51
|
Ye R, Gordillo R, Shao M, Onodera T, Chen Z, Chen S, Lin X, SoRelle JA, Li X, Tang M, Keller MP, Kuliawat R, Attie AD, Gupta RK, Holland WL, Beutler B, Herz J, Scherer PE. Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J Clin Invest 2018; 128:1178-1189. [PMID: 29457786 DOI: 10.1172/jci97702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The compensatory proliferation of insulin-producing β cells is critical to maintaining glucose homeostasis at the early stage of type 2 diabetes. Failure of β cells to proliferate results in hyperglycemia and insulin dependence in patients. To understand the effect of the interplay between β cell compensation and lipid metabolism upon obesity and peripheral insulin resistance, we eliminated LDL receptor-related protein 1 (LRP1), a pleiotropic mediator of cholesterol, insulin, energy metabolism, and other cellular processes, in β cells. Upon high-fat diet exposure, LRP1 ablation significantly impaired insulin secretion and proliferation of β cells. The diminished insulin signaling was partly contributed to by the hypersensitivity to glucose-induced, Ca2+-dependent activation of Erk and the mTORC1 effector p85 S6K1. Surprisingly, in LRP1-deficient islets, lipotoxic sphingolipids were mitigated by improved lipid metabolism, mediated at least in part by the master transcriptional regulator PPARγ2. Acute overexpression of PPARγ2 in β cells impaired insulin signaling and insulin secretion. Elimination of Apbb2, a functional regulator of LRP1 cytoplasmic domain, also impaired β cell function in a similar fashion. In summary, our results uncover the double-edged effects of intracellular lipid metabolism on β cell function and viability in obesity and type 2 diabetes and highlight LRP1 as an essential regulator of these processes.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Zhe Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA.,Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Xiaoli Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Regina Kuliawat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UTSW Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, and Center for Translational Neurodegeneration Research, UTSW Medical Center, Dallas, Texas, USA.,Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
52
|
Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR). Sci Rep 2018; 8:162. [PMID: 29317682 PMCID: PMC5760518 DOI: 10.1038/s41598-017-18361-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Epidermal growth factor (EGF) stimulates cell growth, proliferation, and survival. The biological benefits of EGF have been utilized in medical uses for improving wound healing as well as in today’s skin cosmetics. EGF has been found in urine, saliva, milk, and plasma, but its efficient isolation remains a difficult task. With technical advances, recombinant protein purification technique has been used for EGF production. However, the recombinant EGF is still expensive and keeping it with stable activity is difficult to be used widely. Thus, a molecule that can mimic the EGF activity would be a useful alternative of EGF. Herein, we have discovered that a natural small molecule piperonylic acid shows EGF-like activity in HaCaT keratinocytes. Piperonylic acid induced EGF receptor (EGFR) activation and resulted in serial activation of the downstream modulators. The activated signaling pathway eventually up-regulated gene expression of egr-1, c-fos, c-jun, and c-myc, which are involved in cell growth and survival. Moreover, piperonylic acid showed promoting role in keratinocyte growth and survival from UVB-induced cellular damages. This study has revealed the EGF-like activity of piperonylic acid and proposed that the piperonylic acid could be a promising component for skin wound healing agents or cosmetic ingredient.
Collapse
|
53
|
Karki P, Hong P, Johnson J, Pajarillo E, Son DS, Aschner M, Lee EY. Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways. Mol Neurobiol 2017; 55:5031-5046. [PMID: 28812276 PMCID: PMC5964991 DOI: 10.1007/s12035-017-0709-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, but excessive synaptic glutamate must be removed to prevent excitotoxic injury and death. Two astrocytic glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2, play a major role in eliminating excess glutamate from the synapse. Dysregulation of EAAT1 contributes to the pathogenesis of multiple neurological disorders, such as Alzheimer's disease (AD), ataxia, traumatic brain injuries, and glaucoma. In the present study, we investigated the effect of arundic acid on EAAT1 to determine its efficacy in enhancing the expression and function of EAAT1, and its possible mechanisms of action. The studies were carried out in human astrocyte H4 cells as well as in human primary astrocytes. Our findings show that arundic acid upregulated EAAT1 expression at the transcriptional level by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Arundic acid increased astrocytic EAAT1 promoter activity, messenger RNA (mRNA)/protein levels, and glutamate uptake, while pharmacological inhibition of NF-κB or mutation on NF-κB binding sites in the EAAT1 promoter region abrogated these effects. Arundic acid increased NF-κB reporter activity and induced NF-κB nuclear translocation as well as its bindings to the EAAT1 promoter. Furthermore, arundic acid activated the Akt and ERK signaling pathways to enhance EAAT1 mRNA/protein levels. Finally, arundic acid attenuated manganese-induced decrease in EAAT1 expression by inhibiting expression of the transcription factor Ying Yang 1 (YY1). These results demonstrate that arundic acid increases the expression and function of EAAT1 via the Akt, ERK, and NF-κB signaling pathways, and reverses Mn-induced EAAT1 repression by inhibiting the Mn-induced YY1 activation.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peter Hong
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Deok-Soo Son
- Department of Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Y Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
54
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem 2017; 141:179-194. [PMID: 28178750 DOI: 10.1111/jnc.13977] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/18/2022]
Abstract
Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood.
