51
|
DELAFONTAINE PATRICE, YOSHIDA TADASHI. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:245-258. [PMID: 28066057 PMCID: PMC5216488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.
Collapse
Affiliation(s)
- PATRICE DELAFONTAINE
- Correspondence and reprint requests: Patrice Delafontaine, MD,
Department of Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, One Hospital Drive, CE323, Columbia, Missouri 65212573-884-9260573-884-4808
| | | |
Collapse
|
52
|
Abstract
Sarcopenia and cachexia are muscle wasting syndromes associated with aging and with many chronic diseases, such as congestive heart failure (CHF), diabetes, cancer, chronic obstructive pulmonary disease and chronic kidney disease (CKD). While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme inhibitor treatment improves weight loss. It was found that Ang II infusion in rodents leads to skeletal muscle wasting. Ang II increases cytokines and circulating hormones, such as tumor necrosis factor-α, interleukin-6, serum amyloid-A and glucocorticoids, which regulate muscle protein synthesis and degradation. Ang II-induced muscle wasting is caused by alterations in insulin-like growth factor-1 signaling, enhanced muscle protein breakdown via the ubiquitin-proteasome system and decreased appetite resulting from the downregulation of hypothalamic orexigenic neuropeptides, such as Npy and orexin. Ang II also inhibits 5' adenosine monophosphate-activated protein kinase activity and disrupts normal energy balance via the activation of 5' adenosine monophosphate-activated protein kinase phosphatase PP2Cα. Furthermore, Ang II inhibits skeletal muscle stem (satellite) cell proliferation, leading to lowered muscle regenerative capacity. Distinct satellite cell angiotensin receptor subtypes have different effects on different stages of differentiation and are critical for the regulation of muscle regeneration. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states, and it is a promising target for the treatment of muscle atrophy in patients with diseases such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Medicine, University of Missouri-Columbia, Columbia, MO
| | | |
Collapse
|
53
|
Spaich S, Katus HA, Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white-or rather fifty shades of gray? Front Physiol 2015; 6:202. [PMID: 26257654 PMCID: PMC4510775 DOI: 10.3389/fphys.2015.00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cardiac remodeling describes the heart's multimodal response to a myriad of external or intrinsic stimuli and stressors most of which are probably only incompletely elucidated to date. Over many years the signaling molecules involved in these remodeling processes have been dichotomized according to a classic antagonistic view of black and white, i.e., attributed either a solely maladaptive or entirely beneficial character. By dissecting controversies, recent developments and shifts in perspective surrounding the three major cardiac signaling molecules calcineurin (Cn), protein kinase A (PKA) and calcium/calmodulin-dependent kinase II (CaMKII), this review challenges this dualistic view and advocates the nature and dignity of each of these key mediators of cardiac remodeling as a multilayered, highly context-sensitive and sophisticated continuum that can be markedly swayed and influenced by a multitude of environmental factors and crosstalk mechanisms. Furthermore this review delineates the importance and essential contributions of degradation and proteolysis to cardiac plasticity and homeostasis and finally aims to integrate the various aspects of protein synthesis and turnover into a comprehensive picture.
Collapse
Affiliation(s)
- Sebastian Spaich
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Hugo A. Katus
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of HeidelbergHeidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg/MannheimHeidelberg, Germany
| |
Collapse
|
54
|
Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN, Fielitz J. Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression. Circ Res 2015; 117:424-36. [PMID: 26137861 DOI: 10.1161/circresaha.114.305393] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin-angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 (MuRF1) expression, which may involve protein kinase D1 (PKD1). OBJECTIVE To elucidate the molecular mechanism of Ang II-induced skeletal muscle wasting. METHODS AND RESULTS A cDNA expression screen identified the lysosomal hydrolase-coordinating transcription factor EB (TFEB) as novel regulator of the human MuRF1 promoter. TFEB played a key role in regulating Ang II-induced skeletal muscle atrophy by transcriptional control of MuRF1 via conserved E-box elements. Inhibiting TFEB with small interfering RNA prevented Ang II-induced MuRF1 expression and atrophy. The histone deacetylase-5 (HDAC5), which was directly bound to and colocalized with TFEB, inhibited TFEB-induced MuRF1 expression. The inhibition of TFEB by HDAC5 was reversed by PKD1, which was associated with HDAC5 and mediated its nuclear export. Mice lacking PKD1 in skeletal myocytes were resistant to Ang II-induced muscle wasting. CONCLUSION We propose that elevated Ang II serum concentrations, as occur in patients with congestive heart failure, could activate the PKD1/HDAC5/TFEB/MuRF1 pathway to induce skeletal muscle wasting.
Collapse
Affiliation(s)
- Philipp Du Bois
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Cristina Pablo Tortola
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Doerte Lodka
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Melanie Kny
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Franziska Schmidt
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Kunhua Song
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Sibylle Schmidt
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Rhonda Bassel-Duby
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Eric N Olson
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.)
| | - Jens Fielitz
- From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.).
