51
|
Oz Oyar E, Korkmaz A, Kardesş O, Omeroğlu S. Aortic cross-clamping-induced spinal cord oxidative stress in rabbits: the role of a novel antioxidant adrenomedullin. J Surg Res 2007; 147:143-7. [PMID: 17981302 DOI: 10.1016/j.jss.2007.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/08/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Spinal cord injury remains a devastating complication of thoracic and thoracoabdominal aortic operations. We aim to investigate the neuro-protective role of adrenomedullin (AM) administered to rabbits before ischemia and during reperfusion against ischemia-reperfusion (I/R) injury. MATERIALS AND METHODS Occlusion of the abdominal aorta was applied to adult rabbits, followed by removal of aortic clamp and reperfusion. The abdominal aortas of New Zealand white albino rabbits were occluded for 30 min. Experimental groups were as follows: control group (sham operation group, n = 10), I/R group (n = 9) undergoing occlusion but receiving no pharmacologic intervention, AM-treated group (n = 8) receiving 0.05 microg/kg/min AM intravenously 10 min before ischemia and during reperfusion. Neurological status was assessed at 6, 24, and 48 h after the operation. All animals were killed at 48 h after the operation. Spinal cords were harvested for histopathologic and biochemical analyses. RESULTS According to Tarlov's scale, neurological status of the rabbits at postoperative hour 48 was better in the AM-treated group compared to the I/R group (P < 0.05). Decreased tissue and serum malondialdehyde levels and increased tissue and serum glutathione levels were observed in the AM-treated group (P < 0.05). In the same group tissue and serum nitrate levels were decreased (P < 0.05). Histopathologic analyses demonstrated typical morphological changes characteristic of necrosis in the I/R group. AM attenuated ischemia-induced necrosis. CONCLUSION To our knowledge, this is the first study that shows the effects of AM administered both preischemic and during reperfusion on induced oxidative damage to injured spinal cords. AM administration may significantly reduce the incidence of spinal cord injury following temporary aortic occlusion.
Collapse
Affiliation(s)
- Eser Oz Oyar
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | | | | |
Collapse
|
52
|
Abu-Amero KK, Al-Mohanna F, Al-Boudari OM, Mohamed GH, Dzimiri N. The interactive role of type 2 diabetes mellitus and E-selectin S128R mutation on susceptibility to coronary heart disease. BMC MEDICAL GENETICS 2007; 8:35. [PMID: 17578587 PMCID: PMC1933415 DOI: 10.1186/1471-2350-8-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/20/2007] [Indexed: 11/10/2022]
Abstract
Background The role of gene-environment interactions as risk factors for coronary heart disease (CAD) remains largely undefined. Such interactions may involve gene mutations and disease conditions such as type 2 diabetes mellitus (DM2) predisposing individuals to acquiring the disease. Methods In the present study, we assessed the possible interactive effect of DM2 and E-selectin S128R polymorphism with respect to its predisposing individuals to CAD, using as a study model a population of 1,112 patients and 427 angiographed controls of Saudi origin. E-selectin genotyping was accomplished by polymerase chain reaction (PCR) amplification followed by PstI restriction enzyme digestion. Results The results show that DM2 is an independent risk factor for CAD. In the absence of DM2, the presence of the R mutant allele alone is not significantly associated with CAD (p = 0.431, OR 1.28). In contrast, in the presence of DM2 and the S allele, the likelihood of an individual acquiring CAD is significant (odds ratio = 5.44; p = < 0.001). This effect of DM2 becomes remarkably greater in the presence of the mutant 128R allele, as can be observed from the odds ratio of their interaction term (odds ratio = 6.11; p = < 0.001). Conclusion Our findings indicate therefore that the risk of acquiring CAD in patients with DM2 increases significantly in the presence of the 128R mutant allele of the E-selectin gene.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Futwan Al-Mohanna
- Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Olayan M Al-Boudari
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Gamal H Mohamed
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
53
|
Abstract
Following an acute myocardial infarction (AMI), early coronary artery reperfusion remains the most effective means of limiting the eventual infarct size. The resultant left ventricular systolic function is a critical determinant of the patient's clinical outcome. Despite current myocardial reperfusion strategies and ancillary antithrombotic and antiplatelet therapies, the morbidity and mortality of an AMI remain significant, with the number of patients developing cardiac failure increasing, necessitating the development of novel strategies for cardioprotection which can be applied at the time of myocardial reperfusion to reduce myocardial infarct size. In this regard, the Reperfusion Injury Salvage Kinase (RISK) Pathway, the term given to a group of pro-survival protein kinases (including Akt and Erk1/2), which confer powerful cardioprotection, when activated specifically at the time of myocardial reperfusion, provides an amenable pharmacological target for cardioprotection. Preclinical studies have demonstrated that an increasing number of agents including insulin, erythropoietin, adipocytokines, adenosine, volatile anesthetics natriuretic peptides and 'statins', when administered specifically at the time of myocardial reperfusion, reduce myocardial infarct size through the activation of the RISK pathway. This recruits various survival pathways that include the inhibition of mitochondrial permeability transition pore opening. Interestingly, the RISK pathway is also recruited by the cardioprotective phenomena of ischemic preconditioning (IPC) and postconditioning (IPost), enabling the use of pharmacological agents which target the RISK pathway, to be used at the time of myocardial reperfusion, as pharmacological mimetics of IPC and IPost. This article reviews the origins and evolution of the RISK pathway, as part of a potential common cardioprotective pathway, which can be activated by an ever-expanding list of agents administered at the time of myocardial reperfusion, as well as by IPC and IPost. Preliminary clinical studies have demonstrated myocardial protection with several of these pharmacological activators of the RISK pathway in AMI patients undergoing PCI. Through the use of appropriately designed clinical trials, guided by the wealth of existing preclinical data, the administration of pharmacological agents which are known to activate the RISK pathway, when applied as adjuvant therapy to current myocardial reperfusion strategies for patients presenting with an AMI, should lead to improved clinical outcomes in this patient group.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, 67 Chenies Mews, London, UK.
| | | |
Collapse
|
54
|
Varela N, Chorny A, Gonzalez-Rey E, Delgado M. Tuning inflammation with anti-inflammatory neuropeptides. Expert Opin Biol Ther 2007; 7:461-78. [PMID: 17373898 DOI: 10.1517/14712598.7.4.461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immune system is confronted with the daunting task of defending the organism against invading pathogens while at the same time remaining self-tolerant to the body's own constituents and preserving its integrity. The loss of immune tolerance stemming from an unbalance in pro-inflammatory factors versus anti-inflammatory cytokines, or of autoreactive/inflammatory T helper 1 cells versus regulatory/suppressive T cells, results in the breakdown of immune homeostasis and the subsidiary appearance of exacerbated inflammatory and autoimmune diseases. Some neuropeptides have been shown to have anti-inflammatory properties and to participate in maintaining immune tolerance. Here the authors examine the most recent developments in this field and highlight the effectiveness of using neuropeptides in treating several inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Nieves Varela
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones Cientificas (CSIC), Avd. Conocimiento, PT Ciencias de la Salud, Granada 18100, Spain.