Collapse
Affiliation(s)
- Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tomohiro Kaji
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
56
|
Miyazaki M, Takemasa T. TSC2/Rheb signaling mediates ERK-dependent regulation of mTORC1 activity in C2C12 myoblasts. FEBS Open Bio 2017; 7:424-433. [PMID: 28286738 PMCID: PMC5337893 DOI: 10.1002/2211-5463.12195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/25/2022] Open
Abstract
The enhanced rate of protein synthesis in skeletal muscle cells results in a net increase in total protein content that leads to skeletal muscle growth/hypertrophy. The mitogen‐activated protein kinase kinase (MEK)/extracellular signal‐regulated kinase (ERK)‐dependent regulation of the activity of mechanistic target of rapamycin (mTOR) and subsequent protein synthesis has been suggested as a regulatory mechanism; however, the exact molecular processes underlying such a regulation are poorly defined. The purpose of this study was to investigate regulatory mechanisms involved in the MEK/ERK‐dependent pathway leading to mTORC1 activation in skeletal muscle cells. Treatment with phorbol‐12‐myristate‐13‐acetate (PMA), a potent agonist of protein kinase C (PKC) and its downstream effector in the MEK/ERK‐dependent pathway, resulted in the activation of mTORC1 signaling and phosphorylation of the upstream regulator tuberous sclerosis 2 (TSC2) in C2C12 myoblasts. PMA‐induced activation of mTORC1 signaling was partially prevented by treatment with U0126 (a selective inhibitor of MEK1/2) or BIX‐02189 (a selective inhibitor of MEK5) and completely blocked with BIM‐I (a selective inhibitor of upstream PKC). TSC2 phosphorylation at Ser664 (an ERK‐dependent phosphorylation site) was prevented with U0126, and BIM‐I treatment blocked PMA‐induced phosphorylation of TSC2 at multiple residues (Ser664, Ser939, and Thr1462). Overexpression of Ras homolog enriched in brain (Rheb), a downstream target of TSC2, and an mTORC1 activator, was sufficient to activate mTORC1 signaling. We also identified that PMA‐induced activation of mTORC1 signaling was significantly inhibited in the absence of Rheb with siRNA knockdown. These observations demonstrate that the PKC/MEK/ERK‐dependent activation of mTORC1 is mediated through TSC2 phosphorylation and its downstream target Rheb in C2C12 myoblasts.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Physical Therapy School of Rehabilitation Sciences Health Sciences University of Hokkaido Japan
| | - Tohru Takemasa
- Graduate School of Comprehensive Human Sciences University of Tsukuba Ibaraki Japan
| |
Collapse
|
57
|
Mukaida S, Evans BA, Bengtsson T, Hutchinson DS, Sato M. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol Res 2016; 116:87-92. [PMID: 28025104 DOI: 10.1016/j.phrs.2016.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/12/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Uptake of glucose into skeletal muscle and adipose tissue plays a vital role in metabolism and energy balance. Insulin released from β-islet cells of the pancreas promotes glucose uptake in these target tissues by stimulating translocation of GLUT4 transporters to the cell surface. This process is complex, involving signaling proteins including the mechanistic (or mammalian) target of rapamycin (mTOR) and Akt that intersect with multiple pathways controlling cell survival, growth and proliferation. mTOR exists in two forms, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2). mTORC1 has been intensively studied, acting as a key regulator of protein and lipid synthesis that integrates cellular nutrient availability and energy balance. Studies on mTORC2 have focused largely on its capacity to activate Akt by phosphorylation at Ser473, however recent findings demonstrate a novel role for mTORC2 in cellular glucose uptake. For example, agonists acting at β2-adrenoceptors (ARs) in skeletal muscle or β3-ARs in brown adipose tissue increase glucose uptake in vitro and in vivo via mechanisms dependent on mTORC2 but not Akt. In this review, we will focus on the signaling pathways downstream of β-ARs that promote glucose uptake in skeletal muscle and brown adipocytes, and will highlight how the insulin and adrenergic pathways converge and interact in these cells. The identification of insulin-independent mechanisms that promote glucose uptake should facilitate novel treatment strategies for metabolic disease.
Collapse
Affiliation(s)
- Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
58
|
Panaxatriol derived from ginseng augments resistance exercised-induced protein synthesis via mTORC1 signaling in rat skeletal muscle. Nutr Res 2016; 36:1193-1201. [PMID: 27865617 DOI: 10.1016/j.nutres.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
Abstract
Resistance exercise activates muscle protein synthesis via the mammalian target of rapamycin complex 1 (mTORC1) pathway and subsequent muscle hypertrophy. Upstream components of the mTORC1 pathway are widely known to be involved in Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Previous studies have shown that ginseng stimulated Akt and ERK1/2 signaling. Therefore, we hypothesized that panaxatriol (PT) derived from ginseng triggers mTORC1 signaling and muscle protein synthesis by activating both the Akt and ERK1/2 signaling pathways, and that PT additively stimulates muscle protein synthesis when combined with resistance exercise. The study included male Sprague-Dawley rats. The legs of the rats were divided into control, PT-only, exercise-only, and exercise + PT groups. The right legs were subjected to isometric resistance exercise using percutaneous electrical stimulation, whereas the left legs were used as controls. PT (0.2 g/kg) was administered immediately after exercise. The Akt and ERK1/2 phosphorylation levels were significantly higher in the exercise + PT group than in the exercise-only group 0.5 hour after exercise. The phosphorylation of p70S6K was significantly increased at both 0.5 and 3 hours after exercise, and it was higher in the exercise + PT group than in the exercise-only group at both 0.5 and 3 hours after exercise. Muscle protein synthesis was significantly increased 3 hours after exercise, and it was higher in the exercise + PT group than in the exercise-only group 3 hours after exercise. Our results suggest that PT derived from ginseng enhances resistance exercise-induced protein synthesis via mTORC1 signaling in rat skeletal muscle.