| |
Collapse
|
55
|
Zempo H, Suzuki JI, Ogawa M, Watanabe R, Isobe M. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice. J Appl Genet 2015; 57:91-7. [DOI: 10.1007/s13353-015-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 12/25/2022]
|
56
|
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H15-44. [PMID: 25934099 DOI: 10.1152/ajpheart.00459.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR), renin angiotensin system blockade (RAS-bl), and rapamycin-mediated mechanistic target of rapamycin (mTOR) inhibition increase survival and retard aging across species. Previously, we have summarized CR and RAS-bl's converging effects, and the mitochondrial function changes associated with their physiological benefits. mTOR inhibition and enhanced sirtuin and KLOTHO signaling contribute to the benefits of CR in aging. mTORC1/mTORC2 complexes contribute to cell growth and metabolic regulation. Prolonged mTORC1 activation may lead to age-related disease progression; thus, rapamycin-mediated mTOR inhibition and CR may extend lifespan and retard aging through mTORC1 interference. Sirtuins by deacetylating histone and transcription-related proteins modulate signaling and survival pathways and mitochondrial functioning. CR regulates several mammalian sirtuins favoring their role in aging regulation. KLOTHO/fibroblast growth factor 23 (FGF23) contribute to control Ca(2+), phosphate, and vitamin D metabolism, and their dysregulation may participate in age-related disease. Here we review how mTOR inhibition extends lifespan, how KLOTHO functions as an aging suppressor, how sirtuins mediate longevity, how vitamin D loss may contribute to age-related disease, and how they relate to mitochondrial function. Also, we discuss how RAS-bl downregulates mTOR and upregulates KLOTHO, sirtuin, and vitamin D receptor expression, suggesting that at least some of RAS-bl benefits in aging are mediated through the modulation of mTOR, KLOTHO, and sirtuin expression and vitamin D signaling, paralleling CR actions in age retardation. Concluding, the available evidence endorses the idea that RAS-bl is among the interventions that may turn out to provide relief to the spreading issue of age-associated chronic disease.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - Felipe Inserra
- Center of Hypertension, Cardiology Department, Austral University Hospital, Derqui, Argentina; School of Biomedical Sciences, Austral University, Buenos Aires, Argentina; and
| | - León Ferder
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| |
Collapse
|
57
|
Davis RVN, Lamont SJ, Rothschild MF, Persia ME, Ashwell CM, Schmidt CJ. Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS One 2015; 10:e0122525. [PMID: 25821972 PMCID: PMC4379050 DOI: 10.1371/journal.pone.0122525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Agriculture provides excellent model systems for understanding how selective pressure, as applied by humans, can affect the genomes of plants and animals. One such system is modern poultry breeding in which intensive genetic selection has been applied for meat production in the domesticated chicken. As a result, modern meat-type chickens (broilers) exhibit enhanced growth, especially of the skeletal muscle, relative to their legacy counterparts. Comparative studies of modern and legacy broiler chickens provide an opportunity to identify genes and pathways affected by this human-directed evolution. This study used RNA-seq to compare the transcriptomes of a modern and a legacy broiler line to identify differentially enriched genes in the breast muscle at days 6 and 21 post-hatch. Among the 15,945 genes analyzed, 10,841 were expressed at greater than 0.1 RPKM. At day 6 post-hatch 189 genes, including several regulators of myogenic growth and development, were differentially enriched between the two lines. The transcriptional profiles between lines at day 21 post-hatch identify 193 genes differentially enriched and still include genes associated with myogenic growth. This study identified differentially enriched genes that regulate myogenic growth and differentiation between the modern and legacy broiler lines. Specifically, differences in the ratios of several positive (IGF1, IGF1R, WFIKKN2) and negative (MSTN, ACE) myogenic growth regulators may help explain the differences underlying the enhanced growth characteristics of the modern broilers.
Collapse
Affiliation(s)
- Richard V. N. Davis
- Dept. Biological Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
| | - Susan J. Lamont
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Max F. Rothschild
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Michael E. Persia
- Dept. of Animal Science, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Chris M. Ashwell
- Dept. of Poultry Science, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Carl J. Schmidt
- Dept. of Animal and Food Sciences, University of Delaware, Newark, Delaware, 19716, United States of America
- * E-mail:
| |
Collapse
|
58
|
Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev 2015; 35:437-63. [PMID: 25764065 DOI: 10.1002/med.21343] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Claudio Cabello-Verrugio
- Laboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
59
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
60
|
Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H792-802. [PMID: 25681428 DOI: 10.1152/ajpheart.00830.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Collapse
Affiliation(s)
- Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Igor L Gomes-Santos
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | |
Collapse
|
61
|
Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H. Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 2015; 100:312-22. [DOI: 10.1113/expphysiol.2014.084095] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Yoshihiro Masaki
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Mikito Nishikawa
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Masashige Takahashi
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Koichi Okita
- Graduate School of Lifelong Sport; Hokusho University; Hokkaido Ebetsu Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| |
Collapse
|
62
|
Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond) 2015; 128:307-19. [PMID: 25222828 DOI: 10.1042/cs20140215] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.
Collapse
|
63
|
Kishida Y, Kagawa S, Arimitsu J, Nakanishi M, Sakashita N, Otsuka S, Yoshikawa H, Hagihara K. Go-sha-jinki-Gan (GJG), a traditional Japanese herbal medicine, protects against sarcopenia in senescence-accelerated mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:16-22. [PMID: 25636865 DOI: 10.1016/j.phymed.2014.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/01/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Sarcopenia is characterized by age-associated skeletal muscle atrophy and reduced muscle strength; currently, no pharmaceutical treatment is available. Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine that is used to alleviate various age-related symptoms, especially motor disorders. Here, we investigated the effect of GJG on aging-associated skeletal muscle atrophy by using senescence-accelerated mice (SAMP8). Immunohistochemical and western blotting analyses clearly showed that GJG significantly reduced the loss of skeletal muscle mass and ameliorated the increase in slow skeletal muscle fibers in SAMP8 mice compared to control mice. The expression levels of Akt and GSK-3β, the phosphorylation of FoxO4, and the phosphorylations of AMPK and mitochondrial-related transcription factors such as PGC-1α were suppressed, while the expression of MuRF1 increased in SAMP8 mice, but approximated that in senescence-accelerated aging-resistant (SAMR1) mice after GJG treatment. We demonstrate for the first time that GJG has a therapeutic effect against sarcopenia.
