51
|
Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules 2021; 11:biom11040491. [PMID: 33805901 PMCID: PMC8064345 DOI: 10.3390/biom11040491] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.
Collapse
|
52
|
Santos-Zas I, Lemarié J, Zlatanova I, Cachanado M, Seghezzi JC, Benamer H, Goube P, Vandestienne M, Cohen R, Ezzo M, Duval V, Zhang Y, Su JB, Bizé A, Sambin L, Bonnin P, Branchereau M, Heymes C, Tanchot C, Vilar J, Delacroix C, Hulot JS, Cochain C, Bruneval P, Danchin N, Tedgui A, Mallat Z, Simon T, Ghaleh B, Silvestre JS, Ait-Oufella H. Cytotoxic CD8 + T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun 2021; 12:1483. [PMID: 33674611 PMCID: PMC7935973 DOI: 10.1038/s41467-021-21737-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction. Immune cells contribute to adverse remodeling following myocardial infarction. Here the authors show in mice and pigs that CD8+ lymphocytes release Granzyme B in the infarcted heart leading to cardiomyocyte death, enhanced inflammation and deterioration of cardiac function.
Collapse
Affiliation(s)
| | | | | | - Marine Cachanado
- Assistance Publique-Hôpitaux de Paris, APHP.SU; Department of Clinical Pharmacology and Clinical Research Platform (URCEST-CRB-CRC-EST), Hôpital Saint Antoine, Paris, France
| | | | - Hakim Benamer
- Service de cardiologie, Institut Cardiovasculaire Paris Sud, Paris, France
| | - Pascal Goube
- Service de cardiologie, Centre Hospitalier de Corbeil, Corbeil, France
| | | | - Raphael Cohen
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Maya Ezzo
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Vincent Duval
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Yujiao Zhang
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Jin-Bo Su
- Inserm U955-IMRB, Equipe 03, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Alain Bizé
- Inserm U955-IMRB, Equipe 03, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Lucien Sambin
- Inserm U955-IMRB, Equipe 03, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Philippe Bonnin
- Inserm U965, Department of Physiology, Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière, France
| | - Maxime Branchereau
- Inserm U1048-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Christophe Heymes
- Inserm U1048-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | | | - José Vilar
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Bruneval
- Université de Paris, PARCC, INSERM, F-75015, Paris, France.,Service d'anatomopathologie, Hôpital Europeen G. Pompidou, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Nicolas Danchin
- Service de cardiologie, Hôpital Europeen G. Pompidou, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Alain Tedgui
- Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | - Ziad Mallat
- Université de Paris, PARCC, INSERM, F-75015, Paris, France.,Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Tabassome Simon
- Assistance Publique-Hôpitaux de Paris, APHP.SU; Department of Clinical Pharmacology and Clinical Research Platform (URCEST-CRB-CRC-EST), Hôpital Saint Antoine, Paris, France.,Sorbonne Université, UPMC-site St Antoine, Service de Pharmacologie, Assistance Publique-Hôpitaux de Paris, APHP.SU; Department of Clinical Pharmacology and Clinical Research Platform (URCEST-CRB-CRC-EST), Hôpital Saint Antoine, Paris, France
| | - Bijan Ghaleh
- Inserm U955-IMRB, Equipe 03, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Hafid Ait-Oufella
- Université de Paris, PARCC, INSERM, F-75015, Paris, France. .,Sorbonne Université, Service de médecine intensive-Réanimation, Assistance Publique, Hôpitaux de Paris, Paris, France.
