51
|
Yang Y, Yu J, Huo J, Yan Y. Sesamin Attenuates Obesity-Associated Nonalcoholic Steatohepatitis in High-Fat and High-Fructose Diet-Fed Mice. J Med Food 2023; 26:176-184. [PMID: 36637806 DOI: 10.1089/jmf.2022.k.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study explored the effects of sesamin on nonalcoholic steatohepatitis (NASH). High-fat and high-fructose diet-fed mice supplemented with or without sesamin. The results suggested that sesamin-treated mice lost body weight and fat tissue weight, had lower levels of serum metabolic parameters, and insulin resistance was mitigated. Histological examinations showed that sesamin treatment mitigated the progression of hepatic steatosis, and inflammation. In addition, sesamin enhanced hepatic antioxidant capacity, and decreased the activations of hepatic c-jun N-terminal kinase, inhibitor of kappa B kinase α, and insulin receptor substrate 1 as well as hepatic interleukin-6 and tumor necrosis factor-alpha levels. Further experiments indicated that sesamin treatment downregulated GRP78 and phospho-inositol-requiring enzyme 1 (IRE1) expression, and upregulated x-box binding protein 1 (XBP1) expression in hepatic tissue. The aforementioned results suggest that sesamin alleviates obesity-associated NASH, which might be linked to the effect of sesamin on the regulation of the hepatic endoplasmic reticulum stress-IRE1/XBP1 pathway. Thus, sesamin may be a good food functional ingredient in the treatment of obesity-associated NASH.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiayao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
52
|
Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2023; 227:505-523. [PMID: 36495992 DOI: 10.1016/j.ijbiomac.2022.12.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Hydrogel is a three-dimensional network polymer material rich in water. It is widely used in the biomedical field because of its unique physical and chemical properties and good biocompatibility. In recent years, the incidence of inflammatory bowel disease (IBD) has gradually increased, and the disadvantages caused by traditional drug treatment of IBD have emerged. Therefore, there is an urgent need for new treatments to alleviate IBD. Hydrogel has become a potential therapeutic platform. However, there is a lack of comprehensive review of functional hydrogels for IBD treatment. This paper first summarizes the pathological changes in IBD sites. Then, the action mechanisms of hydrogels prepared from chitosan, sodium alginate, hyaluronic acid, functionalized polyethylene glycol, cellulose, pectin, and γ-polyglutamic acid on IBD were described from aspects of drug delivery, peptide and protein delivery, biologic therapies, loading probiotics, etc. In addition, the advanced functions of IBD treatment hydrogels were summarized, with emphasis on adhesion, synergistic therapy, pH sensitivity, particle size, and temperature sensitivity. Finally, the future development direction of IBD treatment hydrogels has been prospected.
Collapse
Affiliation(s)
- Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,China.
| |
Collapse
|
53
|
El-Kashef DH, Sharawy MH. Hepatoprotective effect of nicorandil against acetaminophen-induced oxidative stress and hepatotoxicity in mice via modulating NO synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14253-14264. [PMID: 36149558 PMCID: PMC9908717 DOI: 10.1007/s11356-022-23139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Acetaminophen (APAP) overdose can produce hepatotoxicity and consequently liver damage. This study investigated the hepatoprotective impacts of nicorandil on hepatic damage induced by APAP. Nicorandil was administered orally (100 mg/kg) for seven days before APAP challenge (500 mg/kg, ip). Pretreatment with nicorandil reduced serum levels of aminotransferases, bilirubin, GGT and LDH, and increased serum level of albumin. Moreover, nicorandil inhibited the increase in liver MDA levels and reversed the decline in GSH content and SOD activity. Besides, it notably alleviated APAP-induced necrosis observed in histopathological findings. Additionally, nicorandil alleviated APAP-induced NO overproduction and iNOS expression; however, the protein expression of eNOS was significantly increased. Moreover, nicorandil markedly reduced hepatic TNF-α and NF-κB levels, in addition to decreasing the protein expression of MPO in hepatic tissues. Furthermore, flow cytometry (annexin V-FITC/PI) displayed a significant decline in late apoptotic and necrotic cells, and an increase in viable cells in nicorandil group. Also, nicorandil caused a significant boost in hepatic antiapoptotic marker bcl-2 level. The presented data proposed that the protective effect of nicorandil might be attributed to its antioxidant, its impact on NO homeostasis, and its anti-inflammatory properties. Therefore, nicorandil may be a promising candidate for protection from liver injury induced by APAP.
Collapse
Affiliation(s)
- Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Maha H. Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
54
|
Crosstalk of TNF-α, IFN-γ, NF-kB, STAT1 and redox signaling in lipopolysaccharide/D-galactosamine/dimethylsulfoxide-induced fulminant hepatic failure in mice. Saudi Pharm J 2023; 31:370-381. [PMID: 37026046 PMCID: PMC10071328 DOI: 10.1016/j.jsps.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 μl/kg dimethyl sulfoxide co-administration. Co-administration of 200 μl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 μl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.
Collapse
|
55
|
Fang Z, Li Y, Wang J, Wang X, Huang L, Sun L, Deng Q. Alleviative Effect of Threonine on Cadmium-Induced Liver Injury in Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03506-x. [PMID: 36454454 DOI: 10.1007/s12011-022-03506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
As a toxic trace element commonly found in food, cadmium (Cd) can cause severe liver injury. Our previous study showed that threonine (Thr) could significantly alleviate Cd toxicity in yeast. To investigate the effect of Thr on Cd-induced liver injury in mice, twenty-four mice were randomly divided into four groups: control, Cd, and low/high dose of Thr-treatment groups (0.04 and 0.08 mmol/kg/day, respectively). After 7 days of continuous treatment, the alleviative effect of Thr on liver injury in Cd-exposed mice was assessed. The results showed that Thr significantly reduced the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in Cd-exposed mice. Histological analysis showed that Thr decreased Cd-induced hepatic steatosis, zonal necrosis, and inflammatory cell infiltration. Thr also reduced the Cd-induced malondialdehyde (MDA) and O2- levels and restored superoxide dismutase (SOD) and catalase (CAT) activities in the liver. Further investigation showed that Thr significantly suppressed Cd-induced inflammatory response (tumor necrosis factor-α and interleukin-6) and restored the level of anti-apoptotic protein (Blc-2) but inhibited the elevation of pro-apoptotic proteins (Bax and caspase-3), as well as the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, Thr alleviated Cd-induced liver injury through reducing Cd-induced oxidative stress, inflammation, and attenuating hepatocyte apoptosis via PI3K/AKT-related signaling pathway.
Collapse
Affiliation(s)
- Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Jingwen Wang
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China.
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China.
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China.
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China.
| | - Xinran Wang
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Linru Huang
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088, China
| |
Collapse
|
56
|
Salama SA, Elshafey MM. Cross-talk between PPARγ, NF-κB, and p38 MAPK signaling mediates the ameliorating effects of bergenin against the iron overload-induced hepatotoxicity. Chem Biol Interact 2022; 368:110207. [DOI: 10.1016/j.cbi.2022.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
|
57
|
Jia Z, Liu L, Liu J, Fang C, Pan M, Zhang J, Li Y, Xian Z, Xiao H. Assessing potential liver injury induced by Polygonum multiflorum using potential biomarkers via targeted sphingolipidomics. PHARMACEUTICAL BIOLOGY 2022; 60:1578-1590. [PMID: 35949191 PMCID: PMC9377235 DOI: 10.1080/13880209.2022.2099908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Polygonum multiflorum Thunb. (Polygonaceae) (PM) can cause potential liver injury which is typical in traditional Chinese medicines (TCMs)-induced hepatotoxicity. The mechanism involved are unclear and there are no sensitive evaluation indicators. OBJECTIVE To assess PM-induced liver injury, identify sensitive assessment indicators, and screen for new biomarkers using sphingolipidomics. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were randomly divided into four groups (control, model with low-, middle- and high-dose groups, n = 6 each). Rats in the three model groups were given different doses of PM (i.g., low/middle/high dose, 2.7/8.1/16.2 g/kg) for four months. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and liver were quantitatively analyzed. Fixed liver tissue sections were stained with haematoxylin and eosin and examined under a light microscope. The targeted sphingolipidomic analysis of plasma was performed using high-performance liquid chromatography tandem mass spectrometry. RESULTS The maximal tolerable dose (MTD) of PM administered intragastrically to mice was 51 g/kg. Sphingolipid profiling of normal and PM-induced liver injury SD rats revealed three potential biomarkers: ceramide (Cer) (d18:1/24:1), dihydroceramide (d18:1/18:0)-1-phosphate (dhCer (d18:1/18:0)-1P) and Cer (d18:1/26:1), at 867.3-1349, 383.4-1527, and 540.5-658.7 ng/mL, respectively. A criterion for the ratio of Cer (d18:1/24:1) and Cer (d18:1/26:1) was suggested and verified, with a normal range of 1.343-2.368 (with 95% confidence interval) in plasma. CONCLUSIONS Three potential biomarkers and one criterion for potential liver injury caused by PM that may be more sensitive than ALT and AST were found.