Collapse
Affiliation(s)
- Yuki Kishida
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Syota Kagawa
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junsuke Arimitsu
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miho Nakanishi
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriko Sakashita
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shizue Otsuka
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Hagihara
- Department of Kampo Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
64
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
65
|
Shrikrishna D, Tanner RJ, Lee JY, Natanek A, Lewis A, Murphy PB, Hart N, Moxham J, Montgomery HE, Kemp PR, Polkey MI, Hopkinson NS. A randomized controlled trial of angiotensin-converting enzyme inhibition for skeletal muscle dysfunction in COPD. Chest 2014; 146:932-940. [PMID: 24556825 PMCID: PMC4188149 DOI: 10.1378/chest.13-2483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Skeletal muscle impairment is a recognized complication of COPD, predicting mortality in severe disease. Increasing evidence implicates the renin-angiotensin system in control of muscle phenotype. We hypothesized that angiotensin-converting enzyme (ACE) inhibition would improve quadriceps function and exercise performance in COPD. METHODS This double-blind, randomized placebo-controlled trial investigated the effect of the ACE inhibitor, fosinopril, on quadriceps function in patients with COPD with quadriceps weakness. Primary outcomes were change in quadriceps endurance and atrophy signaling at 3 months. Quadriceps maximum voluntary contraction (QMVC), mid-thigh CT scan of the cross-sectional area (MTCSA), and incremental shuttle walk distance (ISWD) were secondary outcomes. RESULTS Eighty patients were enrolled (mean [SD], 65 [8] years, FEV1 43% [21%] predicted, 53% men). Sixty-seven patients (31 fosinopril, 36 placebo) completed the trial. The treatment group demonstrated a significant reduction in systolic BP (Δ-10.5 mm Hg; 95% CI, -19.9 to -1.1; P = .03) and serum ACE activity (Δ-20.4 IU/L; 95% CI, -31.0 to -9.8; P < .001) compared with placebo. No significant between-group differences were observed in the primary end points of quadriceps endurance half-time (Δ0.5 s; 95% CI, -13.3-14.3; P = .94) or atrogin-1 messenger RNA expression (Δ-0.03 arbitrary units; 95% CI, -0.32-0.26; P = .84). QMVC improved in both groups (fosinopril: Δ1.1 kg; 95% CI, 0.03-2.2; P = .045 vs placebo: Δ3.6 kg; 95% CI, 2.1-5.0; P < .0001) with a greater increase in the placebo arm (between-group, P = .009). No change was shown in the MTCSA (P = .09) or ISWD (P = .51). CONCLUSIONS This randomized controlled trial found that ACE inhibition, using fosinopril for 3 months, did not improve quadriceps function or exercise performance in patients with COPD with quadriceps weakness. TRIAL REGISTRY Current Controlled Trials; No.: ISRCTN05581879; URL: www.controlled-trials.com.
Collapse
Affiliation(s)
- Dinesh Shrikrishna
- National Heart & Lung Institute (NHLI), NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College London, University College London, London, England; Molecular Medicine Section, National Heart & Lung Institute (NHLI), Imperial College London, University College London, London, England
| | - Rebecca J Tanner
- National Heart & Lung Institute (NHLI), NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College London, University College London, London, England
| | - Jen Y Lee
- Molecular Medicine Section, National Heart & Lung Institute (NHLI), Imperial College London, University College London, London, England
| | - Amanda Natanek
- National Heart & Lung Institute (NHLI), NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College London, University College London, London, England; Molecular Medicine Section, National Heart & Lung Institute (NHLI), Imperial College London, University College London, London, England
| | - Amy Lewis
- Molecular Medicine Section, National Heart & Lung Institute (NHLI), Imperial College London, University College London, London, England
| | - Patrick B Murphy
- Guy's and St. Thomas' NHS Foundation Trust and NIHR Comprehensive Biomedical Research Centre and Department of Asthma, Allergy &, University College London, London, England
| | - Nicholas Hart
- Guy's and St. Thomas' NHS Foundation Trust and NIHR Comprehensive Biomedical Research Centre and Department of Asthma, Allergy &, University College London, London, England
| | - John Moxham
- Respiratory Science, Division of Asthma, Allergy and Lung Biology, King's College London, University College London, London, England
| | - Hugh E Montgomery
- Institute for Human Health and Performance, University College London, London, England
| | - Paul R Kemp
- Molecular Medicine Section, National Heart & Lung Institute (NHLI), Imperial College London, University College London, London, England
| | - Michael I Polkey
- National Heart & Lung Institute (NHLI), NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College London, University College London, London, England
| | - Nicholas S Hopkinson
- National Heart & Lung Institute (NHLI), NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College London, University College London, London, England.
| |
Collapse
|
66
|
Tabony AM, Yoshida T, Sukhanov S, Delafontaine P. Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function. Skelet Muscle 2014; 4:20. [PMID: 25625009 PMCID: PMC4306116 DOI: 10.1186/2044-5040-4-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Background Circulating angiotensin II (AngII) is elevated in congestive heart failure (CHF), and leads to skeletal muscle wasting, which is strongly associated with poor patient outcomes. We previously found that AngII upregulates protein phosphatase 2C-alpha (PP2Cα) and dephosphorylates AMP-activated protein kinase (AMPK), a critical regulator of cellular metabolism, in skeletal muscle. Methods To determine the role of PP2Cα in AngII-induced wasting, gastrocnemius (Gas) muscles of FVB mice were injected with scrambled or PP2Cα siRNA and mice were infused with saline or AngII for 4 days. Results Knockdown of PP2Cα reduced AngII wasting, blocked AngII upregulation of PP2Cα, increased p-T172-AMPK, and inhibited AngII-mediated reductions in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), in complex IV activity, and in ATP levels. AngII impaired the rate of autophagy as determined by a 2.4-fold increase in p62/SQSTM1 (p62) accumulation. This induction was reduced by PP2Cα knockdown, which also increased beclin-1 expression and microtubule-associated protein 1 light chain 3 (LC3)-II conversion in AngII-infused Gas. AngII reduced activating S555 phosphorylation of UNC-51-like kinase 1 (ULK1), a critical regulator of autophagosome formation, and increased inhibitory S757 ULK1 phosphorylation and these effects were prevented by PP2Cα siRNA. Conclusions AngII inhibited AMPK activity and reduced PGC-1α and TFAM expression (thereby inhibiting mitochondrial biogenesis) and impaired ULK1 activation and autophagy (thereby also inhibiting clearance of damaged mitochondria), resulting in mitochondrial dysfunction, decreased ATP, and wasting. Knockdown of PP2Cα normalized AMPK activity, PGC-1α, NRF1, and TFAM levels and blocked AngII inhibition of ULK1, leading to improved mitochondrial biogenesis/recycling/function, energy production, and inhibition of AngII-induced wasting. These results demonstrate novel effects of AngII on cellular metabolism that are likely critical in mediating the muscle wasting that is a hallmark of CHF.