| | | | | | | |
Collapse
|
55
|
Shibata Y, Kashiwagi B, Arai S, Magari T, Suzuki K, Honma S. Participation of adrenomedullin and its relation with vascular endothelial growth factor in androgen regulation of prostatic blood flow in vivo. Urology 2006; 68:1127-31. [PMID: 17113911 DOI: 10.1016/j.urology.2006.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/07/2006] [Accepted: 06/15/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We had previously reported that androgen-regulated prostatic blood flow and vascular endothelial growth factor (VEGF) were involved in the signal transduction pathway. Adrenomedullin (ADM) is a multifunctional regulatory peptide with mitogenic and angiogenic capabilities that are regulated by androgen. ADM is abundantly expressed in the prostate. We focused on ADM and evaluated its participation and relation with VEGF in androgen prostatic blood flow regulation using a castrated rat model. METHODS We examined the effect of locally injected dihydrotestosterone (DHT) and ADM, and the co-administration of DHT with an ADM receptor antagonist (ADM 22-52) on prostatic blood flow. Furthermore, prostatic blood flow was evaluated after ADM and VEGF administration with each other's antagonist, VEGF neutralizing antibody and ADM 22-52, respectively. Changes in the mRNA expression levels of ADM in the prostate after castration and successive androgen stimulation were also evaluated. RESULTS The administration of ADM promptly increased prostatic blood flow in a dose-dependent manner within 30 minutes. The DHT-induced increase in prostatic blood flow was completely abolished by co-administration with anti-ADM. Anti-ADM inhibited the VEGF-induced prostatic blood flow elevation, but a VEGF neutralizing antibody did not affect the ADM-mediated blood flow elevation. Furthermore, upregulation of the ADM gene induced by DHT was inhibited by co-administration with a VEGF-neutralizing antibody. CONCLUSIONS These results have clearly demonstrated the direct regulation of prostatic blood flow by ADM and its involvement in androgenic prostatic blood flow regulation. Furthermore, ADM was estimated to be a downstream mediator of VEGF action in the signal transduction pathway.
Collapse
Affiliation(s)
- Yasuhiro Shibata
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | | | | | | |
Collapse
|
56
|
Liu J, Shimosawa T, Matsui H, Meng F, Supowit SC, DiPette DJ, Ando K, Fujita T. Adrenomedullin inhibits angiotensin II-induced oxidative stress via Csk-mediated inhibition of Src activity. Am J Physiol Heart Circ Physiol 2006; 292:H1714-21. [PMID: 17071733 DOI: 10.1152/ajpheart.00486.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have demonstrated that adrenomedullin (AM) protects against angiotensin II (ANG II)-induced cardiovascular damage through the attenuation of increased oxidative stress observed in AM-deficient mice. However, the mechanism(s) that underlie this activity remain unclear. To address this question, we investigated the effect of AM on ANG II-stimulated reactive oxygen species (ROS) production in cultured rat aortic vascular smooth muscle cells (VSMCs). ANG II markedly increased ROS production through activation of NADPH oxidase. This effect was significantly attenuated by AM in a concentration-dependent manner. This effect was mimicked by dibutyl-cAMP and blocked by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89), a protein kinase A inhibitor, and CGRP(8-37), an AM/CGRP receptor antagonist. This inhibitory effect of AM was also lost following the expression of a constitutively active Src. Moreover, AM intersected ANG II signaling by inducing COOH-terminal Src kinase (Csk) activation that, in turn, inhibits Src activation. These data, for the first time, demonstrate that AM attenuates the ANG II-induced increase in ROS in VSMCs via activation of Csk, thereby inhibiting Src activity.