Collapse
Affiliation(s)
- Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Fang
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxia Pan
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Xian
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
58
|
Wang J, Fang Z, Li Y, Sun L, Liu Y, Deng Q, Zhong S. Ameliorative Effects of Oyster Protein Hydrolysates on Cadmium-Induced Hepatic Injury in Mice. Mar Drugs 2022; 20:md20120758. [PMID: 36547905 PMCID: PMC9784078 DOI: 10.3390/md20120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cadmium (Cd) is a widespread environmental toxicant that can cause severe hepatic injury. Oyster protein hydrolysates (OPs) have potential effects on preventing liver disease. In this study, thirty mice were randomly divided into five groups: the control, Cd, Cd + ethylenediaminetetraacetic acid (EDTA, 100 mg/kg), and low/high dose of OPs-treatment groups (100 mg/kg or 300 mg/kg). After continuous administration for 7 days, the ameliorative effect of OPs on Cd-induced acute hepatic injury in Cd-exposed mice was assessed. The results showed that OPs significantly improved the liver function profiles (serum ALT, AST, LDH, and ALP) in Cd-exposed mice. Histopathological analysis showed that OPs decreased apoptotic bodies, hemorrhage, lymphocyte accumulation, and inflammatory cell infiltration around central veins. OPs significantly retained the activities of SOD, CAT, and GSH-Px, and decreased the elevated hepatic MDA content in Cd-exposed mice. In addition, OPs exhibited a reductive effect on the inflammatory responses (IL-1β, IL-6, and TNF-α) and inhibitory effects on the expression of inflammation-related proteins (MIP-2 and COX-2) and the ERK/NF-κB signaling pathway. OPs suppressed the development of hepatocyte apoptosis (Bax, caspase-3, and Blc-2) and the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, OPs ameliorated the Cd-induced hepatic injury by inhibiting oxidative damage and inflammatory responses, as well as the development of hepatocyte apoptosis via regulating the ERK/NF-κB and PI3K/AKT-related signaling pathways.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence: (Z.F.); (S.Z.); Tel./Fax: +86-759-2396027 (Z.F.)
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence: (Z.F.); (S.Z.); Tel./Fax: +86-759-2396027 (Z.F.)
| |
Collapse
|
59
|
Pretzsch E, Nieß H, Khaled NB, Bösch F, Guba M, Werner J, Angele M, Chaudry IH. Molecular Mechanisms of Ischaemia-Reperfusion Injury and Regeneration in the Liver-Shock and Surgery-Associated Changes. Int J Mol Sci 2022; 23:12942. [PMID: 36361725 PMCID: PMC9657004 DOI: 10.3390/ijms232112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a major challenge during liver surgery, liver preservation for transplantation, and can cause hemorrhagic shock with severe hypoxemia and trauma. The reduction of blood supply with a concomitant deficit in oxygen delivery initiates various molecular mechanisms involving the innate and adaptive immune response, alterations in gene transcription, induction of cell death programs, and changes in metabolic state and vascular function. Hepatic IRI is a major cause of morbidity and mortality, and is associated with an increased risk for tumor growth and recurrence after oncologic surgery for primary and secondary hepatobiliary malignancies. Therapeutic strategies to prevent or treat hepatic IRI have been investigated in animal models but, for the most part, have failed to provide a protective effect in a clinical setting. This review focuses on the molecular mechanisms underlying hepatic IRI and regeneration, as well as its clinical implications. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Florian Bösch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
60
|
Lin W, Zhang X, Zhang C, Li L, Zhang J, Xie P, Zhan Y, An W. Deletion of Smurf1 attenuates liver steatosis via stabilization of p53. J Transl Med 2022; 102:1075-1087. [PMID: 36775348 DOI: 10.1038/s41374-022-00802-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, characterized by excessive hepatic lipid accumulation. Recently, we demonstrated that Smad ubiquitination regulatory factor 1 (Smurf1) deficiency significantly alleviates mouse hepatic steatosis. However, the mechanism of Smurf1-regulating hepatic lipid accumulation requires further exploration and clarification. Hence, this study explores the potential mechanism of Smurf1 in hepatic steatosis. In this study, hepatic Smurf1 proteins in NAFLD patients and healthy individuals were determined using immunohistochemical staining. Control and NAFLD mouse models were established by feeding Smurf1-knockout (KO) and wild-type mice with either a high-fat diet (HFD) or a chow diet (CD) for eight weeks. Oleic acid (OA)-induced steatotic hepatocytes were used as the NAFLD mode cells. Lipid content in liver tissues was analyzed. Smurf1-MDM2 interaction, MDM2 and p53 ubiquitination, and p53 target genes expression in liver tissues and hepatocytes were analyzed. We found that hepatic Smurf1 is highly expressed in NAFLD patients and HFD-induced NAFLD mice. Its deletion attenuates hepatocyte steatosis. Mechanistically, Smurf1 interacts with and stabilizes mouse double minute 2 (MDM2), promoting p53 degradation. In Smurf1-deficient hepatocytes, an increase in p53 suppresses SREBP-1c expression and elevates the expression of both malonyl-CoA decarboxylase (MCD) and lipin1 (Lpin1), two essential proteins in lipid catabolism. Contrarily, the activities of these three proteins and hepatocyte steatosis are reversed by p53 knockdown in Smurf1-deficient hepatocytes. This study shows that Smurf1 is involved in the pathogenesis of NAFLD by balancing de novo lipid synthesis and lipolysis.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chuan Zhang
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ping Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China.
| | - Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Wei An
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China.
| |
Collapse
|
61
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
62
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
63
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
64
|
Belardi BE, Mattera MSDLC, Tsosura TVS, Dos Santos RM, Cantiga da Silva C, Tavares Ângelo Cintra L, Chiba FY, Bravo LT, Carvalho NR, Carnevali AC, de Oliveira RAF, Ervolino E, Matsushita DH. Effect of maternal true combined endodontic-periodontal lesion on insulin and inflammatory pathway in adult offspring. J Periodontol 2022; 94:487-497. [PMID: 35994367 DOI: 10.1002/jper.22-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Maternal periodontal disease (PED) and apical periodontitis (AP) are associated insulin resistance (IR), increased tumor necrosis factor-α (TNF-α) levels, and alterations in insulin signaling (IS) in the gastrocnemius muscle (GM) of adult offspring. TNF-α stimulates I kappa B kinase (IKK) and c-Jun N-terminal protein kinase (JNK), resulting in IS attenuation. However, studies that investigated the maternal true endodontic-periodontal lesion (EPL) in offspring are scarce, and in this case, the impact could be even higher. This study aimed to evaluate the effects of EPL on the IR, IS, and inflammatory pathways on the offspring GM. METHODS Female Wistar rats were distributed into control, AP, PED, and EPL groups. After 30 days of oral inflammation induction, rats from all groups were allowed to mate with healthy rats. The bodyweight of the offspring was assessed from birth to 75 days of age. After 75 days, the following measurements were performed: glycemia, insulinemia, IR, TNF-α content, and IKKα/β, JNK, pp185 (Tyr), and IRS-1 (Ser) phosphorylation status in the GM. RESULTS Maternal PED and EPL were associated with low birth weights. All maternal oral inflammations promoted IR and IS impairment in the GM and only maternal PED and EPL caused an increase in TNF-α content and IKKα/β phosphorylation status in the GM of offspring. The EPL-o group showed worsening of metabolic changes when compared to offspring of rats with AP or PED. CONCLUSION Association of maternal AP and PED promoted a more pronounced worsening in the health of the adult offspring. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bianca Elvira Belardi
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Maria Sara de Lima Coutinho Mattera
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thaís Verônica Saori Tsosura
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Rodrigo Martins Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Cristiane Cantiga da Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (unesp), Araçatuba, Brazil
| | - Luciano Tavares Ângelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (unesp), Araçatuba, Brazil
| | - Fernando Yamamoto Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (unesp), Araçatuba, Brazil
| | - Lara Teschi Bravo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (unesp), Araçatuba, Brazil
| | - Nubia Ramos Carvalho
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Ana Carolina Carnevali
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Renan Akira Fujii de Oliveira
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (unesp), Araçatuba, Brazil
| | - Edilson Ervolino
- Institute of Biosciences, Botucatu, Brazil and Department of Basic Sciences, Division of Histology, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Doris Hissako Matsushita
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
65
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
66
|
Morita K, Mizuno T, Kusuhara H. Investigation of a Data Split Strategy Involving the Time Axis in Adverse Event Prediction Using Machine Learning. J Chem Inf Model 2022; 62:3982-3992. [PMID: 35971760 DOI: 10.1021/acs.jcim.2c00765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adverse events are a serious issue in drug development, and many prediction methods using machine learning have been developed. The random split cross-validation is the de facto standard for model building and evaluation in machine learning, but care should be taken in adverse event prediction because this approach does not strictly match the real-world situation. The time split, which uses the time axis, is considered suitable for real-world prediction. However, the differences in model performance obtained using the time and random splits are not clear due to the lack of comparable studies. To understand the differences, we compared the model performance between the time and random splits using nine types of compound information as input, eight adverse events as targets, and six machine learning algorithms. The random split showed higher area under the curve values than did the time split for six of eight targets. The chemical spaces of the training and test datasets of the time split were similar, suggesting that the concept of applicability domain is insufficient to explain the differences derived from the splitting. The area under the curve differences were smaller for the protein interaction than for the other datasets. Subsequent detailed analyses suggested the danger of confounding in the use of knowledge-based information in the time split. These findings indicate the importance of understanding the differences between the time and random splits in adverse event prediction and suggest that appropriate use of the splitting strategies and interpretation of results are necessary for the real-world prediction of adverse events. We provide the analysis code and datasets used in the present study at https://github.com/mizuno-group/AE_prediction.