| |
Collapse
|
53
|
Scalise RFM, De Sarro R, Caracciolo A, Lauro R, Squadrito F, Carerj S, Bitto A, Micari A, Bella GD, Costa F, Irrera N. Fibrosis after Myocardial Infarction: An Overview on Cellular Processes, Molecular Pathways, Clinical Evaluation and Prognostic Value. Med Sci (Basel) 2021; 9:medsci9010016. [PMID: 33804308 PMCID: PMC7931027 DOI: 10.3390/medsci9010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The ischemic injury caused by myocardial infarction activates a complex healing process wherein a powerful inflammatory response and a reparative phase follow and balance each other. An intricate network of mediators finely orchestrate a large variety of cellular subtypes throughout molecular signaling pathways that determine the intensity and duration of each phase. At the end of this process, the necrotic tissue is replaced with a fibrotic scar whose quality strictly depends on the delicate balance resulting from the interaction between multiple actors involved in fibrogenesis. An inflammatory or reparative dysregulation, both in term of excess and deficiency, may cause ventricular dysfunction and life-threatening arrhythmias that heavily affect clinical outcome. This review discusses cellular process and molecular signaling pathways that determine fibrosis and the imaging technique that can characterize the clinical impact of this process in-vivo.
Collapse
Affiliation(s)
- Renato Francesco Maria Scalise
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rosalba De Sarro
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandro Caracciolo
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rita Lauro
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Francesco Squadrito
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandra Bitto
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinico “G. Martino”, 98100 Messina, Italy;
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
- Correspondence: ; Tel.: +39-090-221-23-41; Fax: +39-090-221-23-81
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| |
Collapse
|
54
|
Forte E, Perkins B, Sintou A, Kalkat HS, Papanikolaou A, Jenkins C, Alsubaie M, Chowdhury RA, Duffy TM, Skelly DA, Branca J, Bellahcene M, Schneider MD, Harding SE, Furtado MB, Ng FS, Hasham MG, Rosenthal N, Sattler S. Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart. Circulation 2021; 143:821-836. [PMID: 33297741 PMCID: PMC7899721 DOI: 10.1161/circulationaha.120.044581] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the β-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.
Collapse
Affiliation(s)
- Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Bryant Perkins
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Harkaran S. Kalkat
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Catherine Jenkins
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Mashael Alsubaie
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Theodore M. Duffy
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Daniel A. Skelly
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Jane Branca
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Mohamed Bellahcene
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Michael D. Schneider
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Milena B. Furtado
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
- Amgen Biotechnology, Thousand Oaks, CA (M.B.F.)
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Muneer G. Hasham
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| |
Collapse
|
55
|
Li Y, Qin L, Bai Q, Zhang J, Chen R, Song K. CD100 modulates cytotoxicity of CD8 + T cells in patients with acute myocardial infarction. BMC Immunol 2021; 22:13. [PMID: 33593275 PMCID: PMC7888114 DOI: 10.1186/s12865-021-00406-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD100 is an immune semaphorin family member that highly expressed on T cells, which take part in the development of acute myocardial infarction (AMI). Matrix metalloproteinases (MMPs) are important mediators for membrane-bound CD100 (mCD100) shedding from T cells to generate soluble CD100 (sCD100), which has immunoregulatory effect on T cells. The aim of this study was to investigate modulatory role of CD100 on CD8+ T cell activity in AMI patients. METHODS Peripheral sCD100 and MMP-2 level, as well as mCD100 level on T cells was assessed in patients with stable angina pectoris (SAP), unstable angina pectoris (UAP), and AMI. The regulatory function of MMP-2 on mCD100 shedding, sCD100 formation, and cytotoxicity of CD8+ T cells was analyzed in direct and indirect contact co-culture system. RESULTS AMI patients had higher peripheral sCD100 and lower mCD100 expression on CD8+ T cells in comparison with SAP, UAP, and controls. CD8+ T cells in AMI patients showed elevated direct cytotoxicity, enhanced cytokine production, and increased perforin/granzyme B secretion. Recombinant sCD100 stimulation promoted cytolytic function of CD8+ T cells in controls and AMI patients. Furthermore, AMI patients also had elevated circulating MMP-2 level. Recombinant MMP-2 stimulation induced mCD100 shedding from CD8+ T cells and sCD100 generation, resulting in enhancement of CD8+ T cell cytotoxicity in AMI patients. CONCLUSION Up-regulation of MMP-2 might contribute to elevation of mCD100 shedding and sCD100 formation, leading to increased cytotoxicity CD8+ T cells in AMI patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Li Qin
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Qijun Bai
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Jingjing Zhang
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Ruixue Chen
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Kunpeng Song
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
56
|
Zaidi Y, Aguilar EG, Troncoso M, Ilatovskaya DV, DeLeon-Pennell KY. Immune regulation of cardiac fibrosis post myocardial infarction. Cell Signal 2021; 77:109837. [PMID: 33207261 PMCID: PMC7720290 DOI: 10.1016/j.cellsig.2020.109837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Pathological changes resulting from myocardial infarction (MI) include extracellular matrix alterations of the left ventricle, which can lead to cardiac stiffness and impair systolic and diastolic function. The signals released from necrotic tissue initiate the immune cascade, triggering an extensive inflammatory response followed by reparative fibrosis of the infarct area. Immune cells such as neutrophils, monocytes, macrophages, mast cells, T-cells, and dendritic cells play distinct roles in orchestrating this complex pathological condition, and regulate the balance between pro-fibrotic and anti-fibrotic responses. This review discusses how molecular signals between fibroblasts and immune cells mutually regulate fibrosis post-MI, and outlines the emerging pharmacological targets and therapies for modulating inflammation and cardiac fibrosis associated with MI.