Collapse
MESH Headings
- Adrenomedullin/pharmacology
- Angiotensin II/pharmacology
- Animals
- Antioxidants/metabolism
- Aorta, Thoracic/cytology
- CSK Tyrosine-Protein Kinase
- Calcitonin Gene-Related Peptide/pharmacology
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tyrosine/metabolism
- Vasoconstrictor Agents/pharmacology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Jing Liu
- Departments of Endocrinology and Nephrology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Li HJ, Yin H, Yao YY, Shen B, Bader M, Chao L, Chao J. Tissue kallikrein protects against pressure overload-induced cardiac hypertrophy through kinin B2 receptor and glycogen synthase kinase-3beta activation. Cardiovasc Res 2006; 73:130-42. [PMID: 17137568 PMCID: PMC1847347 DOI: 10.1016/j.cardiores.2006.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE We assessed the role of glycogen synthase kinase-3beta (GSK-3beta) and kinin B2 receptor in mediating tissue kallikrein's protective effects against cardiac hypertrophy. METHODS We investigated the effect and mechanisms of tissue kallikrein using hypertrophic animal models of rats as well as mice deficient in kinin B1 or B2 receptor after aortic constriction (AC). RESULTS Intramyocardial delivery of adenovirus containing the human tissue kallikrein gene resulted in expression of recombinant kallikrein in rat myocardium. Kallikrein gene delivery improved cardiac function and reduced heart weight/body weight ratio and cardiomyocyte size without affecting mean arterial pressure 28 days after AC. Icatibant and adenovirus carrying a catalytically inactive GSK-3beta mutant (Ad.GSK-3beta-KM) abolished kallikrein's effects. Kallikrein treatment increased cardiac nitric oxide (NO) levels and reduced NAD(P)H oxidase activity and superoxide production. Furthermore, kallikrein reduced the phosphorylation of apoptosis signal-regulating kinase1, mitogen-activated protein kinases (MAPKs), Akt, GSK-3beta, and cAMP-response element binding (CREB) protein, and decreased nuclear factor-kappaB (NF-kappaB) activation in the myocardium. Ad.GSK-3beta-KM abrogated kallikrein's actions on GSK-3beta and CREB phosphorylation and NF-kappaB activation, whereas icatibant blocked all kallikrein's effects. The protective role of kinin B2 receptor in cardiac hypertrophy was further confirmed in kinin receptor knockout mice as heart weight/body weight ratio and cardiomyocyte size increased significantly in kinin B2 receptor knockout mice after AC compared to wild type and B1 receptor knockout mice. CONCLUSIONS These findings indicate that tissue kallikrein, through kinin B2 receptor and GSK-3beta signaling, protects against pressure overload-induced cardiomyocyte hypertrophy by increased NO formation and oxidative stress-induced Akt-GSK-3beta-mediated signaling events, MAPK and NF-kappaB activation.
Collapse
Affiliation(s)
- Huey-Jiun Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Yu-Yu Yao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Bo Shen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Michael Bader
- The Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
58
|
Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I. Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 2006; 114:1713-20. [PMID: 17015789 DOI: 10.1161/circulationaha.106.632273] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Midkine (MK) is a heparin-binding growth factor involved in diverse biological phenomena, eg, neural survival, carcinogenesis, and tissue repair. MK could have a protective action against ischemia/reperfusion (I/R) injury in the heart, because MK was shown to have cytoprotective activity in cultured neurons and tumor cells. We investigated this hypothesis in mice with and without genetic MK deletion. METHODS AND RESULTS Myocardial injury after I/R was produced by transient occlusion of coronary arteries. In wild-type (Mdk+/+) mice, MK expression was increased after I/R in the periinfarct area. Infarct size/area at risk 24 hours after I/R in MK-deficient (Mdk-/-) mice was larger than in Mdk+/+ mice (55.4+/-9.1% versus 32.1+/-5.3%, P<0.05). Terminal dUTP nick end-labeling-positive myocyte population in the periinfarct area in Mdk-/- mice was higher than in Mdk+/+ mice (6.8+/-0.9% versus 3.2+/-0.6%, P<0.05). Left ventricular fractional shortening 24 hours after I/R in Mdk-/- mice was significantly less than that in Mdk+/+ mice (34.3+/-4.4% versus 50.8+/-2.1%, P<0.05). Supplemental application of MK protein to left ventricle of Mdk-/- mice at the time of I/R resulted in reduction of the infarct size. Application of exogenous MK to cultured cardiomyocytes resulted in increased Bcl-2 expression and decreased apoptosis after hypoxia/reoxygenation. CONCLUSIONS These results suggest that MK plays a protective role against I/R injury, most likely through a prevention of apoptotic reaction. MK is a potentially important new molecular target for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Mitsuru Horiba