Collapse
Affiliation(s)
- Katsuhisa Morita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
67
|
Acar H, Sorgun O, Yurtseve G, Bora ES, Erbaş O. Antifibrotic preventive effect of polyethylene glycol (PEG) 3350 in methotrexateinduced hepatoxicity model. Acta Cir Bras 2022; 37:e370507. [PMID: 35894304 PMCID: PMC9323303 DOI: 10.1590/acb370507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Liver damage caused by drugs and other chemicals accounts for about 5% of all cases. Methotrexate (MTX), a folic acid analogue, is a first-line synthetic antimetabolite agent routinely used in the treatment of rheumatoid arthritis and other autoimmune and chronic inflammatory diseases. Polyethylene glycol (PEG) has antioxidant activity. In this study, we evaluated biochemically and histopathologically the antifibrotic effect of PEG 3350 administered intraperitoneally to prevent methotrexate-induced liver damage in rats. METHODS A total of 30 male rats including 10 rats was given no drugs (normal group), and 20 rats received single-dose 20 mg/kg MTXfor induced liver injury in this study. MTX was given to 20 rats, which were divided in two groups. Group 1 rats was given PEG30 mg/kg/day (Merck) intraperitoneally, and Group 2 rats % 0.9 NaCl saline 1 mL/kg/day intraperitoneally daily for two weeks. RESULTS Transforming growth factor beta (TGF-β), plasma malondialdehyde (MDA), liver MDA, serum tumour necrosis factor alpha (TNF-α), alanine aminotransferase and plasma pentraxin-3 levels and, according to tissue histopathology, hepatocyte necrosis, fibrosis and cellular infiltration were significantly better in MTX+PEG group than in MTX+saline group. CONCLUSIONS PEG 3350 is a hope for toxic hepatitis due to other causes, since liver damage occurs through oxidative stress and cell damage, similar to all toxic drugs.
Collapse
Affiliation(s)
- Hüseyin Acar
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Omay Sorgun
- MD. Ödemiş State Hospital - Department of Emergency Medicine - İzmir, Turkey
| | - Güner Yurtseve
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Ejder Saylav Bora
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Oytun Erbaş
- Associate professor. Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - Istanbul, Turkey
| |
Collapse
|
68
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
69
|
Gür FM, Bilgiç S. A synthetic prostaglandin E1 analogue, misoprostol, ameliorates paclitaxel-induced oxidative damage in rat brain. Prostaglandins Other Lipid Mediat 2022; 162:106663. [PMID: 35809771 DOI: 10.1016/j.prostaglandins.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The main objective of our study was to examine the protection of misoprostol (MP) on paclitaxel (PAX) side effects in rat brains. Twenty-eight female Sprague-Dawley rats were provided to form 4 groups, each containing seven rats: the control group was given 1 mL of 0.9% NaCl intraperitoneally (i.p.) and 1 mL of 0.9% NaCl orally for six days. In treatment groups, each rat was injected with 2 mg/kg PAX i.p. on days 0, 2, 4, and 6 of the study, and 0.2 mg/kg/day MP was given by oral gavage for six days. Levels of malondialdehyde (MDA) and glutathione (GSH), activities of superoxide dismutase (SOD), and catalase (CAT) of tissue samples were measured. In immunohistochemical analyzes, it was observed that tumor necrosis factor-alpha (TNF-α) and cleaved caspase-3 expression in the cerebellum hippocampus and cerebral cortex were increased in the PAX group compared to the other groups. The increase in TNF-α and cleaved caspase-3 expression detected in PAX group rats were significantly decreased in the PAX + MP group. The results obtained in this study confirm the hypotheses that PAX can increase apoptosis in brain tissue both directly and through cytokines such as TNF-α. It also shows that MP can be used as a protective and therapeutic pharmacological agent against the harmful effects of PAX on brain tissue. In addition, it seems that the use of MP can improve PAX-induced brain damage by preventing oxidative damage.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
70
|
Lee GR, Lee HI, Kim N, Lee J, Kwon M, Kang YH, Song HJ, Yeo CY, Jeong W. Dynein light chain LC8 alleviates nonalcoholic steatohepatitis by inhibiting NF-κB signaling and reducing oxidative stress. J Cell Physiol 2022; 237:3554-3564. [PMID: 35696549 DOI: 10.1002/jcp.30811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.
Collapse
Affiliation(s)
- Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ye Hee Kang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hyeong Ju Song
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
71
|
Ameliorative Effect of the Combination of the Cichorium intybus Whole Extract and Melatonin on Doxorubicin-induced Hepatotoxicity in Mice. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Doxorubicin is anticancer that is a choice for the treatment of many malignancies. The nature of its toxic effects on the liver and other organs is the harmful character that leads to use with caution. Then, it is necessary to supplement an antioxidant with doxorubicin to reduce its side effects. Objectives: Cichorium intybus (C. intybus) is a plant with hepatoprotective effects. Melatonin is an antioxidant similar to vitamins. We investigated the repairing effects of C. intybus -melatonin together against doxorubicin-induced hepatotoxicity. Methods: Thirty balb/c mice in the weight range of 20 g to 25 g were divided into 5 equal groups of 6 animals each. The groups were as Control: normal saline; DOX: doxorubicin; Chicory: chicory whole plant extract + DOX; Melatonin; melatonin + DOX; Both Chicory-Melatonin + DOX. We assessed histopathology to define necrosis, vacuolar degeneration, and inflammation. In addition, we used immunohistochemistry to evaluate the TNFα proving the rate of inflammation. Results: The mean sum of histological grading in the control group was 0.00 in contrast to severe damage of the hepatic parenchyma grading 11.34 in sum. The mean sum grade of the other groups including Chicory, Melatonin, and Both Chicory-Melatonin were 8.17, 4.18, and 2.49, respectively. We found that the increased liver damage and TNF-α expression induced by DOX could be improved by applying therapeutic care with the coadministration of the C. intybus extract and Melatonin. Conclusions: Chicory and Melatonin have a healing ability against doxorubicin-induced hepatic lesions.
Collapse
|
72
|
Zhang M, Tu W, Zhang Q, Wu X, Zou X, Jiang S. Osteocalcin reduces fat accumulation and inflammatory reaction by inhibiting ROS-JNK signal pathway in chicken embryonic hepatocytes. Poult Sci 2022; 101:102026. [PMID: 36174267 PMCID: PMC9519800 DOI: 10.1016/j.psj.2022.102026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022] Open
Abstract
Osteocalcin (OCN) has a function in preventing fatty liver hemorrhagic syndrome (FLHS) in poultry. The aim of this study was to investigate the effects of OCN on fat emulsion stimulated chicken embryonic hepatocytes and related signaling pathways. The primary chicken embryonic hepatocytes were isolated from the incubated 15-day (E15) pathogen free eggs and cultured with dulbecco's modified eagle medium (DMEM). After the hepatocyte density reached 80%, the cells were divided into 5 groups: control group (CONT), fat emulsion group (FE, 10% FE, v/v), FE with ucOCN at 1 ng/mL (FE-LOCN), 3 ng/mL (FE-MOCN), and 9 ng/mL (FE-HOCN). In addition, 2 mM N-Acetyl-L-cysteine (NAC) a reactive oxygen species (ROS) scavenger, and 5 μM SP600125, a Jun N-terminal kinase (JNK) inhibitor, were added separately in to the DMEM with 10% FE to test effects of FE on the function of ROS-JNK signal pathway. The number of hepatocytes, cell ultra-microstructure, viability, and apoptosis were detected after 48 h treatment, and the protein expressions and enzyme concentrations were detected after 72 h treatment. The results showed that, compared to the control group, FE increased the triglyceride (TG) concentration and lipid droplets (LDs) in chicken embryonic hepatocytes (P < 0.05), and induced hepatocytic edema with obviously mitochondrial swelling, membrane damage, and cristae rupture. FE also decreased ATP concentration, increased ROS concentrations and mitochondrial DNA (mtDNA) copy number, promoted inflammatory interleukin-1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF-α) concentrations and hepatocytic apoptosis rate, and raised phospho-c-Jun N-terminal kinase (p-JNK) protein expressions. Compared to the FE group, ucOCN significantly increased hepatocyte viability, reduced hepatocytic TG concentrations and LDs numbers, and alleviated hepatocytic edema and mitochondrial swelling. Furthermore, ucOCN significantly decreased ROS concentrations, increased ATP concentrations, reduced IL-1, IL-6, TNF-α concentrations and hepatocytic apoptosis rate, and inhibited p-JNK protein expressions (P < 0.05). NAC had the similar functions of ucOCN reduced the ROS concentration and inhibited the TNF-α protein expression and p-JNK/JNK ration. Similarly, SP600125 reduced p-JNK/JNK protein expression, IL-1, IL-6, TNF-α, and TG concentrations without effects on ROS concentration and hepatocytic apoptosis. These results suggest that ucOCN alleviates FE-induced mitochondrial damage, cellular edema, and apoptosis of hepatocytes. These results reveal that the functions of ucOCN in reducing fat accumulation and inflammatory reaction in chicken embryonic hepatocytes are mostly via inhibiting the ROS-JNK signal pathway.