Collapse
Affiliation(s)
- Alexander Michael Tabony
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Tadashi Yoshida
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Sergiy Sukhanov
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA
| | - Patrice Delafontaine
- Tulane University Department of Medicine, Heart and Vascular Institute, New Orleans, LA 70112, USA ; Heart and Vascular Institute, Tulane University School of Medicine, 1430 Tulane Ave. SL-48, New Orleans, LA, USA
| |
Collapse
|
67
|
Meneses C, Morales MG, Abrigo J, Simon F, Brandan E, Cabello-Verrugio C. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch 2014; 467:1975-84. [PMID: 25292283 DOI: 10.1007/s00424-014-1617-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022]
Abstract
Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.
Collapse
Affiliation(s)
- Carla Meneses
- Laboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
68
|
Yoshida T, Huq TS, Delafontaine P. Angiotensin type 2 receptor signaling in satellite cells potentiates skeletal muscle regeneration. J Biol Chem 2014; 289:26239-26248. [PMID: 25112871 DOI: 10.1074/jbc.m114.585521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with advanced congestive heart failure (CHF) or chronic kidney disease (CKD) often have increased angiotensin II (Ang II) levels and cachexia. Ang II infusion in rodents causes sustained skeletal muscle wasting and decreases muscle regenerative potential through Ang II type 1 receptor (AT1R)-mediated signaling, likely contributing to the development of cachexia in CHF and CKD. However, the potential role of Ang II type 2 receptor (AT2R) signaling in skeletal muscle physiology is unknown. We found that AT2R expression was increased robustly in regenerating skeletal muscle after cardiotoxin (CTX)-induced muscle injury in vivo and differentiating myoblasts in vitro, suggesting that the increase in AT2R played an important role in regulating myoblast differentiation and muscle regeneration. To determine the potential role of AT2R in muscle regeneration, we infused C57BL/6 mice with the AT2R antagonist PD123319 during CTX-induced muscle regeneration. PD123319 reduced the size of regenerating myofibers and expression of the myoblast differentiation markers myogenin and embryonic myosin heavy chain. On the other hand, AT2R agonist CGP42112 infusion potentiated CTX injury-induced myogenin and embryonic myosin heavy chain expression and increased the size of regenerating myofibers. In cultured myoblasts, AT2R knockdown by siRNA suppressed myoblast differentiation marker expression and myoblast differentiation via up-regulation of phospho-ERK1/2, and ERK inhibitor treatment completely blocked the effect of AT2R knockdown. These data indicate that AT2R signaling positively regulates myoblast differentiation and potentiates skeletal muscle regenerative potential, providing a new therapeutic target in wasting disorders such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Tashfin S Huq
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
69
|
The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci (Lond) 2014; 127:185-94. [PMID: 24498923 DOI: 10.1042/cs20130358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of muscle mass depends on the balance between synthesis and degradation of proteins, which is under the control of different signalling pathways regulated by hormonal, neural and nutritional stimuli. Such stimuli are altered in several pathologies, including COPD (chronic obstructive pulmonary disease), diabetes, AIDS and cancer (cachexia), as well as in some conditions such as immobilization and aging (sarcopenia), leading to muscle atrophy, which represents a significant contribution to patient morbidity. The KKS (kallikrein-kinin system) is composed of the enzymes kallikreins, which generate active peptides called kinins that activate two G-protein-coupled receptors, namely B1 and B2, which are expressed in a variety of tissues. The local modulation of the KKS may account for its participation in different diseases, such as those of the cardiovascular, renal and central nervous systems, cancer and many inflammatory processes, including pain. Owing to such pleiotropic actions of the KKS by local modulatory events and the probable fine-tuning of associated signalling cascades involved in skeletal muscle catabolic disorders [for example, NF-κB (nuclear factor κB) and PI3K (phosphoinositide 3-kinase)/Akt pathways], we hypothesized that KKS might contribute to the modulation of intracellular responses in atrophying skeletal muscle. Our results show that kinin B1 receptor activation induced a decrease in the diameter of C2C12 myotubes, activation of NF-κB, a decrease in Akt phosphorylation levels, and an increase in the mRNA levels of the ubiquitin E3 ligases atrogin-1 and MuRF-1 (muscle RING-finger protein-1). In vivo, we observed an increase in kinin B1 receptor mRNA levels in an androgen-sensitive model of muscle atrophy. In the same model, inhibition of the kinin B1 receptor with a selective antagonist resulted in an impairment of atrogin-1 and MuRF-1 expression and IκB (inhibitor of NF-κB) phosphorylation. Moreover, knockout of the kinin B1 receptor in mice led to an impairment in MuRF-1 mRNA expression after induction of LA (levator ani) muscle atrophy. In conclusion, using pharmacological and gene-ablation tools, we have obtained evidence that the kinin B1 receptor plays a significant role in the regulation of skeletal muscle proteolysis in the LA muscle atrophy model.
Collapse
|
70
|
Suryawan A, Davis TA. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Anim Sci Biotechnol 2014; 5:8. [PMID: 24438646 PMCID: PMC3901752 DOI: 10.1186/2049-1891-5-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/14/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. RESULTS Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the responses decreased with development. CONCLUSIONS The rapid growth of neonatal muscle is in part due to the positive balance between the activation of protein synthesis and degradation signaling. Insulin, amino acids, and, particularly, leucine, act as signals to modulate muscle protein synthesis and degradation in neonates.
Collapse
Affiliation(s)
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model. Tumour Biol 2013; 35:323-32. [DOI: 10.1007/s13277-013-1043-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023] Open
|
72
|
Yoshida T, Galvez S, Tiwari S, Rezk BM, Semprun-Prieto L, Higashi Y, Sukhanov S, Yablonka-Reuveni Z, Delafontaine P. Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem 2013; 288:23823-32. [PMID: 23831688 DOI: 10.1074/jbc.m112.449074] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5(nLacZ/+) mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 2013; 280:4131-48. [PMID: 23663276 PMCID: PMC4163639 DOI: 10.1111/febs.12338] [Citation(s) in RCA: 522] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL-6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL-6. Paradoxically, deleterious actions for IL-6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
Collapse
Affiliation(s)
- Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Institució Catalana de Recerca i Estudis Avançats (ICREA), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain.
| | | | | | | |
Collapse
|
74
|
Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S, Delafontaine P. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol 2013; 45:2322-32. [PMID: 23769949 DOI: 10.1016/j.biocel.2013.05.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | | | | | | | | | | | | |
Collapse
|
75
|
Kackstein K, Teren A, Matsumoto Y, Mangner N, Möbius-Winkler S, Linke A, Schuler G, Punkt K, Adams V. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α. Acta Histochem 2013; 115:363-70. [PMID: 23092805 DOI: 10.1016/j.acthis.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 01/03/2023]
Abstract
Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1.