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jia YX, Yang JH, Pan CS, Geng B, Zhang J, Xiao Y, Zhao J, Gerns H, Yang J, Chang JK, Wen JK, Tang CS, Qi YF. Intermedin1-53 protects the heart against isoproterenol-induced ischemic injury in rats. Eur J Pharmacol 2006; 549:117-23. [PMID: 16987513 DOI: 10.1016/j.ejphar.2006.07.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 07/11/2006] [Accepted: 07/26/2006] [Indexed: 11/18/2022]
Abstract
Intermedin is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP) family peptide, which has vasodilatory and hypotensive actions identical to those of adrenomedullin and CGRP. Cleavage sites located between 2 basic amino acids at Arg93-Arg94 result in the production of prepro-intermedin95-147, namely intermedin1-53. The bioactive action of intermedin1-53 and its physiological significance are unclear. In this work, we aimed to explore the effects of intermedin1-53 on acute myocardial injury induced by isoproterenol. Myocardial ischemia injury in rats was induced by subcutaneous injection of a high dose of isoproterenol, and the therapeutic effect of intermedin1-53 was observed. Plasma lactate dehydrogenase activity, myocardial and plasma malondialdehyde content were higher in the isoproterenol group than that in controls. Isoproterenol-treated rats showed lower maximal rate of increase and decrease of left-ventricle pressure development (+/-left-ventricle dp/dtmax) and higher left-ventricle end-diastolic pressure (all P<0.01), which suggested severe heart failure and myocardial injury. Semi-quantitative RT-PCR analysis showed that the gene expression of calcitonin receptor-like receptor and receptor-activity-modifying protein (RAMP)1, RAMP2 and RAMP3 in ventricular myocardia were up-regulated by 79% (P<0.01), 48% (P<0.01), 31% (P<0.05) and 130% (P<0.01), respectively, compared with controls. In myocardial sarcolemmal membranes, the maximum binding capacity for [125I]-intermedin1-53 was increased by 118% (P<0.01) in the isoproterenol group compared with controls. Rats treated with low dosage intermedin1-53 (5 nmol/kg/day, 2 days) showed 21% (P<0.05) higher myocardial cAMP content, 18% and 31% higher+left-ventricle dp/dtmax and -left-ventricle dp/dtmax respectively, 288% lower left-ventricle end-diastolic pressure (all P<0.01), and attenuated myocardial lactate dehydrogenase leakage and malondialdehyde formation (all P<0.01). Treatment with high dosage intermedin1-53 (20 nmol/kg/day, 2 days) gave better results than that with low dosage intermedin1-53. These results suggest that the intermedin receptor system was up-regulated in isoproterenol-induced myocardial ischemic injury and intermedin1-53 might play a pivotal cardioprotective role in such injury.
Collapse
Affiliation(s)
- Yue-Xia Jia
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hamid SA, Baxter GF. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J Mol Cell Cardiol 2006; 41:360-3. [PMID: 16842816 DOI: 10.1016/j.yjmcc.2006.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/17/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022]
Abstract
Exogenous administration or transfection of adrenomedullin (AM) affords protection against ischaemia-reperfusion injury. Here we have examined the role of endogenous AM in regulating the development of myocardial infarction. Wild type (WT) and AM(+/-) mice underwent 30 min regional myocardial ischaemia and 120 min reperfusion. In AM(+/-) hearts, tetrazolium-determined infarct size was greater than in WT controls (27.9 +/- 2.0 vs. 17.7 +/- 2.4%, P < 0.01) and mortality rate was increased (35% vs. 14%, P < 0.05). Treatment with exogenous recombinant AM (200 ng/kg) prior to coronary occlusion rescued the ischaemia-reperfusion intolerant phenotype of AM(+/-) mice and further limited infarct development in WT mice. Administration of recombinant AM was associated with augmented phosphorylation of Akt and eNOS in early reperfusion suggesting a role for AM in regulating this survival pathway. These studies provide the first evidence that expression of AM is a critical factor regulating myocardial tolerance to ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Shabaz A Hamid
- Department of Basic Sciences, The Royal Veterinary College, University of London, UK.