Collapse
|
73
|
Rao J, Qiu J, Ni M, Wang H, Wang P, Zhang L, Wang Z, Liu M, Cheng F, Wang X, Lu L. Macrophage nuclear factor erythroid 2-related factor 2 deficiency promotes innate immune activation by tissue inhibitor of metalloproteinase 3-mediated RhoA/ROCK pathway in the ischemic liver. Hepatology 2022; 75:1429-1445. [PMID: 34624146 PMCID: PMC9300153 DOI: 10.1002/hep.32184] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of reactive oxygen species (ROS) and inflammation and has been implicated in both human and murine inflammatory disease models. We aimed to characterize the roles of macrophage-specific Nrf2 in liver ischemia/reperfusion injury (IRI). APPROACH AND RESULTS First, macrophage Nrf2 expression and liver injury in patients undergoing OLT or ischemia-related hepatectomy were analyzed. Subsequently, we created a myeloid-specific Nrf2-knockout (Nrf2M-KO ) strain to study the function and mechanism of macrophage Nrf2 in a murine liver IRI model. In human specimens, macrophage Nrf2 expression was significantly increased in liver tissues after transplantation or hepatectomy. Interestingly, lower Nrf2 expressions correlated with more severe liver injury postoperatively. In a mouse model, we found Nrf2M-KO mice showed worse hepatocellular damage than Nrf2-proficient controls based on serum biochemistry, pathology, ROS, and inflammation. In vitro, Nrf2 deficiency promoted innate immune activation and migration in macrophages on toll-like receptor (TLR) 4 stimulation. Microarray profiling showed Nrf2 deletion caused markedly lower transcriptional levels of tissue inhibitor of metalloproteinase 3 (Timp3). ChIP-seq, PCR, and luciferase reporter assay further demonstrated Nrf2 bound to the promoter region of Timp3. Moreover, a disintegrin and metalloproteinase (ADAM) 10/ROCK1 was specifically increased in Nrf2-deficient macrophages. Increasing Timp3 expression effectively inhibited ADAM10/ROCK1 expression and rescued the Nrf2M-KO -mediated inflammatory response on TLR4 stimulation in vitro. Importantly, Timp3 overexpression, recombinant Timp3 protein, or ROCK1 knockdown rescued Nrf2M-KO -related liver IRI by inhibiting macrophage activation. CONCLUSIONS In conclusion, macrophage Nrf2 mediates innate proinflammatory responses, attenuates liver IRI by binding to Timp3, and inhibits the RhoA/ROCK pathway, which provides a therapeutic target for clinical organ IRI.
Collapse
Affiliation(s)
- Jianhua Rao
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Jiannan Qiu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Ming Ni
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Hao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Peng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lei Zhang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Zeng Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Mu Liu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Feng Cheng
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Xuehao Wang
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| | - Ling Lu
- Research Unit of Liver Transplantation and Transplant ImmunologyKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesHepatobiliary Center of The First Affiliated HospitalNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjingChina
| |
Collapse
|
74
|
Othman R, Wang HP, Elabd H, Xie DK, Yao H, O’Bryant P, Rapp D. The effect of density on sex differentiation, sexual dimorphism, stress, and related gene expression in yellow perch. PLoS One 2022; 17:e0267904. [PMID: 35507560 PMCID: PMC9067673 DOI: 10.1371/journal.pone.0267904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
A 180-day experiment was conducted to evaluate the effects of density on sex differentiation, sexual dimorphism, cortisol level, and stress related gene expression. Yellow perch, Perca flavescens, with initial mean body weight of 0.03 ± 0.001 g were reared in three different stocking densities: 1, 2, and 4 fish/L, termed as low (LD), moderate (MD), and high (HD) density, respectively, in a flow-through tank system. Results showed no significant differences in sex ratio in all density groups compared to normal population 1:1, and sexual size dimorphism (SSD) appeared when male and female were as small as the mean size reaching 11.5 cm and 12.3 cm in total length (TL) or 13.2g and 16.9g in body weight (BW), respectively. This female-biased sexual growth dimorphism was more pronounced in LD, although it was observed across all density groups. A significantly higher condition factor (K) of females than males in the LD group, and significantly higher R values of LD and MD than HD with the length/weight (L/W) linear relationships in females, were observed. Parallelly, fish reared in LD showed significantly higher mean body weight than those in the MD and HD groups, but there were no significant differences between the MD and HD. Similar results were also observed in all the other parameters of weight gain, specific growth rate (SGR), condition factor (K), and survival. These findings suggested that high density not only affected growth itself, but also affected SSD, growth trajectory or body shape, and general wellbeing in fish, especially in females. There were no significant differences in gonadosomatic index (GSI) and viscerosomatic index (VSI) among all the density groups; however, the hepatosomatic index (HSI) of LD was significantly higher than MD and HD, suggesting high density affected liver reserves or functions. Physiologically, plasma cortisol level was significantly highest in the LD among all groups, followed by MD, and lowest in HD. At the molecular level, the expression of the 70-kDa heat shock protein (Hsp70), glutathione peroxidase (GPx), and superoxide dismutase (SOD) genes involved in cellular stress were significantly upregulated in the HD group. The most significantly downregulated expression of these genes was consistently observed in the MD when compared to the LD and HD groups. In conclusion, increasing density induced chronic stress in yellow perch without affecting sex differentiation, but negatively affected expression of stress-related genes and mobilization of liver reserve, resulting in poorer wellbeing and reduced SSD, growth, and survival.
Collapse
Affiliation(s)
- Rafidah Othman
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| | - Han-Ping Wang
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
- * E-mail:
| | - Hiam Elabd
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| | - Ding-Kun Xie
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| | - Hong Yao
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| | - Paul O’Bryant
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| | - Dean Rapp
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, Piketon, OH, United States of America
| |
Collapse
|
75
|
Golden JW, Zeng X, Cline CR, Smith JM, Daye SP, Carey BD, Blancett CD, Shoemaker CJ, Liu J, Fitzpatrick CJ, Stefan CP, Garrison AR. The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathog 2022; 18:e1010485. [PMID: 35587473 PMCID: PMC9119488 DOI: 10.1371/journal.ppat.1010485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease. When IFN-I signaling was blocked by antibody, MAVS-deficient mice lost significant weight, but were uniformly protected from lethal disease, whereas all control mice succumbed to infection. Cytokine activity in the infected MAVS-deficient mice was markedly blunted. Subsequent investigation revealed that CCHFV infected mice lacking TNF-α receptor signaling (TNFA-R-deficient), but not IL-6 or IL-1 activity, had more limited liver injury and were largely protected from lethal outcomes. Treatment of mice with an anti-TNF-α neutralizing antibody also conferred partial protection in a post-virus exposure setting. Additionally, we found that a disease causing, but non-lethal strain of CCHFV produced more blunted inflammatory cytokine responses compared to a lethal strain in mice. Our work reveals that MAVS activation and cytokine production both contribute to CCHFV pathogenesis, potentially identifying new therapeutic targets to treat this disease.
Collapse
Affiliation(s)
- Joseph W. Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Curtis R. Cline
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey M. Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sharon P. Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Brian D. Carey
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Candace D. Blancett
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Charles J. Shoemaker
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Collin J. Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Christopher P. Stefan
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Aura R. Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
76
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
77
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
78
|
Potential Pathophysiological Mechanisms Underlying Multiple Organ Dysfunction in Cytokine Release Syndrome. Mediators Inflamm 2022; 2022:7137900. [PMID: 35431655 PMCID: PMC9007670 DOI: 10.1155/2022/7137900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
In recent decades, many serious respiratory infections have broken out all over the world, including SARS-CoV, MERS, and COVID-19. They are characterized by strong infectivity, rapid disease progression, high mortality, and poor prognosis. Excessive immune system activation results in cytokine hypersecretion, which is an important reason for the aggravation of symptoms, and can spread throughout the body leading to systemic multiple organ dysfunction, namely, cytokine release syndrome (CRS). Although many diseases related to CRS have been identified, the mechanism of CRS is rarely mentioned clearly. This review is intended to clarify the pathogenetic mechanism of CRS in the deterioration of related diseases, describe the important signaling pathways and clinical pathophysiological characteristics of CRS, and provide ideas for further research and development of specific drugs for corresponding targets to treat CRS.