Collapse
|
59
|
Estradiol-Mediated Spine Changes in the Dorsal Hippocampus and Medial Prefrontal Cortex of Ovariectomized Female Mice Depend on ERK and mTOR Activation in the Dorsal Hippocampus. J Neurosci 2016; 36:1483-9. [PMID: 26843632 DOI: 10.1523/jneurosci.3135-15.2016] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2. SIGNIFICANCE STATEMENT Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of ERK and mTOR activation in the DH prevented E2 from increasing DH and mPFC spines, demonstrating that DH ERK and mTOR activation is necessary for E2-induced spinogenesis in the DH and mPFC. These findings provide novel insights into the molecular mechanisms through which E2 mediates dendritic spine density in CA1 and mPFC.
Collapse
|
60
|
Kimball SR, Gordon BS, Moyer JE, Dennis MD, Jefferson LS. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal 2016; 28:896-906. [PMID: 27010498 DOI: 10.1016/j.cellsig.2016.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 01/08/2023]
Abstract
The studies described herein were designed to explore the role of Sestrin2 in mediating the selective action of leucine to activate mTORC1. The results demonstrate that Sestrin2 is a phosphoprotein and that its phosphorylation state is responsive to the availability of leucine, but not other essential amino acids. Moreover, leucine availability-induced alterations in Sestrin2 phosphorylation correlated temporally and dose dependently with the activation state of mTORC1, there being a reciprocal relationship between the degree of phosphorylation of Sestrin2 and the extent of repression of mTORC1. With leucine deprivation, Sestrin2 became more highly phosphorylated and interacted more strongly with proteins of the GATOR2 complex. Notably, in cells lacking the protein kinase ULK1, the activation state of mTORC1 was elevated in leucine-deficient medium, such that the effect of re-addition of the amino acid was blunted. In contrast, overexpression of ULK1 led to hyperphosphorylation of Sestrin2 and enhanced its interaction with GATOR2. Neither rapamycin nor Torin2 had any effect on Sestrin2 phosphorylation, suggesting that leucine deprivation-induced repression of mTORC1 was not responsible for the action of ULK1 on Sestrin2. Mass spectrometry analysis of Sestrin2 revealed three phosphorylation sites that are conserved across mammalian species. Mutation of the three sites to phospho-mimetic amino acids in exogenously expressed Sestrin2 promoted its interaction with GATOR2 and dramatically repressed mTORC1 even in the presence of leucine. Overall, the results support a model in which leucine selectively promotes dephosphorylation of Sestrin2, causing it to dissociate from and thereby activate GATOR2, leading to activation of mTORC1.
Collapse
Affiliation(s)
- Scot R Kimball
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States.
| | - Bradley S Gordon
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States
| | - Jenna E Moyer
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States
| | - Michael D Dennis
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States
| | - Leonard S Jefferson
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, PO Box 850, Hershey, PA 17033, United States
| |
Collapse
|
61
|
Dynamic Modeling and Analysis of the Cross-Talk between Insulin/AKT and MAPK/ERK Signaling Pathways. PLoS One 2016; 11:e0149684. [PMID: 26930065 PMCID: PMC4773096 DOI: 10.1371/journal.pone.0149684] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Feedback loops play a key role in the regulation of the complex interactions in signal transduction networks. By studying the network of interactions among the biomolecules present in signaling pathways at the systems level, it is possible to understand how the biological functions are regulated and how the diseases emerge from their deregulations. This paper identifies the key feedback loops involved in the cross-talk among the insulin-AKT and MAPK/ERK signaling pathways. We developed a mathematical model that can be used to study the steady-state and dynamic behavior of the interactions among these two important signaling pathways. Modeling analysis and simulation case studies identify the key interaction parameters and the feedback loops that determine the normal and disease phenotypes.
Collapse
|
62
|
Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C, Cao X, Wang R, Yao J, Zhou T, Zhou M, Liu Q, Jiang B, Jiang P, Kesari S, Lin X, Guo F. A Novel Bioavailable BH3 Mimetic Efficiently Inhibits Colon Cancer via Cascade Effects of Mitochondria. Clin Cancer Res 2015; 22:1445-58. [PMID: 26515494 DOI: 10.1158/1078-0432.ccr-15-0732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Gossypol and its analogs, through their ability to bind to and inactivate BH3 domain-containing antiapoptotic proteins, have been shown to inhibit the growth of various human cancer cells in culture and xenograft models. Here, we evaluated the antitumor efficacy of a novel gossypol derivative and BH3 mimetic ch282-5 (2-aminoethanesulfonic acid sodium-gossypolone) in colon cancer models. Several innovative combination strategies were also explored and elaborated. EXPERIMENTAL DESIGN Ch282-5 was synthesized by modifying the active aldehyde groups and R groups of gossypol according to a computer-aided drug design program. The stability of ch282-5 was examined by high-performance liquid chromatography, and cytotoxic effects of ch282-5 on colon cancer cells were assessed by MTS assay. Activation of mitochondrial apoptotic pathway by ch282-5 was evidenced with a series of molecular biology techniques. In vivo antitumor activity of ch282-5 and its combination with chloroquine, rapamycin, oxaliplatin, and ABT-263 was also evaluated in colon cancer xenograft models and experimental liver metastasis models. RESULTS Ch282-5 showed antiproliferative and pro-cell death activity against colon cancer cells both in vitro and in vivo, and the response to the drug correlated with inhibition of antiapoptotic Bcl-2 proteins, induction of mitochondria-dependent apoptotic pathway, and disruption of mitophagy and mTOR pathway. Ch282-5 also suppressed liver metastasis produced by intrasplenic injection of colon cancer cells. Furthermore, ch282-5 could potentiate the effectiveness of oxaliplatin and rescue ABT-263 efficacy by downregulation of Mcl-1 and elevation of platelet number. CONCLUSIONS These findings provide a rational basis for clinical investigation of this highly promising BH3 mimetic in colon cancer.