Collapse
Affiliation(s)
- Yusra Zaidi
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Eslie G Aguilar
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Miguel Troncoso
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA; Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| |
Collapse
|
57
|
Gang H, Peng D, Hu Y, Tang S, Li S, Huang Q. Interleukin-9-secreting CD4 + T cells regulate CD8 + T cells cytotoxicity in patients with acute coronary syndromes. APMIS 2020; 129:91-102. [PMID: 33113251 DOI: 10.1111/apm.13094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
T cells play vital roles in the development and progression of acute coronary syndromes (ACS), including cytotoxicity mediated by CD8+ T cells and immunoregulatory activity mediated by CD4+ T cells. Interleukin (IL)-9-secreting CD4+ T cells (Th9 cells) were recently found to be involved in the onset of ACS. We investigated regulatory role of Th9 cells to CD8+ T cells in patients with stable angina pectoris, unstable angina pectoris, and acute myocardial infarction (AMI). Circulating Th9 cells percentage, plasma IL-9 level, and PU.1 mRNA relative level was up-regulated in AMI patients compared with controls. There was no significant difference of IL-9-secreting CD8+ T cells percentage among groups. CD8+ T cells from AMI patients revealed increased cytotoxicity than those from controls, which presented as enhanced cytotolytic activity to target cells, increased interferon-γ and tumor necrosis factor-α secretion, elevated perforin and granzyme B production, and reduced programmed death-1 and cytotoxic T lymphocyte-associated protein 4. IL-9 stimulation did not affect proliferation, but promoted CD8+ T-cell cytotoxicity from both controls and AMI patients. IL-9-secreting CD4+ T cells were enriched in CD4+ CCR4- CCR6- CXCR3- cells. The enhancement of CD8+ T-cell cytotoxicity induced by CD4+ CCR4- CCR6- CXCR3- cells was dependent on IL-9 secretion. The present results indicated that up-regulation of IL-9-secreting CD4+ T cells may contribute to pathogenesis of AMI through enhancement of CD8+ T-cell cytotoxicity.
Collapse
Affiliation(s)
- Hongsheng Gang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingfeng Peng
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Hu
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songhai Li
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
58
|
Hume RD, Chong JJH. The Cardiac Injury Immune Response as a Target for Regenerative and Cellular Therapies. Clin Ther 2020; 42:1923-1943. [PMID: 33010930 DOI: 10.1016/j.clinthera.2020.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.