Collapse
|
79
|
Upregulation of Nrf2 signaling and suppression of ferroptosis and NF-κB pathway by leonurine attenuate iron overload-induced hepatotoxicity. Chem Biol Interact 2022; 356:109875. [PMID: 35247364 DOI: 10.1016/j.cbi.2022.109875] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a major health concern that associates the iron overload diseases including hemochromatosis, sickle cell anemia, and thalassemia. Induction of ferroptosis, oxidative stress, and inflammation substantially mediates the iron-evoked hepatotoxicity. The current work investigated the potential protective effect of the natural alkaloid leonurine against the iron-induced hepatotoxicity and elucidated the underlining molecular mechanisms. Male Wistar rats were treated with iron only (30 mg/kg every other day over a ten-day period via intraperitoneal injection) or with iron and leonurine (leonurine: 100 mg/kg/day per oral via gastric gavage for 10 days) to establish the iron-overload model. Liver and blood specimens were then collected and subjected to molecular, biochemical, and histopathological investigations. The results revealed the ability of leonuirne to suppress the iron-induced ferroptosis as reflected by modulation of the ferroptotic biomarkers glutathione peroxidase 4, cyclooxygenase-2, liver iron content, lipid hydroperoxides, and the leakage of the liver intracellular enzymes. Leonurine alleviated the iron-induced oxidative damage and inflammatory response in the liver tissues as indicated by decreased levels of DNA oxidation, lipid peroxidation, and the pro-inflammatory cytokines. In the same context, it improved the antioxidant potential of the liver tissues and ameliorated the iorn-induced histopathological abnormalities. Mechanistically, leonurine enhanced nuclear translocation of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and increased protein levels of its downstream targets NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1. Additionally, it suppressed the nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NF-κB) and downregulated its downstream pro-inflammatory cytokines tumor necrosis factor-alpha and interleukin-1 beta. The study highlights the hepatoprotective activity of leonurine against the iron-evoked hepatotoxicity that is potentially mediated through modulation of Nrf2 and NF-κB signaling.
Collapse
|
80
|
Mao J, Zhan H, Meng F, Wang G, Huang D, Liao Z, Chen M. Costunolide protects against alcohol-induced liver injury by regulating gut microbiota, oxidative stress and attenuating inflammation in vivo and in vitro. Phytother Res 2022; 36:1268-1283. [PMID: 35084790 DOI: 10.1002/ptr.7383] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
Costunolide (cos) derived from the roots of Dolomiaea souliei (Franch.), which belongs to the Dolomiaea genus in the family Compositae, exert the anti-inebriation effect mainly by inhibiting the absorption of alcohol in the gastrointestinal tract. However, the protective effect of cos against alcohol-induced liver injury (ALI) remains obscure. The present study was aimed to evaluate the hepatoprotective effects of cos (silymarin was used as positive control) against ALI and its potential mechanisms. MTT was used to examine the effect of cos on the cell viability of L-02 cells. Plasma was separated from blood that used to test the levels of TNF-α, IL-6 and IL-12, and LPS while serum separated from blood which used to detect the level of ALT and AST. Liver tissues were obtained for histopathological examination and western blot analysis. Fresh mice feces samples were collected for the detection of bacterial composition. Cos exhibited protective effect against alcoholic-induced liver injury by regulating gut microbiota capacities (higher relative abundance of Firmicutes and Actinobacteria while lower in Bacteroidetes and Proteobacteria), adjusting oxidative stress (reduced the activities of MDA and ROS while promoted SOD, GSH and GSH-PX in L-02 cells) and attenuating inflammation (decreased the levels of ALT, AST, LPS, IL-6, IL-12 and TNF-α) via LPS-TLR4-NF-κB p65 signaling pathway, which might be an active therapeutic agent for treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Dan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
81
|
Ke YC, Chen TC, Tang RC, Lin JN, Lin FH. Development of resveratrol with thiolated alginate as a supplement to prevent nonalcoholic fatty liver disease (NAFLD). APL Bioeng 2022; 6:016102. [PMID: 35178496 PMCID: PMC8828268 DOI: 10.1063/5.0081695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, nonalcoholic fatty liver disease is a common metabolic liver disease of all ages worldwide. However, current pharmacological and surgical treatments are accompanied with side effects and complications. EndoBarrier, a less invasive bariatric surgery, blocks the upper portion of the intestine to reduce nutrition absorption. To mimic the nutrient restriction effect of EndoBarrier, thiol-containing materials may bind to the thiol groups of the mucus with an enhanced mucoadhesive property. Here, we develop thiolated alginate with cysteine conjugation via an N-(3-dimethylaminopropyl)-N-ethylcarbodiimide/N-hydroxysuccinimide reaction. The alginate–cysteine (AC) exhibits excellent mucoadhesive properties and forms a physical barrier in the intestine to reduce absorption significantly, which was tested with both in vitro and in vivo mucoadhesive test and barrier function test. The nontoxicity property of AC was also proven with WST-1 and live and dead stain. In addition, AC demonstrates potent carrier properties of extending the release of resveratrol to improve the efficacy with the test of the transwell system in the release profile. In the long-term therapeutic evaluation, alginate cysteine with resveratrol (ACR) is orally administrated daily to mice with an methionine choline-deficient diet. The results of this in vivo study show that developed ACR could effectively alleviate fat degeneration in the liver and improve fat-related metabolic parameters in serum without hepatocellular damage and kidney dysfunction. In sum, AC was found to be mucoadhesive, reduce glucose absorption, alleviate inflammation, and decrease fatty degradation. This promising material exhibits the potential to be a supplement for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yong-Chen Ke
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | - Tzu-Chien Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | - Rui-Chian Tang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli County 35053, Taiwan
| | - Jhih-Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
82
|
Research Progress on the Pharmacological Action of Schisantherin A. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6420865. [PMID: 35190748 PMCID: PMC8858060 DOI: 10.1155/2022/6420865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Schisantherin A (Sch A) is a dibenzocyclooctadiene lignan monomer isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (S. chinensis). At present, many studies have shown that Sch A has a wide range of pharmacological effects, including its anti-Parkinson and anti-inflammatory effects and ability to protect the liver, protect against ischemia-reperfusion (I/R) injury, suppress osteoclast formation, and improve learning and memory. Its mechanism may be related to the antioxidant, anti-inflammatory, and antiapoptotic properties of Sch A through the MAPK, NF-κB, AKT/GSK3β, and PI3K/AKT pathways. This is the first review of the recent studies on the pharmacological mechanism of Sch A.
Collapse
|
83
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
84
|
Zhong S, Zhang T, Tang L, Li Y. Cytokines and Chemokines in HBV Infection. Front Mol Biosci 2021; 8:805625. [PMID: 34926586 PMCID: PMC8674621 DOI: 10.3389/fmolb.2021.805625] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a leading cause of hepatic inflammation and damage. The pathogenesis of chronic hepatitis B (CHB) infection is predominantly mediated by persistent intrahepatic immunopathology. With the characterization of unique anatomical and immunological structure, the liver is also deemed an immunological organ, which gives rise to massive cytokines and chemokines under pathogenesis conditions, having significant implications for the progression of HBV infection. The intrahepatic innate immune system is responsible for the formidable source of cytokines and chemokines, with the latter also derived from hepatic parenchymal cells. In addition, systemic cytokines and chemokines are disturbed along with the disease course. Since HBV is a stealth virus, persistent exposure to HBV-related antigens confers to immune exhaustion, whereby regulatory cells are recruited by intrahepatic chemokines and cytokines, including interleukin-10 and transforming growth factor β, are involved in such series of causal events. Although the considerable value of two types of available approved treatment, interferons and nucleos(t)ide analogues, effectively suppress HBV replication, neither of them is sufficient for optimal restoration of the immunological attrition state to win the battle of the functional or virological cure of CHB infection. Notably, cytokines and chemokines play a crucial role in regulating the immune response. They exert effects by directly acting on HBV or indirectly manipulating target immune cells. As such, specific cytokines and chemokines, with a potential possibility to serve as novel immunological interventions, combined with those that target the virus itself, seem to be promising prospects in curative CHB infection. Here, we systematically review the recent literature that elucidates cytokine and chemokine-mediated pathogenesis and immune exhaustion of HBV infection and their dynamics triggered by current mainstream anti-HBV therapy. The predictive value of disease progression or control and the immunotherapies target of specific major cytokines and chemokines in CHB infection will also be delineated.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianling Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
85
|
Gao Y, Li ZT, Jin L, Lin J, Fan ZL, Zeng Z, Huang HF. Melatonin attenuates hepatic ischemia-reperfusion injury in rats by inhibiting NF-κB signaling pathway. Hepatobiliary Pancreat Dis Int 2021; 20:551-560. [PMID: 33947635 DOI: 10.1016/j.hbpd.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The sterile inflammatory response is one of the key mechanisms leading to hepatic ischemia-reperfusion injury. Melatonin has been shown to prevent organ injuries, but its roles in the inflammatory response after hepatic ischemia-reperfusion injury have not been fully explored, especially in late ischemia-reperfusion injury. The present study aimed to investigate the roles and possible mechanisms of melatonin in the inflammatory response after hepatic ischemia-reperfusion injury. METHODS Sixty Sprague-Dawley rats were randomly divided into a sham group, ischemia-reperfusion injury group (I/R group), and melatonin-treated group (M + I/R group). The rats in the I/R group were subjected to 70% hepatic ischemia for 45 min, followed by 5 or 24 h of reperfusion. The rats in the M + I/R group were injected with melatonin (10 mg/kg, intravenous injection) 15 min prior to ischemia and immediately before reperfusion. Serum and samples of ischemic liver lobes were harvested for future analysis, and the 7-day survival rate was assessed after hepatic ischemia-reperfusion surgery. RESULTS In comparison with the I/R group, the M + I/R group showed markedly decreased expression levels of inflammatory cytokines (IL-6 and TNF-α) and numbers of apoptotic hepatocytes (P < 0.05). Immunoblotting showed that the expression levels of IL-6, p-NF-κBp65/t-NF-κBp65 and p-IκB-α/t-IκB-α in the M + I/R group were significantly lower than those in the I/R group, and immunofluorescence staining showed that the expression level of p-NF-κBp65 in the M + I/R group was lower than that in the I/R group (P < 0.05). The 7-day survival rates were 20% in the I/R group and 50% in the M + I/R group (P < 0.05). CONCLUSIONS Melatonin downregulated the activity of the NF-κB signaling pathway in the early and late stages of hepatic ischemia-reperfusion injury, alleviated the inflammatory response, protected the liver from ischemia-reperfusion injury, and increased the survival rate.