Collapse
|
76
|
Mangner N, Matsuo Y, Schuler G, Adams V. Cachexia in chronic heart failure: endocrine determinants and treatment perspectives. Endocrine 2013; 43:253-65. [PMID: 22903414 DOI: 10.1007/s12020-012-9767-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
It is well documented in the current literature that chronic heart failure is often associated with cachexia, defined as involuntary weight loss of 5 % in 12 month or less. Clinical studies unraveled that the presence of cachexia decreases significantly mean survival of the patient. At the molecular level mainly myofibrillar proteins are degraded, although a reduced protein synthesis may also contribute to the loss of muscle mass. Endocrine factors clearly regulate muscle mass and function by influencing the normally precisely controlled balance between protein breakdown and protein synthesis The aim of the present article is to review the knowledge in the field with respect to the role of endocrine factors for the regulation of cachexia in patients with CHF and deduce treatment perspectives.
Collapse
Affiliation(s)
- Norman Mangner
- Heart Center Leipzig, University Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | | | | | | |
Collapse
|
77
|
Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS One 2013; 8:e53831. [PMID: 23335977 PMCID: PMC3545877 DOI: 10.1371/journal.pone.0053831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/03/2012] [Indexed: 12/24/2022] Open
Abstract
Atrogin-1/MAFbx is an ubiquitin E3 ligase that regulates myocardial structure and function through the ubiquitin-dependent protein modification. However, little is known about the effect of atrogin-1 activation on the gene expression changes in cardiomyocytes. Neonatal rat cardiomyocytes were infected with adenovirus atrogin-1 (Ad-atrogin-1) or GFP control (Ad-GFP) for 24 hours. The gene expression profiles were compared with microarray analysis. 314 genes were identified as differentially expressed by overexpression of atrogin-1, of which 222 were up-regulated and 92 were down-regulated. Atrogin-1 overexpression significantly modulated the expression of genes in 30 main functional categories, most genes clustered around the regulation of cell death, proliferation, inflammation, metabolism and cardiomyoctye structure and function. Moreover, overexpression of atrogin-1 significantly inhibited cardiomyocyte survival, hypertrophy and inflammation under basal condition or in response to lipopolysaccharide (LPS). In contrast, knockdown of atrogin-1 by siRNA had opposite effects. The mechanisms underlying these effects were associated with inhibition of MAPK (ERK1/2, JNK1/2 and p38) and NF-κB signaling pathways. In conclusion, the present microarray analysis reveals previously unappreciated atrogin-1 regulation of genes that could contribute to the effects of atrogin-1 on cardiomyocyte survival, hypertrophy and inflammation in response to endotoxin, and may provide novel insight into how atrogin-1 modulates the programming of cardiac muscle gene expression.
Collapse
|
78
|
Future Perspectives in Nerve Repair and Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 109:165-92. [DOI: 10.1016/b978-0-12-420045-6.00008-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
79
|
Bortoloso E, Megighian A, Furlan S, Gorza L, Volpe P. Homer 2 antagonizes protein degradation in slow-twitch skeletal muscles. Am J Physiol Cell Physiol 2013; 304:C68-77. [DOI: 10.1152/ajpcell.00108.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homer represents a new and diversified family of proteins made up of several isoforms. The presence of Homer isoforms, referable to 1b/c and 2a/b, was investigated in fast- and slow-twitch skeletal muscles from both rat and mouse. Homer 1b/c was identical irrespective of the muscle, and Homer 2a/b was instead characteristic of the slow-twitch phenotype. Transition in Homer isoform composition was studied in two established experimental models of atrophy, i.e., denervation and disuse of slow-twitch skeletal muscles of the rat. No change of Homer 1b/c was observed up to 14 days after denervation, whereas Homer 2a/b was found to be significantly decreased at 7 and 14 days after denervation by 70 and 90%, respectively, and in parallel to reduction of muscle mass; 3 days after denervation, relative mRNA was reduced by 90% and remained low thereafter. Seven-day hindlimb suspension decreased Homer 2a/b protein by 70%. Reconstitution of Homer 2 complement by in vivo transfection of denervated soleus allowed partial rescue of the atrophic phenotype, as far as muscle mass, muscle fiber size, and ubiquitinazion are concerned. The counteracting effects of exogenous Homer 2 were mediated by downregulation of MuRF1, Atrogin, and Myogenin, i.e., all genes known to be upregulated at the onset of atrophy. On the other hand, slow-to-fast transition of denervated soleus, another landmark of denervation atrophy, was not rescued by Homer 2 replacement. The present data show that 1) downregulation of Homer 2 is an early event of atrophy, and 2) Homer 2 participates in the control of ubiquitinization and ensuing proteolysis via transcriptional downregulation of MuRF1, Atrogin, and Myogenin. Homers are key players of skeletal muscle plasticity, and Homer 2 is required for trophic homeostasis of slow-twitch skeletal muscles.