Collapse
Affiliation(s)
- Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Hawkesbury Rd, Westmead, NSW 2145, Australia.
| |
Collapse
|
59
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
60
|
Nehra S, Gumina RJ, Bansal SS. Immune cell Dilemma in Ischemic Cardiomyopathy: To Heal or Not to Heal. CURRENT OPINION IN PHYSIOLOGY 2020; 19:39-46. [PMID: 33103020 DOI: 10.1016/j.cophys.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a double-edged sword for sterile tissue injury such as in myocardial infarction (MI). After ischemic injury, inflammatory immune responses activate repair processes, clear tissue-debris, form a stable scar and initiate angiogenesis in the myocardium for efficient wound-healing. However, incomplete immune resolution or sustained low-grade inflammation lead to ischemic cardiomyopathy (IC) characterized by maladaptive tissue remodeling and left-ventricular dilatation. It is clear that a delicate balance of cytokines, chemokines, prostaglandins, resolvins, and the innate and adaptive immune systems is critical for adequate healing as both insufficient- or overt-activation of inflammatory responses can either enhance rupture incidence or exacerbate cardiac dysfunction in the long-term. Among all the players, immune cells are the most critical as they are not only a source for all of the inflammatory protein mediators, but are also a target. However, phenotypic complexities associated with different immune subtypes, their interdependence, phasic-activations and varied functionalities often make it difficult to segregate the effects of one immune cell from another. In this review, we briefly summarize the role of several innate and adaptive immune cells to acquaint readers with complex immune-networks that dictate the extent of wound-healing post-MI and maladaptive remodeling during IC.
Collapse
Affiliation(s)
- Sarita Nehra
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Richard J Gumina
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Shyam S Bansal
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
61
|
Hanna A, Shinde AV, Frangogiannis NG. Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction. Am J Physiol Heart Circ Physiol 2020; 319:H948-H964. [PMID: 32886000 DOI: 10.1152/ajpheart.00318.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In patients with myocardial infarction (MI), cardiac rupture is an uncommon but catastrophic complication. In the mouse model of nonreperfused MI, reported rupture rates are highly variable and depend not only on the genetic background and sex of animals but also on the method used for documentation of rupture. In most studies, diagnosis of cardiac rupture is based on visual inspection during autopsy; however, criteria are poorly defined. We performed systematic histopathological analysis of whole hearts from C57BL/6J mice dying after nonreperfused MI and evaluated the reliability of autopsy-based criteria in identification of rupture. Moreover, we compared the cell biological environment of the infarct between rupture-related and rupture-independent deaths. Histopathological analysis documented rupture in 50% of mice dying during the first week post-MI. Identification of a gross rupture site was highly specific but had low sensitivity; in contrast, hemothorax had high sensitivity but low specificity. Mice with rupture had lower myofibroblast infiltration, accentuated macrophage influx, and a trend toward reduced collagen content in the infarct. Male mice had increased mortality and higher incidence of rupture. However, infarct myeloid cells harvested from male and female mice at the peak of the incidence of rupture had comparable inflammatory gene expression. In conclusion, the reliability of autopsy in documentation of rupture in infarcted mice is dependent on the specific criteria used. Macrophage-driven inflammation and reduced activation of collagen-secreting reparative myofibroblasts may be involved in the pathogenesis of post-MI cardiac rupture.NEW & NOTEWORTHY We show that cardiac rupture accounts for 50% of deaths in C57BL/6J mice undergoing nonreperfused myocardial infarction protocols. Overestimation of rupture events in published studies likely reflects the low specificity of hemothorax as a criterion for documentation of rupture. In contrast, identification of a gross rupture site has high specificity and low sensitivity. We also show that mice dying of rupture have increased macrophage influx and attenuated myofibroblast infiltration in the infarct. These findings are consistent with a role for perturbations in the balance between inflammatory and reparative responses in the pathogenesis of postinfarction cardiac rupture. We also report that the male predilection for rupture in infarcted mice is not associated with increased inflammatory activation of myeloid cells.