Collapse
Affiliation(s)
- Xuefeng Wang
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangming Yan
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Lan
- Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China. Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyong Wang
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chongyang Wei
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingxin Cao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Renxiao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Yao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Zhou
- Academy of Life Science, Shanghai University, Shanghai, China
| | - Mi Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Liu
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substance, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Jiang
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California
| | - Santosh Kesari
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California
| | - Xinjian Lin
- Department of Medicine and UC San Diego Moores Cancer Center, University of California-San Diego, La Jolla, California.
| | - Fang Guo
- Laboratory of Tumor Targeted Therapy, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
63
|
Kamekura R, Nava P, Feng M, Quiros M, Nishio H, Weber DA, Parkos CA, Nusrat A. Inflammation-induced desmoglein-2 ectodomain shedding compromises the mucosal barrier. Mol Biol Cell 2015. [PMID: 26224314 PMCID: PMC4569309 DOI: 10.1091/mbc.e15-03-0147] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proinflammatory cytokines promote desmoglein-2 (Dsg2) ectodomain shedding in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion while also promoting proliferation. These findings identify mechanisms by which mucosal inflammation–induced cleavage of Dsg2 influences intestinal epithelial homeostasis. Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.
Collapse
Affiliation(s)
- Ryuta Kamekura
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 0608556, Japan
| | - Porfirio Nava
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies, Mexico DF 07360, Mexico
| | - Mingli Feng
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Miguel Quiros
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Hikaru Nishio
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Dominique A Weber
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Charles A Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322 Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
64
|
Kim E, Yoon SY, Shin YJ. Oxidative Stress in Cornea. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-1935-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
65
|
Fiorotto ML, Davis TA, Sosa HA, Villegas-Montoya C, Estrada I, Fleischmann R. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. J Physiol 2014; 592:5269-86. [PMID: 25239457 DOI: 10.1113/jphysiol.2014.279067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18 months (P < 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (P < 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth.
Collapse
Affiliation(s)
- Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Horacio A Sosa
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carolina Villegas-Montoya
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irma Estrada
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
66
|
Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations? Sports Med 2014; 43:1279-88. [PMID: 23955603 DOI: 10.1007/s40279-013-0088-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In humans, regimented resistance training has been shown to promote substantial increases in skeletal muscle mass. With respect to traditional resistance training methods, the prevailing opinion is that an intensity of greater than ~60 % of 1 repetition maximum (RM) is necessary to elicit significant increases in muscular size. It has been surmised that this is the minimum threshold required to activate the complete spectrum of fiber types, particularly those associated with the largest motor units. There is emerging evidence, however, that low-intensity resistance training performed with blood flow restriction (BFR) can promote marked increases in muscle hypertrophy, in many cases equal to that of traditional high-intensity exercise. The anabolic effects of such occlusion-based training have been attributed to increased levels of metabolic stress that mediate hypertrophy at least in part by enhancing recruitment of high-threshold motor units. Recently, several researchers have put forth the theory that low-intensity exercise (≤50 % 1RM) performed without BFR can promote increases in muscle size equal, or perhaps even superior, to that at higher intensities, provided training is carried out to volitional muscular failure. Proponents of the theory postulate that fatiguing contractions at light loads is simply a milder form of BFR and thus ultimately results in maximal muscle fiber recruitment. Current research indicates that low-load exercise can indeed promote increases in muscle growth in untrained subjects, and that these gains may be functionally, metabolically, and/or aesthetically meaningful. However, whether hypertrophic adaptations can equal that achieved with higher intensity resistance exercise (≤60 % 1RM) remains to be determined. Furthermore, it is not clear as to what, if any, hypertrophic effects are seen with low-intensity exercise in well-trained subjects as experimental studies on the topic in this population are lacking. Practical implications of these findings are discussed.