Collapse
Affiliation(s)
- Elena Bortoloso
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Aram Megighian
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Sandra Furlan
- Istituto di Neuroscienze del Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Luisa Gorza
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
- Istituto di Neuroscienze del Consiglio Nazionale delle Ricerche, Padova, Italy
| |
Collapse
|
80
|
Guillory B, Splenser A, Garcia J. The Role of Ghrelin in Anorexia–Cachexia Syndromes. ANOREXIA 2013; 92:61-106. [DOI: 10.1016/b978-0-12-410473-0.00003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
81
|
Vasti C, Witt H, Said M, Sorroche P, García-Rivello H, Ruiz-Noppinger P, Hertig CM. Doxorubicin and NRG-1/erbB4-Deficiency Affect Gene Expression Profile: Involving Protein Homeostasis in Mouse. ISRN CARDIOLOGY 2012; 2012:745185. [PMID: 22970387 PMCID: PMC3437290 DOI: 10.5402/2012/745185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022]
Abstract
The accumulating evidence demonstrates the essential role of neuregulin-1 signaling in the adult heart, and, moreover, indicates that an impaired neuregulin signaling exacerbates the doxorubicin-mediated cardiac toxicity. Despite this strong data, the specific cardiomyocyte targets of the active erbB2/erbB4 heterodimer remain unknown. In this paper, we examined pathways involved in cardiomyocyte damage as a result of the cardiac sensitization to anthracycline toxicity in the ventricular muscle-specific erbB4 knockout mouse. We performed morphological analyses to evaluate the ventricular remodeling and employed a cDNA microarray to assess the characteristic gene expression profile, verified data by real-time RT-PCR, and then grouped into functional categories and pathways. We confirm the upregulation of genes related to the classical signature of a hypertrophic response, implicating an erbB2-dependent mechanism in doxorubicin-treated erbB4-KO hearts. Our results indicate the remarkable downregulation of IGF-I/PI-3′ kinase pathway and extends our current knowledge by uncovering an altered ubiquitin-proteasome system leading to cardiomyocyte autophagic vacuolization.
Collapse
Affiliation(s)
- Cecilia Vasti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-(INGEBI), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|
82
|
Willoughby CL, Ralles S, Christiansen SP, McLoon LK. Effects of sequential injections of hepatocyte growth factor and insulin-like growth factor-I on adult rabbit extraocular muscle. J AAPOS 2012; 16:354-60. [PMID: 22929450 PMCID: PMC3431511 DOI: 10.1016/j.jaapos.2012.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine whether hepatocyte growth factor (HGF) and insulin-like growth factor-I (IGF-I) have synergistic effects in promoting extraocular muscle fiber growth and force generation. METHODS A superior rectus muscle of adult rabbits was treated with either a single injection of HGF or sequential injections of HGF followed 1 week later by IGF-I. One week after HGF alone and 1 week after the IGF-I injection, the superior rectus muscles from treated and control orbits were examined for alterations in force generation as well as changes in myofiber size. RESULTS Injection of HGF alone did not result in changes to muscle force, specific tension, or myofiber cross-sectional area; however, it did result in a significant increase in numbers of satellite cells. Sequential injection of HGF and IGF-I resulted in significantly increased force, specific tension, and myofiber cross-sectional areas as well as increased numbers of satellite cells. CONCLUSIONS Preinjection with HGF augments the treatment effect of IGF-I. This synergistic effect is likely a result of HGF-induced activation of satellite cells and should allow a reduction in IGF-I dosing required to produce a given increase in extraocular muscle force generation.
Collapse
|
83
|
Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. ACTA ACUST UNITED AC 2012; 178:21-8. [PMID: 22750276 DOI: 10.1016/j.regpep.2012.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/25/2012] [Accepted: 06/20/2012] [Indexed: 12/20/2022]
Abstract
Ghrelin is a gastric peptide that regulates energy homeostasis. Angiotensin II (Ang II) is known to induce body weight loss and skeletal muscle catabolism through the ubiquitin-proteasome pathway. In this study, we investigated the effects of ghrelin on body weight and muscle catabolism in mice treated with Ang II. The continuous subcutaneous administration of Ang II to mice for 6 days resulted in cardiac hypertrophy and significant decreases in body weight gain, food intake, food efficiency, lean mass, and fat mass. In the gastrocnemius muscles of Ang II-treated mice, the levels of insulin-like growth factor 1 (IGF-1) were decreased, and the levels of mRNA expression of catabolic factors were increased. Although the repeated subcutaneous injections of ghrelin (1.0mg/kg, twice daily for 5 days) did not affect cardiac hypertrophy, they resulted in significant body weight gains and improved food efficiencies and tended to increase both lean and fat mass in Ang II-treated mice. Ghrelin also ameliorated the decreased IGF-1 levels and the increased mRNA expression levels of catabolic factors in the skeletal muscle. IGF-1 mRNA levels in the skeletal muscle significantly decreased 24h after Ang II infusion, and this was reversed by two subcutaneous injections of ghrelin. In C2C12-derived myocytes, the dexamethasone-induced mRNA expression of atrogin-1 was decreased by IGF-1 but not by ghrelin. In conclusion, we demonstrated that ghrelin improved body weight loss and skeletal muscle catabolism in mice treated with Ang II, possibly through the early restoration of IGF-1 mRNA in the skeletal muscle and the amelioration of nutritional status.
Collapse
|
84
|
Liu YY, Zhang X, Ringel MD, Jhiang SM. Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells. Endocr Relat Cancer 2012; 19:291-304. [PMID: 22355179 PMCID: PMC3736852 DOI: 10.1530/erc-11-0288] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The selective increase of Na(+)/I(-) symporter (NIS)-mediated active iodide uptake in thyroid cells allows the use of radioiodine I(131) for diagnosis and targeted treatment of thyroid cancers. However, NIS-mediated radioiodine accumulation is often reduced in thyroid cancers due to decreased NIS expression/function. As PI3K signaling is overactivated in many thyroid tumors, we investigated the effects of inhibitors for PI3K, Akt, or mTORC1 as well as their interplay on NIS modulation in thyroid cells under chronic TSH stimulation. PI3K inhibition by LY294002 increased NIS-mediated radioiodide uptake (RAIU) mainly through upregulation of NIS expression, however, mTORC1 inhibition by Rapamycin did not increase NIS-mediated RAIU despite increased NIS protein levels. In comparison, Akt inhibition by Akti-1/2 did not increase NIS protein levels, yet markedly increased NIS-mediated RAIU by decreasing iodide efflux rate and increasing iodide transport rate and iodide affinity of NIS. The effects of Akti-1/2 on NIS-mediated RAIU are not detected in nonthyroid cells, implying that Akti-1/2 or its derivatives may represent potential pharmacological reagents to selectively increase thyroidal radioiodine accumulation and therapeutic efficacy.