| | | |
Collapse
|
61
|
Collin B, Busseuil D, Zeller M, Perrin C, Barthez O, Duvillard L, Vergely C, Bardou M, Dumas M, Cottin Y, Rochette L. Increased superoxide anion production is associated with early atherosclerosis and cardiovascular dysfunctions in a rabbit model. Mol Cell Biochem 2006; 294:225-35. [PMID: 16871360 DOI: 10.1007/s11010-006-9263-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypercholesterolemia (HC) has been associated with impairment of vascular and myocardial functions. As HC could generate an alteration in the oxidative status, we studied the effects of a 1-month cholesterol diet on cardiovascular oxidative stress. METHODS AND RESULTS New Zealand rabbits received cholesterol (1%) or normal chow for 1 month. At 30 days, superoxide anion levels, assessed by ESR spectroscopy, NAD(P)H oxidase (NOX) activity, and dihydroethidium (DHE) staining of aortas were higher in the cholesterol-fed (CF) group compared with control (respectively, 4.0 +/- 0.6 Arbitrary Units/mg (AU/mg) vs. 2.6 +/- 0.3, p < 0.05; 4231 +/- 433 vs. 2931 +/- 373 AU/mg, p<0.05; 21.4 +/- 1.2 vs. 12.9 +/- 1.7% fluorescence/mm2, p < 0.001). NOX gp91 phox and p67 phox expression in the aortas were higher in the CF group vs. control (1.5 +/- 0.2 vs. 0.5 +/- 0.2, p < 0.001; 0.9 +/- 0.2 vs. 0.3 +/- 0.2, p<0.05). The endothelium-dependent relaxation evaluated on the iliac arteries was higher in control than in the CF group (64.8 +/- 10.1 vs. 13.1 +/- 3.70%, p<0.001). The cardiac diastolic pressure estimated on isolated hearts was higher in the CF group than in control (21.1 +/- 4.1 vs. 10.3 +/- 1.4 mmHg, p<0.05) after 60 min of ischemia. CONCLUSIONS Hypercholesterolemia induced increased levels of superoxide in the aortas and a higher expression of NOX subunits, associated with altered vasorelaxation. The increased diastolic pressure observed in hearts, consistent with a post-ischemic contractile dysfunction might be mediated by the production of superoxide.
Collapse
Affiliation(s)
- Bertrand Collin
- Laboratory of Cardiovascular and Experimental Physiopathology and Pharmacology, Faculty of Medicine, University of Burgundy, 7, Boulevard Jeanne d'Arc, 21079, Dijon Cedex, BP 87900, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Looi YH, Kane KA, McPhaden AR, Wainwright CL. Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats. Br J Pharmacol 2006; 148:599-609. [PMID: 16715121 PMCID: PMC1751863 DOI: 10.1038/sj.bjp.0706771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/17/2006] [Accepted: 03/30/2006] [Indexed: 11/09/2022] Open
Abstract
1. The overall aim of this study was to determine if adrenomedullin (AM) protects against myocardial ischaemia (MI)-induced arrhythmias via nitric oxide (NO) and peroxynitrite. 2. In sham-operated rats, the effects of in vivo administration of a bolus dose of AM (1 nmol kg-1) was assessed on arterial blood pressure (BP), ex vivo leukocyte reactive oxygen species generation and nitrotyrosine deposition (a marker for peroxynitrite formation) in the coronary endothelium. 3. In pentobarbitone-anaesthetized rats subjected to ligation of the left main coronary artery for 30 min, the effects of a bolus dose of AM (1 nmol kg-1, i.v.; n=19) or saline (n=18) given 5 min pre-occlusion were assessed on the number and incidence of cardiac arrhythmias. In a further series of experiments, some animals received infusions of the NO synthase inhibitor N(G)-nitro-L-arginine (LNNA) (0.5 mg kg-1 min-1) or the peroxynitrite scavenger N-mercaptopropionyl-glycine (MPG) (20 mg kg-1 h-1) before AM. 4. AM treatment significantly reduced mean arterial blood pressure (MABP) and increased ex vivo chemiluminescence (CL) generation from leukocytes in sham-operated animals. AM also enhanced the staining for nitrotyrosine in the endothelium of coronary arteries. 5. AM significantly reduced the number of total ventricular ectopic beats that occurred during ischaemia (from 1185+/-101 to 520+/-74; P<0.05) and the incidences of ventricular fibrillation (from 61 to 26%; P<0.05). AM also induced a significant fall in MABP prior to occlusion. AM-induced cardioprotection was abrogated in animals treated with the NO synthase inhibitor LNNA and the peroxynitrite scavenger MPG. 6. This study has shown that AM exhibits an antiarrhythmic effect through a mechanism that may involve generation of NO and peroxynitrite.