Collapse
Affiliation(s)
- Yao Gao
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhi-Tao Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li Jin
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jie Lin
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zheng-Lei Fan
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhong Zeng
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Han-Fei Huang
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
86
|
Abbasi E, Vafaei SA, Naseri N, Darini A, Azandaryani MT, Ara FK, Mirzaei F. Protective effects of cerium oxide nanoparticles in non-alcoholic fatty liver disease (NAFLD) and carbon tetrachloride-induced liver damage in rats: Study on intestine and liver. Metabol Open 2021; 12:100151. [PMID: 34870139 PMCID: PMC8626579 DOI: 10.1016/j.metop.2021.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Nanoparticles could represent a therapeutic approach for the treatment of various diseases. It has been reported that cerium oxide nanoparticles (CeO2 NPs) have potential useful effects. Therefore, we aimed to examine the protective effects of the CeO2 NPs in two models of liver injury, non-alcoholic fatty liver disease (NAFLD) and carbon tetrachloride (CCl4)-induced liver fibrosis, in rats. METHODS In this experimental study, male rats were randomly divided into different experimental groups including: Experiment 1; group1: healthy rats received normal saline, 2: CCl4 group, 3: CCl4 + nanoparticle. Experiment 2; group1: healthy rats received chow diet, 2: NAFLD group, 3: NAFLD + nanoparticle. The oxidative stress markers were determined in the liver and intestine. Tumor necrosis factor-α (TNF-α) levels were measured by ELISA. Histopathological changes of liver and intestine were evaluated by light microspore. RESULTS Total antioxidant capacity (TAC) and glutathione (GSH) levels significantly decreased, while malondialdehyde (MDA) and total oxidant status (TOS) were significantly increased in the liver, and intestine of the NAFLD and CCl4 group compared with control rats. However, the use of nanoparticles significantly normalized these markers. The levels of the TNF-α were significantly reduced in the nanoparticle group as compared with NAFLD model and CCl4-treated rats. CeO2 NPs also normalized the liver and intestinal histological changes. CONCLUSIONS Our finding revealed that CeO2 NPs has potential protective effects by increasing antioxidant activity, and reducing inflammation.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nima Naseri
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Darini
- Department of Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | | | - Farhad Kian Ara
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
87
|
Ghanim AMH, Younis NS, Metwaly HA. Vanillin augments liver regeneration effectively in Thioacetamide induced liver fibrosis rat model. Life Sci 2021; 286:120036. [PMID: 34637793 DOI: 10.1016/j.lfs.2021.120036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
AIMS This study has been designed to investigate the role of vanillin either as prophylaxis or treatment in liver regeneration augmentation and liver fibrosis regression in thioacetamide (TAA) induced liver damage. MATERIALS AND METHODS Animals were injected with TAA to induce liver injury (200mg/kg twice weekly) for 8 weeks. In vanillin prophylaxis group; rats were administered vanillin (100 mg/Kg; IP, daily) from day 1 of TAA injection for 8 weeks. In vanillin treatment group; rats were confronted with the same dose of TAA injection for 8 weeks then treated with vanillin (100 mg/Kg, IP, daily) for 4 weeks. ALT, AST activities, serum albumin, hepatic GSH, MDA, HGF, VEGF, IL-6 and TNF-α levels were measured and also, MMP-2, TIMP-1 and cyclin D gene expression were determined. Liver sections were stained with H&E and Sirius red and immunostained for Ki-67 and α-SMA for histological and immunohistological changes analysis. KEY FINDINGS Vanillin improved liver function and histology. Also, showed a remarkable increase in hepatic HGF and VEGF level, and up-regulation of cyclin D1 expression accompanied by a significant up-regulation of MMP-2 and down- regulation of TIMP-1. All these effects were accompanied by TNF-α, IL-6 and oxidative stress significant attenuation. SIGNIFICANCE In conclusion, vanillin enhanced liver regeneration in TAA induced liver damage model; targeting growth factors (HGF, VEGF) and cellular proliferation marker cyclin D1. As well as stimulating fibrosis regression by inhibition of ECM accumulation and enhancing its degradation.
Collapse
Affiliation(s)
- Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt.
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Zagazig University, Zagazig, Egypt.
| | - Heba A Metwaly
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt; Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt.
| |
Collapse
|
88
|
Navaeian M, Ahmadpour-Yazdi H, Asadian S, Gheibi N. The effect of ANGPTL8 protein on proliferation and apoptosis in HepG2 hepatocellular carcinoma cell line. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
89
|
Tantipaiboonwong P, Chaiwangyen W, Suttajit M, Kangwan N, Kaowinn S, Khanaree C, Punfa W, Pintha K. Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells. Molecules 2021; 26:6757. [PMID: 34833849 PMCID: PMC8622939 DOI: 10.3390/molecules26226757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.
Collapse
Affiliation(s)
- Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology Ladkrabang Prince of Chumphon Campus, Pathiu, Chumphon 86160, Thailand;
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Wanisa Punfa
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand; (C.K.); (W.P.)
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (P.T.); (W.C.); (M.S.)
| |
Collapse
|
90
|
Activation of Age-Related Nuclear Factor-κB Signaling Pathway Leads to Chronic Inflammation and Pituitary Fibrosis. World Neurosurg 2021; 157:e417-e423. [PMID: 34757021 DOI: 10.1016/j.wneu.2021.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate the mechanism of pituitary fibrosis in elderly people. METHODS First, 20 pituitary glands obtained from 11 elderly people and 9 young people were studied using Masson's trichrome staining for fibrosis detection. Second, pituitary glands from 12 male rats, including 6 aged rats (OM group) and 6 young rats (YM group), were also studied. Western blotting was performed to detect collagen 1 and phosphorylation of the nuclear factor (NF)-κB subunit p65 in the OM and YM groups. The levels of 8 proinflammatory cytokines (interleukin [IL]-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, interferon-γ, and tumor necrosis factor-α) in the rat pituitary glands were detected using liquid suspension chip technology. Enzyme-linked immunosorbent assays were performed to detect the growth hormone (GH) levels in the venous blood samples from the rats. Next, 12 aged rats were randomly divided into 2 groups: the QNZ (Q)+OM and normal physiological saline (N)+OM groups. The Q+OM and N+OM groups had undergone intervention by intraperitoneally injection of QNZ and physiological saline (1 mg/kg) for 28 days, respectively. Finally, biochemical and histological examinations were performed, including Masson's trichrome staining for fibrosis, Western blotting for phosphorylation of p65, Millipore multiplex bead arrays (Millipore, Billerica, Massachusetts, USA) for proinflammatory cytokine levels, and enzyme-linked immunosorbent assays for GH secretion. RESULTS Fibrosis was detected in the elderly patient group. Collagen 1, phosphorylation of the NF-κB signaling pathway, and the proinflammatory cytokine levels showed a significant increase in the OM group. Compared with the N+OM group, pituitary fibrosis was alleviated in the Q+OM group, with an increase in GH secretion and decreased proinflammatory cytokine levels and NF-κB. CONCLUSIONS Pituitary fibrosis was found in the elderly group, and the pathological change was antagonized by decreasing the proinflammatory cytokine levels using QNZ and further increasing GH secretion.