Collapse
Affiliation(s)
- Yu-Yu Liu
- The Ohio State Biochemistry Program, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
85
|
Yoshida T, Semprun-Prieto L, Wainford RD, Sukhanov S, Kapusta DR, Delafontaine P. Angiotensin II reduces food intake by altering orexigenic neuropeptide expression in the mouse hypothalamus. Endocrinology 2012; 153:1411-20. [PMID: 22234465 PMCID: PMC3281527 DOI: 10.1210/en.2011-1764] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, 1430 Tulane Avenue SL-48, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
86
|
Rezk BM, Yoshida T, Semprun-Prieto L, Higashi Y, Sukhanov S, Delafontaine P. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy. PLoS One 2012; 7:e30276. [PMID: 22276172 PMCID: PMC3262800 DOI: 10.1371/journal.pone.0030276] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.
Collapse
Affiliation(s)
- Bashir M. Rezk
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Laura Semprun-Prieto
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
87
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
88
|
Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:108328. [PMID: 22144984 PMCID: PMC3226536 DOI: 10.1155/2011/108328] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/26/2011] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis.
Collapse
|
89
|
de Theije C, Costes F, Langen RC, Pison C, Gosker HR. Hypoxia and muscle maintenance regulation: implications for chronic respiratory disease. Curr Opin Clin Nutr Metab Care 2011; 14:548-53. [PMID: 21934612 DOI: 10.1097/mco.0b013e32834b6e79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Muscle wasting and impaired muscle oxidative metabolism are common extrapulmonary features of chronic respiratory failure (CRF) that significantly increase disease burden. This review aims to address the question whether hypoxia, an obvious consequence of this disease, actually plays a causal role in these muscle impairments. RECENT FINDINGS In experimental models, a causal role for hypoxia in muscle atrophy and metabolic impairments has clearly been shown. Although the hypoxia-inducible factors and nuclear factor kappa B are putative mediators of these hypoxia-induced alterations, their true involvement remains to be proven. Molecular signatures of disrupted regulation of muscle mass and oxidative metabolism observed in these experimental models also have been shown in muscles of patients suffering from CRF, suggestive of but not conclusive for a causal role of hypoxia. Therapies, including but not restricted to those aimed at alleviating hypoxia, have been shown to partially but not completely restore muscle mass and oxidative capacity in CRF patients, which may imply an additive effect of nutritional modulation of substrate metabolism. SUMMARY Although hypoxia clearly affects skeletal muscle maintenance, it remains to be confirmed whether and by which underlying molecular mechanisms hypoxia is causally involved in CRF-related muscle atrophy and impaired oxidative capacity.
Collapse
Affiliation(s)
- Chiel de Theije
- Nutrim School for Nutrition, Toxicology and Metabolism, Department of Anatomy and Embryology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Verhees KJP, Schols AMWJ, Kelders MCJM, Op den Kamp CMH, van der Velden JLJ, Langen RCJ. Glycogen synthase kinase-3β is required for the induction of skeletal muscle atrophy. Am J Physiol Cell Physiol 2011; 301:C995-C1007. [DOI: 10.1152/ajpcell.00520.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle atrophy commonly occurs in acute and chronic disease. The expression of the muscle-specific E3 ligases atrogin-1 (MAFbx) and muscle RING finger 1 (MuRF1) is induced by atrophy stimuli such as glucocorticoids or absence of IGF-I/insulin and subsequent Akt signaling. We investigated whether glycogen synthase kinase-3β (GSK-3β), a downstream molecule in IGF-I/Akt signaling, is required for basal and atrophy stimulus-induced expression of atrogin-1 and MuRF1, and myofibrillar protein loss in C2C12 skeletal myotubes. Abrogation of basal IGF-I signaling, using LY294002, resulted in a prominent induction of atrogin-1 and MuRF1 mRNA and was accompanied by a loss of myosin heavy chain fast (MyHC-f) and myosin light chains 1 (MyLC-1) and -3 (MyLC-3). The synthetic glucocorticoid dexamethasone (Dex) also induced the expression of both atrogenes and likewise resulted in the loss of myosin protein abundance. Genetic ablation of GSK-3β using small interfering RNA resulted in specific sparing of MyHC-f, MyLC-1, and MyLC-3 protein levels after Dex treatment or impaired IGF-I/Akt signaling. Interestingly, loss of endogenous GSK-3β suppressed both basal and atrophy stimulus-induced atrogin-1 and MuRF1 expression, whereas pharmacological GSK-3β inhibition, using CHIR99021 or LiCl, only reduced atrogin-1 mRNA levels in response to LY294002 or Dex. In conclusion, our data reveal that myotube atrophy and myofibrillar protein loss are GSK-3β dependent, and demonstrate for the first time that basal and atrophy stimulus-induced atrogin-1 mRNA expression requires GSK-3β enzymatic activity, whereas MuRF1 expression depends solely on the physical presence of GSK-3β.
Collapse
Affiliation(s)
- Koen J. P. Verhees
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Marco C. J. M. Kelders
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Céline M. H. Op den Kamp
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Jos L. J. van der Velden
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
91
|
Abstract
Muscle atrophy (cachexia) is a muscle wasting syndrome associated with several pathological conditions in humans such as congestive heart failure, diabetes, AIDS, cancer and renal failure, and the presence of cachexia worsens outcome. Many of the conditions associated with cachexia are accompanied by stimulation of the renin-angiotensin system and elevation in angiotensin II (ang II) levels. Ang II infusion induces skeletal muscle atrophy in rodents and mechanisms include increased expression of the E3 ligases atrogin-1/MuRF-1, an elevated rate of ubiquitin-proteasome mediated proteolysis and increased reactive oxygen species (ROS) levels, closely mimicking conditions of human cachexia. Ang II-induced oxidative stress contributes to muscle atrophy in a mouse model. Nicotinamide adenine dinucleotide phosphate oxidase- and mitochondria-derived ROS contribute to ang II-induced oxidative stress. Specific targeting of ROS and nicotinamide adenine dinucleotide phosphate oxidase/mitochondria cross-talk could be a beneficial, novel therapy to treat cachexia.