Collapse
Affiliation(s)
- Yee Hoo Looi
- Department of Physiology & Pharmacology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Kathleen A Kane
- Department of Physiology & Pharmacology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland
| | - Allan R McPhaden
- Department of Pathology, Glasgow Royal Infirmary, Glasgow G4 0SF, Scotland
| | - Cherry L Wainwright
- School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland
| |
Collapse
|
63
|
Dackor RT, Fritz-Six K, Dunworth WP, Gibbons CL, Smithies O, Caron KM. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol 2006; 26:2511-8. [PMID: 16537897 PMCID: PMC1430335 DOI: 10.1128/mcb.26.7.2511-2518.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. To date, numerous in vitro studies have suggested that AM can mediate its biological effects through at least three different receptors. To determine the in vivo importance of the most likely candidate receptor, calcitonin receptor-like receptor, a gene-targeted knockout model of the gene was generated. Mice heterozygous for the targeted Calcrl allele appear normal, survive to adulthood, and reproduce. However, heterozygote matings fail to produce viable Calcrl-/- pups, demonstrating that Calcrl is essential for survival. Timed matings confirmed that Calcrl-/- embryos die between embryonic day 13.5 (E13.5) and E14.5 of gestation. The Calcrl-/- embryos exhibit extreme hydrops fetalis and cardiovascular defects, including thin vascular smooth muscle walls and small, disorganized hearts remarkably similar to the previously characterized AM-/- phenotype. In vivo assays of cellular proliferation and apoptosis in the hearts and vasculature of Calcrl-/- and AM-/- embryos support the concept that AM signaling is a crucial mediator of cardiovascular development. The Calcrl gene targeted mice provide the first in vivo genetic evidence that CLR functions as an AM receptor during embryonic development.
Collapse
Affiliation(s)
- Ryan T Dackor
- Department of Cell & Molecular Physiology, CB #7545, 6330 MBRB, 103 Mason Farm Rd., The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
64
|
García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Julián M, Martínez A. Adrenomedullin: a new and promising target for drug discovery. Expert Opin Ther Targets 2006; 10:303-17. [PMID: 16548778 DOI: 10.1517/14728222.10.2.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a critical role in several diseases such as hypertension, cancer, diabetes, cardiovascular and renal disorders, among others. Interestingly, AM behaves as a protective agent against some pathologies, yet is a stimulating factor for other disorders. Thus, AM can be considered as a new and promising target for the design of non-peptidic modulators that could be useful for the treatment of those pathologies, by regulating AM levels or the activity of AM. A full decade on from its discovery, much more is known about AM molecular biology and pharmacology, but this knowledge still needs to be applied to the development of clinically useful drugs.
Collapse
Affiliation(s)
- Mario A García
- Universidad San Pablo CEU, Departamento de Química, Facultad de Farmacia, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
65
|
Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 2006; 26:109-18. [PMID: 16763778 PMCID: PMC11520619 DOI: 10.1007/s10571-006-9028-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 11/08/2005] [Indexed: 12/14/2022]
Abstract
AIMS Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood-brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC). METHODS BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans' blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting. RESULTS AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell-cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure. CONCLUSIONS AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.
