxic stimulation promoted the immunomodulatory properties of human gingiva-derived mesenchymal stem cells (hGMSCs) by enhancing the suppressive effects of hGMSCs on peripheral blood mononuclear cells (PBMCs). The proliferation of PBMCs was significantly inhibited, while the apoptosis of PBMCs was increased, which was associated with the Fas ligand (FasL) expression of hGMSCs. The in vivo study showed that systemically infused hGMSCs could enhance skin wound repair, and 24-h hypoxic stimulation significantly promoted the reparative capacity of hGMSCs. For mechanism, hGMSC treatment inhibited the local inflammation of injured skin by suppressing the inflammatory cells, reducing the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), and increasing anti-inflammatory cytokine interleukin-10 (IL-10), which was promoted by hypoxia. Hypoxia preconditioning may be a good optimizing method to promote the potential of MSCs for the future cell-based therapy.
Collapse
Affiliation(s)
- C M Jiang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - J Liu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Y Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - L Xiao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - S An
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y C Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - H X Quan
- Qingdao First Sanatorium of Jinan Military Distract of PLA, Qingdao Shandong, China
| | - Q Cheng
- Department of Orthodontics, Luzhou Medical College, Luzhou, Sichuan, China
| | - Y L Zhang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - W He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y T Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - W J Yu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y F Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y T Yi
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - Y Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chendu, Sichuan, China
| |
Collapse
|
97
|
Accelerated orthodontic tooth movement: Molecular mechanisms. Am J Orthod Dentofacial Orthop 2014; 146:620-32. [DOI: 10.1016/j.ajodo.2014.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
|
98
|
Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release. Mol Neurobiol 2014; 52:792-803. [DOI: 10.1007/s12035-014-8912-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/28/2014] [Indexed: 02/07/2023]
|
99
|
Liu XB, Wang JA, Ji XY, Yu SP, Wei L. Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther 2014; 5:111. [PMID: 25257482 PMCID: PMC4535299 DOI: 10.1186/scrt499] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/16/2014] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Poor cell survival and limited functional benefits have restricted the efficacy of bone marrow mesenchymal stem cells (BMSCs) in the treatment of myocardial infarction. We showed recently that hypoxia preconditioning of BMSCs and neural progenitor cells before transplantation can enhance the survival and therapeutic properties of these cells in the ischemic brain and heart. The present investigation explores a novel strategy of preconditioning BMSCs using the Hypoxia-inducible factor 1α (HIF-α) prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) to enhance their survival and therapeutic efficacy after transplantation into infarcted myocardium. METHODS BMSCs from green fluorescent protein transgenic rats were cultured with or without 1 mM DMOG for 24 hours in complete culture medium before transplantation. Survival and angiogenic factors were evaluated in vitro by trypan blue staining, Western blotting, and tube formation test. In an ischemic heart model of rats, BMSCs with and without DMOG preconditioning were intramyocardially transplanted into the peri-infarct region 30 minutes after permanent myocardial ischemia. Cell death was measured 24 hours after engraftment. Heart function, angiogenesis and infarct size were measured 4 weeks later. RESULTS In DMOG preconditioned BMSCs (DMOG-BMSCs), the expression of survival and angiogenic factors including HIF-1α, vascular endothelial growth factor, glucose transporter 1 and phospho-Akt were significantly increased. In comparison with control cells, DMOG-BMSCs showed higher viability and enhanced angiogenesis in both in vitro and in vivo assays. Transplantation of DMOG-BMSCs reduced heart infarct size and promoted functional benefits of the cell therapy. CONCLUSIONS We suggest that DMOG preconditioning enhances the survival capability of BMSCs and paracrine effects with increased differentiation potential. Prolyl hydroxylase inhibition is an effective and feasible strategy to enhance therapeutic efficacy and efficiency of BMSC transplantation therapy after heart ischemia.
Collapse
|
100
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|