Collapse
|
67
|
Cross-talk between integrin receptor and insulin-like growth factor receptor in regulation of collagen biosynthesis in cultured fibroblasts. Adv Med Sci 2014; 58:292-7. [PMID: 23981674 DOI: 10.2478/v10039-012-0072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Cellular processes are regulated by signals generated by adhesion receptors and growth factor receptors. IGFbinding protein 1 (IGFBP-1) is a molecule which may affect the both signaling pathways through inactivation of IGF-I (ligand for IGF-IR) and binding to RGD region of integrin receptors. Whether this phenomenon is important in communication between insulin-like growth factor receptor (IGF-IR) and β1-integrin receptor in regulation of prolidase activity and collagen biosynthesis is the aim of this study. MATERIAL AND METHOD We studied the effects of IGFBP-1, IGF-I, thrombin (integrin activator), echistatin (disintegrin), phosphatidylinositol 3-kinase inhibitor (LY-294002) and ERK 1/2 inhibitors (PD98059 and UO126) on prolidase activity, collagen biosynthesis and expression of proteins participating in pathways generated by these receptors. RESULTS Stimulation of β1-integrin and IGF-I receptors by standard ligands was proved to up-regulate collagen synthesis in cultured fibroblasts. IGFBP-1, similarly as echistatin and studied inhibitors, contributed to down-regulation of ERK1/2, Akt, mTOR expression and up-regulation of NFκB. It was accompanied by parallel decrease in prolidase activity and collagen biosynthesis. CONCLUSION The data suggest that "cross talk" between IGF-I receptor and integrin receptor may play important role in regulation of prolidase activity and collagen biosynthesis.
Collapse
|
68
|
Salto R, Vílchez JD, Cabrera E, Guinovart JJ, Girón MD. Activation of ERK by sodium tungstate induces protein synthesis and prevents protein degradation in rat L6 myotubes. FEBS Lett 2014; 588:2246-54. [PMID: 24846141 DOI: 10.1016/j.febslet.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
Abstract
The balance between the rates of protein synthesis and degradation in muscle is regulated by PI3K/Akt signaling. Here we addressed the effect of ERK activation by sodium tungstate on protein turnover in rat L6 myotubes. Phosphorylation of ERK by this compound increased protein synthesis by activating MTOR and prevented dexamethasone-induced protein degradation by blocking FoxO3a activity, but it did not alter Akt phosphorylation. Thus, activation of ERK by tungstate improves protein turnover in dexamethasone-treated cells. On the basis of our results, we propose that tungstate be considered an alternative to IGF-I and its analogs in the prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Elena Cabrera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine, University of Barcelona and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - María D Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
69
|
Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Cell Death Dis 2014; 5:e1114. [PMID: 24625973 PMCID: PMC3973233 DOI: 10.1038/cddis.2014.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/22/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022]
Abstract
The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca(2+) via Ca(2+)/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment.
Collapse
|
70
|
Sumi K, Higashi S, Natsume M, Kawahata K, Nakazato K. Temporal changes in ERK phosphorylation are harmonious with 4E-BP1, but not p70S6K, during clenbuterol-induced hypertrophy in the rat gastrocnemius. Appl Physiol Nutr Metab 2014; 39:902-10. [PMID: 24941107 DOI: 10.1139/apnm-2013-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Extracellular signal-regulated kinase (ERK) is required for clenbuterol (CB)-dependent fast-type myofibril enlargement; however, its contribution to translation control is unclear. ERK mediates translational regulation through mammalian target of rapamycin complex 1 (mTORC1) activation and (or) mTORC1-independent pathways. In this study, we aimed to investigate the role of ERK in translational control during CB-induced muscular hypertrophy by measuring time-dependent changes in the phosphorylation statuses of ERK, p70 ribosomal S6 kinase (p70S6K; an indicator of mTORC1 activity), 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 (eEF2), and other related signaling molecules in rat gastrocnemius muscles. Five-day administration of CB induced phenotypes associated with muscular hypertrophy (significant increases in wet weight and isometric ankle flexion torque in the gastrocnemius muscle), but was not accompanied by elevated ERK or p70S6K phosphorylation. One-day administration of CB caused significant increases in the phosphorylation of ERK, p70S6K, and 4E-BP1. In contrast, 3-day administration of CB caused significant increases in the phosphorylation of ERK and 4E-BP1, but not p70S6K. In addition, positive correlations were observed between ERK and 4E-BP1 on days 1 and 3, whereas a correlation between ERK and p70S6K was only observed on day 1. eEF2 phosphorylation was unchanged on both days 1 and 3. These findings suggest that ERK accelerates the initiation of translation, but does not support the involvement of ERK in translational elongation. Furthermore, ERK may play a major role in promoting translational initiation by mediating the phosphorylation of 4E-BP1, and may contribute to the initial activation of mTORC1 during CB administration.
Collapse
Affiliation(s)
- Koichiro Sumi
- a Food Science Research Laboratories, R&D Division, Meiji Co., Ltd. 540 Naruda, Odawara, 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | | | | | | | | |
Collapse
|
71
|
Kimball SR. Integration of signals generated by nutrients, hormones, and exercise in skeletal muscle. Am J Clin Nutr 2014; 99:237S-242S. [PMID: 24284445 PMCID: PMC3862457 DOI: 10.3945/ajcn.113.068387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review focuses on anabolic signaling pathways through which insulin, amino acids, and resistance exercise act to regulate the protein kinase complex referred to as mechanistic target of rapamycin complex (mTORC) 1. Initially, individual pathways through which the 3 anabolic signals act to modulate mTORC1 signaling will be discussed, followed by a summation of evidence showing an additive effect of the regulators. The emphasis will be on mTORC1 signaling in skeletal muscle and its contribution to modulation of rates of protein synthesis. In addition, results from studies using cells in culture will be used to provide a more complete picture of the molecular details of the individual pathways.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
72
|
Cizmeci D, Arkun Y. Regulatory networks and complex interactions between the insulin and angiotensin II signalling systems: models and implications for hypertension and diabetes. PLoS One 2013; 8:e83640. [PMID: 24400038 PMCID: PMC3882141 DOI: 10.1371/journal.pone.0083640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022] Open
Abstract
The cross-talk between insulin and angiotensin II signalling pathways plays a significant role in the co-occurrence of diabetes and hypertension. We developed a mathematical model of the system of interactions among the biomolecules that are involved in the cross-talk between the insulin and angiotensin II signalling pathways. We have identified several feedback structures that regulate the dynamic behavior of the individual signalling pathways and their interactions. Different scenarios are simulated and dominant steady-state, dynamic and stability characteristics are revealed. The proposed mechanistic model describes how angiotensin II inhibits the actions of insulin and impairs the insulin-mediated vasodilation. The model also predicts that poor glycaemic control induced by diabetes contributes to hypertension by activating the renin angiotensin aystem.