Collapse
Affiliation(s)
- Anis Hanna
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Arti V Shinde
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
62
|
Bradshaw AD, DeLeon-Pennell KY. T-cell regulation of fibroblasts and cardiac fibrosis. Matrix Biol 2020; 91-92:167-175. [PMID: 32438054 PMCID: PMC7434661 DOI: 10.1016/j.matbio.2020.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Inflammation contributes to the development of heart failure (HF) through multiple mechanisms including regulating extracellular matrix (ECM) degradation and deposition. Interactions between cells in the myocardium orchestrates the magnitude and duration of inflammatory cell recruitment and ECM remodeling events associated with HF. More recently, studies have shown T-cells have signficant roles in post-MI wound healing. T-cell biology in HF illustrates the complexity of cross-talk between inflammatory cell types and resident fibroblasts. This review will focus on T-cell recruitment to the myocardium and T-cell specific factors that might influence cardiac wound healing and fibrosis in the heart with consideration of age and sex as important factors in T-cell activity.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street Charleston, SC 29401, United States
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street Charleston, SC 29401, United States.
| |
Collapse
|
63
|
Tobin SW, Alibhai FJ, Weisel RD, Li RK. Considering Cause and Effect of Immune Cell Aging on Cardiac Repair after Myocardial Infarction. Cells 2020; 9:E1894. [PMID: 32823583 PMCID: PMC7465938 DOI: 10.3390/cells9081894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The importance of the immune system for cardiac repair following myocardial infarction is undeniable; however, the complex nature of immune cell behavior has limited the ability to develop effective therapeutics. This limitation highlights the need for a better understanding of the function of each immune cell population during the inflammatory and resolution phases of cardiac repair. The development of reliable therapies is further complicated by aging, which is associated with a decline in cell and organ function and the onset of cardiovascular and immunological diseases. Aging of the immune system has important consequences on heart function as both chronic cardiac inflammation and an impaired immune response to cardiac injury are observed in older individuals. Several studies have suggested that rejuvenating the aged immune system may be a valid therapeutic candidate to prevent or treat heart disease. Here, we review the basic patterns of immune cell behavior after myocardial infarction and discuss the autonomous and nonautonomous manners of hematopoietic stem cell and immune cell aging. Lastly, we identify prospective therapies that may rejuvenate the aged immune system to improve heart function such as anti-inflammatory and senolytic therapies, bone marrow transplant, niche remodeling and regulation of immune cell differentiation.
Collapse
Affiliation(s)
- Stephanie W. Tobin
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5T 1P5, Canada; (S.W.T.); (F.J.A.); (R.D.W.)
| | - Faisal J. Alibhai
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5T 1P5, Canada; (S.W.T.); (F.J.A.); (R.D.W.)
| | - Richard D. Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5T 1P5, Canada; (S.W.T.); (F.J.A.); (R.D.W.)
- Division of Cardiac Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, ON M5G 2N2, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5T 1P5, Canada; (S.W.T.); (F.J.A.); (R.D.W.)
- Division of Cardiac Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, ON M5G 2N2, Canada
| |
Collapse
|
64
|
Daseke MJ, Tenkorang-Impraim MAA, Ma Y, Chalise U, Konfrst SR, Garrett MR, DeLeon-Pennell KY, Lindsey ML. Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. J Mol Cell Cardiol 2020; 145:112-121. [PMID: 32574573 PMCID: PMC7483959 DOI: 10.1016/j.yjmcc.2020.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Macrophages and neutrophils are primary leukocytes involved in the inflammatory response to myocardial infarction (MI). While interleukin (IL)-4 is an in vitro anti-inflammatory stimulus, the MI myocardium does not express a considerable amount of IL-4 but does express IL4 receptors. We hypothesized that continuous exogenous IL-4 infusion starting 24 h after MI would promote a polarization switch in inflammatory cells towards a reparative phenotype. METHODS C57BL/6J male mice (3-6 months of age) were subcutaneously infused with either saline (n = 17) or IL-4 (20 ng/g/day; n = 17) beginning 24 h after MI and evaluated at MI day 3. RESULTS Macrophages and neutrophils were isolated ex vivo from the infarct region and examined. Exogenous IL-4 decreased pro-inflammatory Ccl3, Il12a, Tnfa, and Tgfb1 in neutrophils and increased anti-inflammatory Arg1 and Ym1 in macrophages (all p < .05). Tissue clearance by IL-4 treated neutrophils was not different, while selective phagocytosis of neutrophils doubled in IL-4 treated macrophages (p < .05). Of 24,339 genes examined by RNA-sequencing, 2042 genes were differentially expressed in macrophages from IL-4 stimulated infarct (all FDR p < .05). Pdgfc gene expression was ranked first, increasing 3-fold in macrophages stimulated with IL-4 (p = 1 × 10-9). Importantly, changes in macrophage physiology and transcriptome occurred in the absence of global LV effects. Bone marrow derived monocytes stimulated with mouse recombinant PDGF-CC protein (10 μg/ml) or PDGF-CC blocking antibody (200 ng/ml) did not change Arg1 or Ym1 expression, indicating the in vivo effect of IL-4 to stimulate macrophage anti-inflammatory gene expression was independent of PDGF-CC. CONCLUSIONS Our results indicate that exogenous IL-4 promotes inflammation resolution by turning off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to mediate removal of apoptotic neutrophils.