Collapse
|
91
|
Antar SA, Kh ElMahdy M, Khodir AE. A novel role of pirfenidone in attenuation acetic acid induced ulcerative colitis by modulation of TGF-β1 / JNK1 pathway. Int Immunopharmacol 2021; 101:108289. [PMID: 34710659 DOI: 10.1016/j.intimp.2021.108289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Colon diseases are a major health burden, particularly ulcerative colitis, in both men and women worldwide. Environmental and genetic factors in various colonic pathologies influence the onset and outcome of diseases. As the evidence from recent research is considered, the importance of inflammation in the onset, progression, and outcome is gaining more traction. The goal of this study was to see if pirfenidone could treat ulcerative colitis (UC) and if so, what mechanisms were involved. By intracolonic instillation [2 ml, 3 percent v/v acetic acid (AA)], ulcerative colitis was induced. Pirfenidone was administered to rats in different experimental groups (125 or 250 and 500 mg/kg, orally) for two weeks. Compared to normal group, the AA group showed an increase in colon weight, length, body weight, clinical evaluation, and macroscopic scoring of UC, serum lactate dehydrogenase, C-reactive protein, malondialdehyde, while decreasing serum total antioxidant capacity. Significant increases in colon Jun N terminal kinase1 (JNK1), transforming growth factor-beta (TGF-β1), interleukin 1 beta (IL1β), and Caspase-3 content. Furthermore, immunohistochemical staining revealed increased nuclear factor kappa B (NF-κB) expression along with histopathological changes. Pirfenidone inhibited inflammatory biomarkers release and restored oxidants/antioxidants hemostasis. In a dose-dependent manner, pirfenidone treatment showed a significantly decrease in all of these parameters. In addition, pirfenidone has significantly preserved the histopathological architecture of tissues. Current data demonstrate that Pirfenidone protects against AA-induced UC by modulating the TGF-β1/JNK1 and Caspase-3 pathways. Pirfenidone's antioxidant, anti-inflammatory, and anti-apoptotic properties are thought to be responsible for its therapeutic benefit.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
92
|
Smith BI, Liefeld A, Vásquez-Hidalgo MA, Vonnahme KA, Grazul-Bilska AT, Swanson KC, Mishra N, Reed SA, Zinn SA, Govoni KE. Mid- to late- gestational maternal nutrient restriction followed by realimentation alters development and lipid composition of liver and skeletal muscles in ovine fetuses. J Anim Sci 2021; 99:6404494. [PMID: 34668541 DOI: 10.1093/jas/skab299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
Maternal nutrient restriction during gestation adversely affects offspring growth and development of liver and skeletal muscle tissues. Realimentation following nutrient restriction may alleviate these negative impacts on development but may alter metabolism and tissue composition. Forty-eight ewes, pregnant with singletons, were fed to meet 100% National Research Council (NRC) recommendations starting at the beginning of gestation. On d 50 of gestation, 7 ewes were euthanized (BASE), and fetal liver, skeletal muscles, and blood samples were collected. The remaining animals were fed either 100% of NRC recommendations (CON) or 60% NRC recommendations (RES), a subset were euthanized at d 90 of gestation (n = 7/treatment), and fetal samples were collected. Remaining ewes were maintained on the current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to the alternate diet (CON-RES, RES-CON; n = 7/treatment). On d 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. At d 130 of gestation, maternal nutrient restriction during late-gestation (RES-RES and CON-RES) decreased fetal liver weight (P < 0.01) and cross-sectional area in triceps brachii (P = 0.01; TB), longissimus dorsi (P = 0.02; LM), and semitendinosus (P = 0.05; STN) muscles. Maternal nutrient restriction during mid-gestation increased hepatocyte vacuole size at d 130 of gestation. Late-gestational maternal nutrient restriction increased mRNA expression of insulin-like growth factor (IGF) binding protein-1 (P < 0.01), glycogen synthase 2 (P = 0.01; GYS2), and pyruvate dehydrogenase kinase 1 (P < 0.01; PDHK1) in the liver and IGF receptor 1 (P = 0.05) in the LM. Lipid concentration in the LM was decreased by late-gestational nutrient restriction (P = 0.01) and increased by mid-gestational nutrient restriction in STN (P = 0.03) and TB (P < 0.01). Principal component analysis of lipidomics data demonstrated clustering of principal components by day of gestation and elastic net regression identified 50, 44, and 29 lipids that classified the treatments in the fetal liver, LM, and blood, respectively. In conclusion, restricting maternal nutrition impacts fetal liver and muscle morphology, gene expression, and lipid metabolism, whereas realimentation attenuated some of these effects. Therefore, realimentation may be a viable strategy to reduce the impacts of nutrient restriction, but can lead to alterations in lipid metabolism in sheep.
Collapse
Affiliation(s)
- Brandon I Smith
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Amanda Liefeld
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | | | - Kimberly A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
93
|
Darbar S, Saha S, Pramanik K, Chattopadhyay A. Antioxidant and immunomodulatory effect of AKSS16-LIV01 – a multi herbal formulation against ethanol induced liver dysfunction in mice. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Liver complication arises commonly due to high alcohol consumption rate. Majority of the people residing in both developed and under developed countries consuming alcohol face various liver complications such as liver fibrosis, fatty liver, liver cirrhosis and even hepatocellular carcinoma. Invention of safe and symptomatic medication to overcome this situation is a new challenge worldwide. The main objective of the study is to deliver a safe and symptomatic medication to reduce the ethanol induced liver dysfunction.
Methods
In this study we have developed a multi herbal formulation (AKSS-16-LIV01) which minimised liver damage against various toxicants. Swiss albino mice were divided into seven groups where ethanol induced damage was observed for weeks followed by sanative response observation by our herbal formulation. The groups are normal control group, ethanol treated group (50% v/v), AKSS16-LIV01 low dose (75 mg/kg/day) pre-treated group, AKSS16-LIV01 middle dose (150 mg/kg/day) pre-treated group, AKSS16-LIV01 high dose (300 mg/kg/day) pre-treated group, Sylimarin pre-treated group (100 mg/kg/day) and only AKSS16-LIV01 (300 mg/kg/day) treated group.
Results
The results potrayed significant elevation of various biochemical parameters, lipid profile parameters, lipid peroxidation, nitric oxide (NO) concentration, nitric oxide synthase level and pro inflammatory cytokines level i.e. tumor necrosis factor (TNF-α) and transforming growth factor (TGF-β1) in the ethanol induced mice. On the other hand serum total protein, total albumin, albumin globulin ratio and level of tissue antioxidant enzymes activity (SOD, CAT, GSH and GPx) were significantly reduced by ethanol. Dose depended therapeutic application of the formulation (AKSS16-LIV01) significantly suppressed all the relevant above parameters and protected the liver from ethanol induced fibrogenesis. Apart from this gross morphology of the liver, H&E liver histology and massontrichrome&serius red examination of the liver section strongly supported the hepatoprotive effect of the formulation as compared with standard drug Sylimarin. Result of the study implies that developed multi herbal formulation (AKSS16-LIV01) at a dose of 300 mg/kg/day gave the best optimum response to reduce the ethanol intoxication.
Conclusion
Result clearly depict that AKSS16-LIV01 may be a safe and nontoxic medication which protect the liver against ethanol induced oxidative injury and maintained pro inflammatory cytokines level in the future.
Graphical Abstract
Collapse
|
94
|
Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, Yao Y, Ye T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front Cell Dev Biol 2021; 9:730176. [PMID: 34621747 PMCID: PMC8490799 DOI: 10.3389/fcell.2021.730176] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is an abnormal wound repair response caused by a variety of chronic liver injuries, which is characterized by over-deposition of diffuse extracellular matrix (ECM) and anomalous hyperplasia of connective tissue, and it may further develop into liver cirrhosis, liver failure or liver cancer. To date, chronic liver diseases accompanied with liver fibrosis have caused significant morbidity and mortality in the world with increasing tendency. Although early liver fibrosis has been reported to be reversible, the detailed mechanism of reversing liver fibrosis is still unclear and there is lack of an effective treatment for liver fibrosis. Thus, it is still a top priority for the research and development of anti-fibrosis drugs. In recent years, many strategies have emerged as crucial means to inhibit the occurrence and development of liver fibrosis including anti-inflammation and liver protection, inhibition of hepatic stellate cells (HSCs) activation and proliferation, reduction of ECM overproduction and acceleration of ECM degradation. Moreover, gene therapy has been proved to be a promising anti-fibrosis method. Here, we provide an overview of the relevant targets and drugs under development. We aim to classify and summarize their potential roles in treatment of liver fibrosis, and discuss the challenges and development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbao Sun
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
95
|
Bagheri Y, Sadigh-Eteghad S, Fathi E, Mahmoudi J, Abdollahpour A, Namini NJ, Malekinejad Z, Mokhtari K, Barati A, Montazersaheb S. Hepatoprotective effects of sericin on aging-induced liver damage in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2441-2450. [PMID: 34605941 DOI: 10.1007/s00210-021-02160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Aging is a physiological process in which there is a progressive decline of function in multiple organs such as the liver. The development of natural therapies, such as sericin, for delaying age-associated diseases is of major interest in this regard. Twenty-seven mice were divided into three groups of nine, including young control group (8 weeks, received normal saline), aged control group (24 months, received normal saline), and sericin-treated aged mice (24 months, received sericin at dose 100 mg/kg/day) via oral administration for 14 days. The liver enzymes in serum and oxidative stress markers in liver tissue were evaluated using spectrophotometric/ELISA methods. Apoptotic proteins, pro-inflammatory cytokines, COX2, JNK, and P-38 levels were assessed by western blot analysis. β-galactosidase expression was determined by a qRT-PCR method. The findings showed that 100 mg/kg of sericin reduced liver enzymes in aged mice. Antioxidant capacity in treated aged mice showed an improvement in all indexes in the liver tissue. Also, sericin administration declined pro-inflammatory markers to varying degrees in aged-treated mice. Sericin also increased the expression level of Bcl-2 and decreased the expression level of Bax and cleaved caspase-3.In addition, treatment with sericin suppressed protein expression of p-JNK and p-JNK/JNK. Collectively, these findings would infer that sericin administration may have a hepatoprotective effect in aging-induced liver damage in mice.