Collapse
|
92
|
Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch WE, Delafontaine P. Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension 2011; 58:643-9. [PMID: 21844485 DOI: 10.1161/hypertensionaha.111.174839] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Congestive heart failure and chronic kidney disease are characterized by chronically elevated angiotensin II (Ang II) and muscle wasting. Ang II causes skeletal muscle wasting by reducing appetite and by enhancing catabolism. The serine/threonine kinase AMP-activated protein kinase (AMPK) functions mainly as a sensor of cellular energy status. It is energy sparing and favors ATP generation. We hypothesized that Ang II induces muscle wasting in part by inhibiting AMPK signaling and altering cellular energy balance. Our results show that Ang II infusion in mice reduced gastrocnemius muscle weight by 26% and depleted ATP by 74%. In addition, Ang II upregulated protein phosphatase 2Cα by 2.6-fold and reduced AMPK phosphorylation and signaling in muscle. Importantly, the pharmacological AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside restored AMPK activity to levels of pair-fed controls and reversed Ang II-mediated ATP depletion and muscle wasting. Moreover, 5-aminoimidazole-4-carboxamide ribonucleoside activated Akt and inhibited Ang II-induced increases in E3 ubiquitin ligase expression. These novel results demonstrate critical roles for energy depletion and AMPK inhibition in Ang II-induced skeletal muscle wasting and suggest a therapeutic potential for AMPK activators in diseases characterized by muscle wasting.
Collapse
Affiliation(s)
- A Michael Tabony
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Johnston APW, Bellamy LM, Lisio MD, Parise G. Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R363-9. [DOI: 10.1152/ajpregu.00766.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of ANG II in skeletal muscle and satellite cell regulation is largely unknown. Cardiotoxin (CTX) was used to investigate whether muscle injury activates a local ANG II signaling system. Following injury, immunohistochelmistry (IHC) analysis revealed a robust increase in the intensity of angiotensinogen and angiotensin type 1 (AT1) receptor expression. As regeneration proceeded, however, AT1 and angiotensinogen were downregulated. Nuclear accretion and fiber formation were also assessed during muscle regeneration in mice treated with captopril (an angiotensin-converting enzyme inhibitor). When ANG II formation was blocked through the use of captopril, we observed a significantly reduced accretion of nuclei into myofibers (−25%), while tibialis anterior total fiber number was significantly increased +37%. This phenotype appeared to be due to alterations in satellite cell differentiation kinetics; captopril treatment led to sustained mRNA expression of markers associated with quiescence and proliferation (Myf5, Pax7) and simultaneously delayed or inhibited the expression of myogenin. IHC staining supported these findings, revealing that captopril treatment resulted in a strong trend ( P = 0.06) for a decrease in the proportion of myogenin-positive myoblasts. Furthermore, these observations were associated with a delay in muscle fiber maturation; captopril treatment resulted in sustained expression of embryonic myosin heavy chain. Collectively, these findings demonstrate that localized skeletal muscle angiotensin signaling is important to muscle fiber formation, myonuclear accretion, and satellite cell function.
Collapse
Affiliation(s)
| | | | | | - Gianni Parise
- Departments of 1Kinesiology and Medical Physics and
- Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
94
|
Cozzoli A, Nico B, Sblendorio VT, Capogrosso RF, Dinardo MM, Longo V, Gagliardi S, Montagnani M, De Luca A. Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice. Pharmacol Res 2011; 64:482-92. [PMID: 21689754 PMCID: PMC3184479 DOI: 10.1016/j.phrs.2011.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 02/06/2023]
Abstract
Inhibitors of angiotensin converting enzymes (ACE) are clinically used to control cardiomyopathy in patients of Duchenne muscular dystrophy. Various evidences suggest potential usefulness of long-term treatment with ACE inhibitors to reduce advanced fibrosis of dystrophic muscle in the mdx mouse model. However, angiotensin II is known to exert pro-inflammatory and pro-oxidative actions that might contribute to early events of dystrophic muscle degeneration. The present study has been aimed at evaluating the effects of an early treatment with enalapril on the pathology signs of exercised mdx mouse model. The effects of 1 and 5 mg/kg enalapril i.p. for 4-8 weeks have been compared with those of 1 mg/kg α-methyl-prednisolone (PDN), as positive control. Enalapril caused a dose-dependent increase in fore limb strength, the highest dose leading to a recovery score similar to that observed with PDN. A dose-dependent reduction of superoxide anion production was observed by dihydroethidium staining in tibialis anterior muscle of enalapril-treated mice, approaching the effect observed with PND. In parallel, a significant reduction of the activated form of the pro-inflammatory Nuclear Factor-kB has been observed in gastrocnemious muscle. Histologically, 5 mg/kg enalapril reduced the area of muscle necrosis in both gastrocnemious muscle and diaphragm, without significant effect on non-muscle area. In parallel no significant changes have been observed in both muscle TGF-β1 and myonuclei positive to phosphorylated Smad2/3. Myofiber functional indices were also monitored by microelectrodes recordings. A dose-dependent recovery of macroscopic chloride conductance has been observed upon enalapril treatment in EDL muscle, with minor effects being exerted in diaphragm. However a modest effect, if any, was found on mechanical threshold, a functional index of calcium homeostasis. No recovery was observed in creatine kinase and lactate dehydrogenase. Finally the results suggest the ability of enalapril to blunt angiotensin-II dependent activation of pro-inflammatory and pro-oxidant pathways which may be earlier events with respect to the pro-fibrotic ones, and may in part account for both functional impairment and muscle necrosis. The PDN-like profile may corroborate the combined use of the two classes of drugs in DMD patients so to potentiate the beneficial effects at skeletal muscle level, while reducing both spontaneous and PDN-aggravated cardiomyopathy.
Collapse
Affiliation(s)
- Anna Cozzoli
- Unit of Pharmacology, Department of Pharmaco-biology, Faculty of Pharmacy, University of Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Winter JN, Jefferson LS, Kimball SR. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am J Physiol Cell Physiol 2011; 300:C1172-80. [PMID: 21289294 DOI: 10.1152/ajpcell.00504.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.
Collapse
Affiliation(s)
- Jeremiah N Winter
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | |
Collapse
|