Collapse
Affiliation(s)
- Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Mavis A A Tenkorang-Impraim
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
65
|
Burns SS, Kapur R. Putative Mechanisms Underlying Cardiovascular Disease Associated with Clonal Hematopoiesis of Indeterminate Potential. Stem Cell Reports 2020; 15:292-306. [PMID: 32735822 PMCID: PMC7419714 DOI: 10.1016/j.stemcr.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Characterized by the expansion of somatic mutations in the hematopoietic lineages of aging individuals, clonal hematopoiesis of indeterminate potential (CHIP) is a common condition that increases the risk of developing hematological malignancies and cardiovascular disease (CVD). The presence of CHIP-associated mutations in hematopoietic stem and progenitor cells (HSPCs) suggests that these mutations may alter the functions of the diverse hematopoietic lineages, many of which influence the pathogenesis of CVD. Inflammation may be a potential pathogenic mechanism, linking both CVD and hematological malignancy. However, it remains unknown whether CHIP-associated CVD and hematological malignancy are features of a common disease spectrum. The contributions of CHIP-associated mutations to both CVD and hematological malignancy underscore the importance of stem cell biology in pathogenesis and treatment. This review discusses possible mechanisms underlying the contributions of multiple hematopoietic lineages to CHIP-associated CVD and the putative pathogenic links between CHIP-associated CVD and hematological malignancy.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
66
|
Kino T, Khan M, Mohsin S. The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21145013. [PMID: 32708585 PMCID: PMC7404395 DOI: 10.3390/ijms21145013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic injury to the heart causes cardiomyocyte and supportive tissue death that result in adverse remodeling and formation of scar tissue at the site of injury. The dying cardiac tissue secretes a variety of cytokines and chemokines that trigger an inflammatory response and elicit the recruitment and activation of cardiac immune cells to the injury site. Cell-based therapies for cardiac repair have enhanced cardiac function in the injured myocardium, but the mechanisms remain debatable. In this review, we will focus on the interactions between the adoptively transferred stem cells and the post-ischemic environment, including the active components of the immune/inflammatory response that can mediate cardiac outcome after ischemic injury. In particular, we highlight how the adaptive immune cell response can mediate tissue repair following cardiac injury. Several cell-based studies have reported an increase in pro-reparative T cell subsets after stem cell transplantation. Paracrine factors secreted by stem cells polarize T cell subsets partially by exogenous ubiquitination, which can induce differentiation of T cell subset to promote tissue repair after myocardial infarction (MI). However, the mechanism behind the polarization of different subset after stem cell transplantation remains poorly understood. In this review, we will summarize the current status of immune cells within the heart post-MI with an emphasis on T cell mediated reparative response after ischemic injury.