Collapse
Affiliation(s)
- Yasin Bagheri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdollah Abdollahpour
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nasim Jalili Namini
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Zahra Malekinejad
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Kiarash Mokhtari
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
96
|
Chen X, Wang X, Yang L, Xu H, Wu Y, Wu J, Chen L, Xu C. Magnesium isoglycyrrhizinate prevents cadmium-induced activation of JNK and apoptotic hepatocyte death by reversing ROS-inactivated PP2A. J Pharm Pharmacol 2021; 73:1663-1674. [PMID: 34468764 DOI: 10.1093/jpp/rgab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Cadmium (Cd) induces reactive oxygen species (ROS)-mediated hepatocyte apoptosis and consequential liver disorders. This study aimed to investigate the effect of magnesium isoglycyrrhizinate (MgIG) on Cd-induced hepatotoxicity. METHODS L02 and AML-12 cells were used to study MgIG hepatoprotective effects. Cd-evoked apoptosis, ROS and protein phosphatase 2A (PP2A)/c-Jun N-terminal kinase (JNK) cascade disruption were analysed by cell viability assay, 6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, ROS imaging and Western blotting. Pharmacological and genetic approaches were used to explore the mechanisms. KEY FINDINGS We show that MgIG attenuated Cd-evoked hepatocyte apoptosis by blocking JNK pathway. Pre-treatment with SP600125 or ectopic expression of dominant-negative c-Jun enhanced MgIG's anti-apoptotic effects. Further investigation found that MgIG rescued Cd-inactivated PP2A. Inhibition of PP2A activity by okadaic acid attenuated the MgIG's inhibition of the Cd-stimulated JNK pathway and apoptosis; in contrast, overexpression of PP2A strengthened the MgIG effects. In addition, MgIG blocked Cd-induced ROS generation. Eliminating ROS by N-acetyl-l-cysteine abrogated Cd-induced PP2A-JNK pathway disruption and concurrently reinforced MgIG-conferred protective effects, which could be further slightly strengthened by PP2A overexpression. CONCLUSIONS Our findings indicate that MgIG is a promising hepatoprotective agent for the prevention of Cd-induced hepatic injury by mitigating ROS-inactivated PP2A, thus preventing JNK activation and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Liu Yang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Hongjiang Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Yiqun Wu
- Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| | - Jialin Wu
- Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| | - Long Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Chong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Institute for Pharmacology & Toxicology, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, P. R. China
| |
Collapse
|
97
|
Al-Salihi M, Bornikoel A, Zhuang Y, Stachura P, Scheller J, Lang KS, Lang PA. The role of ADAM17 during liver damage. Biol Chem 2021; 402:1115-1128. [PMID: 34192832 DOI: 10.1515/hsz-2021-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Anna Bornikoel
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
98
|
Wang T, Yeh MM, Avigan MI, Pelosof L, Feldman GM. Deciphering the Dynamic Complexities of the Liver Microenvironment - Toward a Better Understanding of Immune-Mediated liver Injury Caused by Immune Checkpoint Inhibitors (ILICI). AAPS JOURNAL 2021; 23:99. [PMID: 34401948 DOI: 10.1208/s12248-021-00629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapy for many types of cancer. However, only a portion of patients respond to this therapy and some patients develop clinically significant immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI), an immune-related adverse event (irAE) that may require the interruption or termination of treatment and administration of systemic corticosteroids or other immunosuppressive agents. Although the incidence of ILICI is lower with monotherapy, the surge in combining ICIs with chemotherapy, targeted therapy, and combination of different ICIs has led to an increase in the incidence and severity of ILICI - a major challenge for development of effective and safe ICI therapy. In this review, we highlight the importance and contribution of the liver microenvironment to ILICI by focusing on the emerging roles of resident liver cells in modulating immune homeostasis and hepatocyte regeneration, two important decisive factors that dictate the initiation, progression, and recovery from ILICI. Based on the proposed contribution of the liver microenvironment on ICILI, we discuss the clinical characteristics of ILICI in patients with preexisting liver diseases, as well as the challenges of identifying prognostic biomarkers to guide the clinical management of severe ILICI. A better understanding of the liver microenvironment may lead to novel strategies and identification of novel biomarkers for effective management of ILICI.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | - Mark I Avigan
- Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorraine Pelosof
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
99
|
Fontes-Cal TCM, Mattos RT, Medeiros NI, Pinto BF, Belchior-Bezerra M, Roque-Souza B, Dutra WO, Ferrari TCA, Vidigal PVT, Faria LC, Couto CA, Gomes JAS. Crosstalk Between Plasma Cytokines, Inflammation, and Liver Damage as a New Strategy to Monitoring NAFLD Progression. Front Immunol 2021; 12:708959. [PMID: 34447378 PMCID: PMC8383065 DOI: 10.3389/fimmu.2021.708959] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are involved in the immunopathogenesis of nonalcoholic fatty liver disease (NAFLD), but the relationship between them and clinical parameters of NAFLD progression is still unknown. Using flow cytometry, we evaluated the plasma levels of IL-1β, IL-6, IL-12, TNF and IL-10 and their association with clinical and biochemical parameters of liver function during simple steatosis (NAFL) and nonalcoholic steatohepatitis (NASH) in biopsy-proven patients. The NASH patients showed higher levels of IL-6 associated with a lower IL-10/IL-6 ratio. Besides heatmaps were similar in the NAFL and NASH groups, the same did not occur in signature curves, the NASH patients were high producers to IL-12 and IL-6 while the NAFL patients were not high producers of any cytokines evaluated. Integrative biomarker network analysis revealed that cytokines are differently correlated with clinical parameters, while IL-12, IL-10 presented moderate and negative correlations with glycemic and lipid profile in the NAFL group. The NASH group IL-12 and TNF revealed stronger and positive correlations with transient elastography parameters and NAFLD liver fibrosis score. These data suggest that IL-6 and IL-10 might act in chronic inflammation and insulin resistance whereas IL-12 and TNF may be involved in promoting liver damage and NAFLD progression. Plasma concentration analysis of these molecules and their association with clinical parameters can be used as new biomarkers to monitoring NAFLD progression and to reflect NASH development.
Collapse
Affiliation(s)
- Tereza C. M. Fontes-Cal
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael T. Mattos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara I. Medeiros
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Bruna F. Pinto
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayara Belchior-Bezerra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Roque-Souza
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Topicais, INCT-DT, Belo Horizonte, Brazil
| | - Teresa C. A. Ferrari
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula V. T. Vidigal
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana C. Faria
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia A. Couto
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana A. S. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
100
|
Rohit Singh T, Ezhilarasan D. Lagerstroemia speciosa (L.) Pers., ethanolic leaves extract attenuates dapsone-induced liver inflammation in rats. Drug Chem Toxicol 2021; 45:2361-2370. [PMID: 34225555 DOI: 10.1080/01480545.2021.1945079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug-induced liver injury is a common cause of acute liver failure. Dapsone is increasingly used in combination with rifampicin for the treatment of leprosy and also for several dermatological disorders. Clinically, abnormal liver function and focal bile duct destruction were reported after dapsone therapy. Lagerstroemia speciosa Pers., commonly known as Banaba has been traditionally used to treat various ailments including diabetes and obesity due to its antioxidant and anti-inflammatory efficacies. This study investigated the hepatoprotective effect of ethanolic banaba leaves extract (EBLE) against dapsone-induced hepatotoxicity in rats. Dapsone (30 mg/kg, i.p.) was administered twice daily for 30 days. In separate groups, rats were post-treated orally with EBLE (250 and 500 mg/kg) and silymarin (100 mg/kg) once daily for 30 days after dapsone administration. The marker enzymes of hepatotoxicity, oxidative stress markers, inflammatory markers and histopathology of liver were done. HPTLC analysis confirmed the presence of 12.87 µg of corosolic acid per mg of EBLE. Dapsone administration-induced significant (p < 0.001) elevation of marker enzymes of hepatotoxicity in serum. This treatment also increased lipid peroxidation (p < 0.001) and pro-inflammatory markers (tumor necrosis factor-alpha, transforming growth factor-beta, and nuclear factor kappa-B) expressions (p < 0.001) and decreased antioxidants (p < 0.001) such superoxide dismutase, catalase and glutathione in the liver tissue. All these abnormalities were significantly (p < 0.001) mitigated after EBLE (500 mg/kg) and silymarin post-treatments. The results of this study suggest that silymarin and EBLE can be used for dapsone-induced hepatotoxicity.
Collapse
Affiliation(s)
- Thakur Rohit Singh
- Department of Pharmacology, Malla Reddy Institute of Medical Sciences, Hyderabad, India.,Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|