Collapse
Affiliation(s)
- Deniz Cizmeci
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Yaman Arkun
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
73
|
Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 2013; 305:E760-5. [PMID: 23900420 DOI: 10.1152/ajpendo.00302.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A recent study identified ursolic acid (UA) as a potent stimulator of muscle protein anabolism via PI3K/Akt signaling, thereby suggesting that UA can increase Akt-independent mTOR complex 1 (mTORC1) activation induced by resistance exercise via Akt signaling. The purpose of the present study was to investigate the effect of UA on resistance exercise-induced mTORC1 activation. The right gastrocnemius muscle of male Sprague-Dawley rats aged 11 wk was isometrically exercised via percutaneous electrical stimulation (stimulating ten 3-s contractions per set for 5 sets), while the left gastrocnemius muscle served as the control. UA or placebo (PLA; corn oil only) was injected intraperitoneally immediately after exercise. The rats were killed 1 or 6 h after the completion of exercise and the target tissues removed immediately. With placebo injection, the phosphorylation of p70(S6K) at Thr(389) increased 1 h after resistance exercise but attenuated to the control levels 6 h after the exercise. On the other hand, the augmented phosphorylation of p70(S6K) was maintained even 6 h after exercise when UA was injected immediately after exercise. A similar trend of prolonged phosphorylation was observed in PRAS40 Thr(246), whereas UA alone or resistance exercise alone did not alter its phosphorylation level at 6 h after intervention. These results indicate that UA is able to sustain resistance exercise-induced mTORC1 activity.
Collapse
Affiliation(s)
- Riki Ogasawara
- The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
74
|
Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA. Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 2013; 134:381-90. [PMID: 23891756 DOI: 10.1016/j.mad.2013.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/13/2013] [Accepted: 07/14/2013] [Indexed: 02/06/2023]
Abstract
Age-related changes in stem cells could have a profound impact on tissue aging and the development of age-related diseases such as cancer. However, the effects of metformin, a recently recognized anti-cancer drug, on stem cell aging remain largely unknown. In the present study, an experiment was set up to investigate the underlying mechanism of metformin's beneficial effects on age-related changes in intestinal stem cells (ISCs) derived from Drosophila midgut. Results showed that metformin reduced age- and oxidative stress-related accumulation of DNA damage marked by Drosophila γH2AX foci and 8-oxo-dG in ISCs and progenitor cells. Metformin also inhibited age and- oxidative stress-related ISC hyperproliferation as well as intestinal hyperplasia. Our study further revealed that the inhibitory effects of metformin on DNA damage accumulation may be due to the down-regulation of age-related and oxidative stress-induced AKT activity. These data indicate that metformin has beneficial effects on age-related changes in ISCs derived from Drosophila midgut. Further, our results suggest a possible impact of DNA damage on stem cell genomic instability, which leads to the development of age-related diseases. Additionally, our study suggests that Drosophila midgut stem cells can be a suitable model system for studying stem cell biology and stem cell aging.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
75
|
Differential Effects of MicroRNAs on Glioblastoma Growth and Migration. Genes (Basel) 2013; 4:46-64. [PMID: 24705102 PMCID: PMC3899955 DOI: 10.3390/genes4010046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is characterized by rapid proliferation, aggressive metastatic potential, and resistance to radio- and chemotherapy. The matricellular protein CYR61 regulates cellular proliferation and migration and is highly expressed in Glioblastomas. MicroRNAs are 22-nucleotides long RNAs that regulate gene expression post-transcriptionally. Here, we utilized the LN229 glioblastoma cell line and found that CYR61 is a target of miR-136, miR-155, and miR-634. Over-expression of miR-136 and miR-634 miRNAs negatively affected proliferation, but not migration, while expression of miR-155 reduced migration but did not affect the proliferation of LN229 cells. Investigation of the molecular mechanisms affected by expression of miR-634 revealed an increased phosphorylation of p70S6 kinase, suggesting an induction of the mammalian target of rapamycin (mTOR) complex 1 pathway. Additionally, in miR-634 overexpressing cells, TSC2, a negative regulator of mTOR signaling, was found to be decreased. Altogether, our study provides insights on the differential roles of miRs-136, -155, and -634 in regulating glioblastoma cell growth and migration, and how microRNAs could be manipulated to decrease the aggressiveness and metastatic potential of tumor cells.