Collapse
Affiliation(s)
- Tabito Kino
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-3152; Fax: +1-215-707-5737
| |
Collapse
|
67
|
Li J, Liang C, Yang KY, Huang X, Han MY, Li X, Chan VW, Chan KS, Liu D, Huang ZP, Zhou B, Lui KO. Specific ablation of CD4 + T-cells promotes heart regeneration in juvenile mice. Am J Cancer Res 2020; 10:8018-8035. [PMID: 32724455 PMCID: PMC7381734 DOI: 10.7150/thno.42943] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Unlike adult cardiomyocytes, neonatal cardiomyocytes can readily proliferate that contributes to a transient regenerative potential after myocardial injury in mice. We have recently reported that CD4+ regulatory T-cells promote this process; however, the role of other CD4+ T-cell subsets as well as CD8+ T-cells in postnatal heart regeneration has been less studied. Methods: by comparing the regenerating postnatal day (P) 3 and the non-regenerating P8 heart after injury, we revealed the heterogeneity of CD4+ and CD8+ T-cells in the myocardium through single cell analysis. We also specifically ablated CD4+ and CD8+ T-cells using the lytic anti-CD4 and -CD8 monoclonal antibodies, respectively, in juvenile mice at P8 after myocardial injury. Results: we observe significantly more CD4+FOXP3- conventional T-cells in the P8 heart when compared to that of the P3 heart within a week after injury. Surprisingly, such a difference is not seen in CD8+ T-cells that appear to have no function as their depletion does not reactivate heart regeneration. On the other hand, specific ablation of CD4+ T-cells contributes to mitigated cardiac fibrosis and increased cardiomyocyte proliferation after injury in juvenile mice. Single-cell transcriptomic profiling reveals a pro-fibrotic CD4+ T-cell subset in the P8 but not P3 heart. Moreover, there are likely more Th1 and Th17 cells in the P8 than P3 heart. We further demonstrate that cytokines of Th1 and Th17 cells can directly reduce the proliferation and increase the apoptosis of neonatal cardiomyocytes. Moreover, ablation of CD4+ T-cells can directly or indirectly facilitate the polarization of macrophages away from the pro-fibrotic M2-like signature in the juvenile heart. Nevertheless, ablation of CD4+ T-cells alone does not offer the same protection in the adult heart after myocardial infarction, suggesting a developmental change of immune cells including CD4+ T-cells in the regulation of age-related mammalian heart repair. Conclusions: our results demonstrate that ablation of CD4+ but not CD8+ T-cells promotes heart regeneration in juvenile mice; and CD4+ T-cells play a distinct role in the regulation of heart regeneration and repair during development.
Collapse
|
68
|
Schlaak RA, Frei A, Fish BL, Harmann L, Gasperetti T, Pipke JL, Sun Y, Rui H, Flister MJ, Gantner BN, Bergom C. Acquired Immunity Is Not Essential for Radiation-Induced Heart Dysfunction but Exerts a Complex Impact on Injury. Cancers (Basel) 2020; 12:E983. [PMID: 32316187 PMCID: PMC7226421 DOI: 10.3390/cancers12040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Leanne Harmann
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee WI 53226, USA;
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Michael J. Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin N. Gantner
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
69
|
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res 2020; 126:789-806. [PMID: 32163341 PMCID: PMC7255054 DOI: 10.1161/circresaha.119.312321] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Michael E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Department of Medicine, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| |
Collapse
|
70
|
Ilatovskaya DV, Halade GV, DeLeon-Pennell KY. Adaptive immunity-driven inflammation and cardiovascular disease. Am J Physiol Heart Circ Physiol 2019; 317:H1254-H1257. [PMID: 31702971 DOI: 10.1152/ajpheart.00642.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptive immune response has recently emerged as an important factor in a wide variety of cardiovascular disorders including atherosclerosis, hypertension, cardiac remodeling, and heart failure; however, its role is not fully understood. Since an assortment of innate responsive cells, e.g., neutrophils and monocytes/macrophages, coordinate with adaptive immunity, e.g., T cells, dendritic cells, and B cells, the temporal response and descriptions pertinent to the cellular phenotype and inflammation processes, in general, need additional investigation, clarification, and consensus particularly in cardiovascular disease. This Perspectives article reviews the contributions of 15 articles (including 7 reviews) published in the American Journal of Physiology-Heart and Circulatory Physiology in response to the Call for Papers: Adaptive Immunity in Cardiovascular Disease. Here, we summarize the crucial reported findings at the cardiac, vascular, immune, and molecular levels and discuss the translational feasibility and benefits of future prospective research into the adaptive immune response. Readers are encouraged to evaluate the data and learn from this collection of novel studies.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|