Collapse
|
76
|
Fortress AM, Fan L, Orr PT, Zhao Z, Frick KM. Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. Learn Mem 2013; 20:147-55. [PMID: 23422279 DOI: 10.1101/lm.026732.112] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17β-estradiol (E(2)) is dependent on mTOR signaling in the dorsal hippocampus, and whether E(2)-induced mTOR signaling is dependent on dorsal hippocampal phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) activation. We first demonstrated that the enhancement of object recognition induced by E(2) was blocked by dorsal hippocampal inhibition of ERK, PI3K, or mTOR activation. We then showed that an increase in dorsal hippocampal ERK phosphorylation 5 min after intracerebroventricular (ICV) E(2) infusion was also blocked by dorsal hippocampal infusion of the three cell signaling inhibitors. Next, we found that ICV infusion of E(2) increased phosphorylation of the downstream mTOR targets S6K (Thr-421) and 4E-BP1 in the dorsal hippocampus 5 min after infusion, and that this phosphorylation was blocked by dorsal hippocampal infusion of inhibitors of ERK, PI3K, and mTOR. Collectively, these data demonstrate for the first time that activation of the dorsal hippocampal mTOR signaling pathway is necessary for E(2) to enhance object recognition memory consolidation and that E(2)-induced mTOR activation is dependent on upstream activation of ERK and PI3K signaling.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | |
Collapse
|
77
|
Ogasawara R, Kobayashi K, Tsutaki A, Lee K, Abe T, Fujita S, Nakazato K, Ishii N. mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol (1985) 2013; 114:934-40. [PMID: 23372143 DOI: 10.1152/japplphysiol.01161.2012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance training-induced muscle anabolism and subsequent hypertrophy occur most rapidly during the early phase of training and become progressively slower over time. Currently, little is known about the intracellular signaling mechanisms underlying changes in the sensitivity of muscles to training stimuli. We investigated the changes in the exercise-induced phosphorylation of hypertrophic signaling proteins during chronic resistance training and subsequent detraining. Male rats were divided into four groups: 1 bout (1B), 12 bouts (12B), 18 bouts (18B), and detraining (DT). In the DT group, rats were subjected to 12 exercise sessions, detrained for 12 days, and then were subjected to 1 exercise session before being killed. Isometric training consisted of maximum isometric contraction, which was produced by percutaneous electrical stimulation of the gastrocnemius muscle every other day. Muscles were removed 24 h after the final exercise session. Levels of total and phosphorylated p70S6K, 4E-BP1, rpS6, and p90RSK levels were measured, and phosphorylation of p70S6K, rpS6, and p90RSK was elevated in the 1B group compared with control muscle (CON) after acute resistance exercise, whereas repeated bouts of exercise suppressed those phosphorylation in both 12B and 18B groups. Interestingly, these phosphorylation levels were restored after 12 days of detraining in the DT group. On the contrary, phosphorylation of 4E-BP1 was not altered with chronic training and detraining, indicating that, with chronic resistance training, anabolic signaling becomes less sensitive to resistance exercise stimuli but is restored after a short detraining period.
Collapse
Affiliation(s)
- Riki Ogasawara
- The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Matheny RW, Lynch CM, Leandry LA. Enhanced Akt phosphorylation and myogenic differentiation in PI3K p110β-deficient myoblasts is mediated by PI3K p110α and mTORC2. Growth Factors 2012; 30:367-84. [PMID: 23137199 DOI: 10.3109/08977194.2012.734507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 15 Kansas Street, Building 42, Natick, MA 01760, USA.
| | | | | |
Collapse
|
79
|
Millward DJ. Knowledge gained from studies of leucine consumption in animals and humans. J Nutr 2012; 142:2212S-2219S. [PMID: 23077184 DOI: 10.3945/jn.111.157370] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leucine's wide-ranging metabolic influences have made it subject to special interest. It is abundant in the diet, especially in some milk and cereal proteins, in part due to its allocation of 6 codons in the genetic code, and individual dietary intakes range up to >250 mg · kg(-1) · d(-1). It influences many cell functions by various mechanisms, which include allosteric activation of enzymes, enabling ATP generation and insulin secretion from the pancreatic islet cell, and activation of signaling pathways. It is a mediator of the anabolic drive of dietary amino acids, stimulating anabolic hormone secretion and directly signaling protein deposition and growth through the stimulation of protein synthesis and restraint of proteolysis. Its signaling may involve the mammalian target of rapamycin complex and rapamycin-insensitive pathways responding to a leucine "transceptor," which combines leucine cellular transport, fueled by the intracellular-extracellular glutamine gradient, and a signaling response to changes in ionic and water balance and cell volume. In animal studies, dietary leucine supplementation has reversed many of the adverse influences of a high-fat diet, consistent with a benefit for healthy weight maintenance in humans for which evidence is accumulating. The implications for safety of leucine-supplemented diets are discussed in terms of adversely lowering valine and isoleucine concentrations and inducing hyperammonemia through overloading peripheral glutamine synthetic pathways. Finally, the apparently high human leucine requirement is explained in terms of both an adaptive metabolic demand model of requirements and the design and analysis of human studies, which may overestimate values.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
80
|
Dennis MD, Kimball SR, Jefferson LS. Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor. J Biol Chem 2012. [PMID: 23184952 DOI: 10.1074/jbc.m112.402461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this study, the interaction of mTORC1 with its downstream targets p70S6K1 and 4E-BP1 was evaluated in both mouse liver and mouse embryonic fibroblasts following combined disruption of the genes encoding 4E-BP1 and 4E-BP2. Phosphorylation of p70S6K1 was dramatically elevated in the livers of mice lacking 4E-BP1 and 4E-BP2 following feeding-induced activation of mTORC1. Immunoprecipitation of mTORC1 suggested that elevated phosphorylation was the result of enhanced interaction of p70S6K1 with raptor. These findings were extended to a cell culture system wherein loss of 4E-BP1 and 4E-BP2 resulted in elevated interaction of p70S6K1 with IGF1-induced activation of mTORC1 in conjunction with an enhanced rate of p70S6K1 phosphorylation at Thr-389. Furthermore, cotransfecting HA-p70S6K1 with 4E-BP1, but not 4E-BP1(F114A), reduced recovery of mTORC1 in HA-p70S6K1 immunoprecipitates. Together, these findings support the conclusion that, in the absence of 4E-BP proteins, mTORC1-mediated phosphorylation of p70S6K1 is elevated by a reduction in competition between the two substrates for interaction with raptor.
Collapse
Affiliation(s)
- Michael D Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
81
|
Dennis MD, Jefferson LS, Kimball SR. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem 2012; 287:42890-9. [PMID: 23105104 DOI: 10.1074/jbc.m112.404822] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.
Collapse
Affiliation(s)
- Michael D Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
82
|
Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res 2012; 66:513-25. [PMID: 22982482 DOI: 10.1016/j.phrs.2012.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity.
Collapse
Affiliation(s)
- Vanessa J Lavallard
- INSERM, U1065, Equipe 8 «Complications hépatiques de l'obésité», Nice, France
| | | | | | | |
Collapse
|
83
|
|
84
|
Hong-Brown LQ, Brown CR, Kazi AA, Navaratnarajah M, Lang CH. Rag GTPases and AMPK/TSC2/Rheb mediate the differential regulation of mTORC1 signaling in response to alcohol and leucine. Am J Physiol Cell Physiol 2012; 302:C1557-65. [PMID: 22442136 DOI: 10.1152/ajpcell.00407.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Leucine (Leu) and insulin both stimulate muscle protein synthesis, albeit at least in part via separate signaling pathways. While alcohol (EtOH) suppresses insulin-stimulated protein synthesis in cultured myocytes, its ability to disrupt Leu signaling and Rag GTPase activity has not been determined. Likewise, little is known regarding the interaction of EtOH and Leu on the AMPK/TSC2/Rheb pathway. Treatment of myocytes with EtOH (100 mM) decreased protein synthesis, whereas Leu (2 mM) increased synthesis. In combination, EtOH suppressed the anabolic effect of Leu. The effects of EtOH and Leu were associated with coordinate changes in the phosphorylation state of mTOR, raptor, and their downstream targets 4EBP1 and S6K1. As such, EtOH suppressed the ability of Leu to activate these signaling components. The Rag signaling pathway was activated by Leu but suppressed by EtOH, as evidenced by changes in the interaction of Rag proteins with mTOR and raptor. Overexpression of constitutively active (ca)RagA and caRagC increased mTORC1 activity, as determined by increased S6K1 phosphorylation. Furthermore, the caRagA-caRagC heterodimer blocked the inhibitory effect of EtOH. EtOH and Leu produced differential effects on AMPK signaling. EtOH enhanced AMPK activity, resulting in increased TSC2 (S1387) and eEF2 phosphorylation, whereas Leu had the opposite effect. EtOH also decreased the interaction of Rheb with mTOR, and this was prevented by Leu. Collectively, our results indicate that EtOH inhibits the anabolic effects that Leu has on protein synthesis and mTORC1 activity by modulating both Rag GTPase function and AMPK/TSC2/Rheb signaling.
Collapse
Affiliation(s)
- Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
85
|
Lacher MD, Pincheira RJ, Castro AF. Consequences of interrupted Rheb-to-AMPK feedback signaling in tuberous sclerosis complex and cancer. Small GTPases 2011; 2:211-216. [PMID: 22145093 DOI: 10.4161/sgtp.2.4.16703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 02/06/2023] Open
Abstract
Rheb is a small GTPase primarily known for activating mammalian target of rapamycin complex 1 (mTORC1) and promoting cell growth in response to insulin and nutrients (amino acids, glucose). Shortage of glucose activates adenosine 5'-monophosphate-activated protein kinase (AMPK), which induces catabolic processes that produce ATP and suppresses energy-consuming anabolic reactions. As part of the latter response, AMPK activates the TSC1-TSC2 tumor suppressor complex, which in turn inhibits Rheb, thereby reducing mTORC1 activity and consequently suppressing protein synthesis. We recently identified an mTORC1-independent Rheb-to-AMPK feedback signaling loop in Tsc2-null in vitro models of Tuberous Sclerosis Complex (TSC). In addition to activating AMPK, Rheb reduced the nuclear levels of the cyclin-dependent kinase inhibitor p27(KIP1) (p27). Importantly, Rheb-mediated repression of p27 correlated with activation of Cdk2 and cell proliferation, and with tumor formation by TSC cells. Considering that AMPK was previously reported to regulate stability and subcellular localization of p27, we hypothesize that Rheb regulates p27 in TSC cells by activating AMPK. This article discusses how Rheb-to-AMPK, and p27 signaling may impact on disease progression and treatment of TSC, including sporadic lymphangioleiomyomatosis (S-LAM) and malignancies.
Collapse
Affiliation(s)
- Markus D Lacher
- Helen Diller Family Comprehensive Cancer Center; University of California; San Francisco, CA USA
| | | | | |
Collapse
|