Collapse
Affiliation(s)
- Masaru Honda
- Department of Neurosurgery, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
66
|
Abasolo I, Montuenga LM, Calvo A. Adrenomedullin prevents apoptosis in prostate cancer cells. ACTA ACUST UNITED AC 2006; 133:115-22. [PMID: 16297990 DOI: 10.1016/j.regpep.2005.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 09/22/2005] [Indexed: 11/19/2022]
Abstract
The 52-aminoacid peptide adrenomedullin (AM) is expressed in the normal and malignant prostate. We have previously shown that prostate cancer cells produce and secrete AM, which acts as an autocrine growth inhibitory factor. We have evaluated in the present study the role of AM in prostate cancer cell apoptosis, induced either by serum deprivation or treatment with the chemotherapeutic agent etoposide (which acts as an inhibitor of topoisomerase II). For this purpose we over-expressed AM in PC-3, DU 145 and LNCaP cells, which were transfected with an expression vector carrying AM. We also treated the parental cell lines with synthetic AM in normal culture conditions and in conditions of induced-apoptosis. After serum removal, AM prevented apoptosis in DU 145 and PC-3 cells, but not in LNCaP cells. When treated with etoposide, AM prevented apoptosis in PC-3 and LNCaP cells, but not in DU 145 cells. Cell cycle analysis demonstrated a significant decrease in the percentage of AM-overexpressing PC-3 cells in the subG0/G1 phase after treatment with etoposide, as compared to the percentage of mock-transfected PC-3 treated cells. Western blot showed that protein levels of phosphorylated ERK1/2 increased in parental PC-3 cells after treatment with etoposide. In PC-3 cells overexpressing AM, phosphorylated ERK1/2 basal levels were lower than basal levels of parental PC-3 cells, and treatment with etoposide did not result in such an increase. Etoposide produced a significant increase in cleaved PARP in parental PC-3 cells. However, PC-3 clones overexpressing AM that were treated with etoposide only showed a mild increase in fragmented PARP. The ratio Bcl-2/Bax was reduced in parental or mock-transfected PC-3 cells after treatment with etoposide. On the contrary, this ratio was not reduced in PC-3 clones with AM overexpression that were treated with etoposide. All these data demonstrate that AM plays a protective role against induced apoptosis in prostate cancer cells. These results may have important implications in prostate cancer resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- Ibane Abasolo
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
67
|
Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA. Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 2005; 115:2716-30. [PMID: 16200208 PMCID: PMC1236670 DOI: 10.1172/jci24280] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 07/19/2005] [Indexed: 10/25/2022] Open
Abstract
This study delineates a mechanism for antiapoptotic signaling initiated by atrial natriuretic peptide (ANP) stimulation leading to elevation of cGMP levels and subsequent nuclear accumulation of Akt kinase associated with zyxin, a cytoskeletal LIM-domain protein. Nuclear targeting of zyxin induces resistance to cell death coincident with nuclear accumulation of activated Akt. Nuclear translocation of zyxin triggered by cGMP also promotes nuclear Akt accumulation. Additional supportive evidence for nuclear accumulation of zyxin-enhancing cardiomyocyte survival includes the following: (a) promotion of zyxin nuclear localization by cardioprotective stimuli; (b) zyxin association with phospho-Akt473 induced by cardioprotective stimuli; and (c) recruitment of zyxin to the nucleus by activated nuclear-targeted Akt as well as recruitment of Akt by nuclear-targeted zyxin. Nuclear accumulation of zyxin requires both Akt activation and nuclear localization. Potentiation of cell survival is sensitive to stimulation intensity with high-level induction by ANP or cGMP signaling leading to apoptotic cell death rather than enhancing resistance to apoptotic stimuli. Myocardial nuclear accumulation of zyxin and Akt responds similarly in vivo following treatment of mice with ANP or cGMP. Thus, zyxin and activated Akt participate in a cGMP-dependent signaling cascade leading from ANP receptors to nuclear accumulation of both molecules. Nuclear accumulation of zyxin and activated Akt may represent a fundamental mechanism that facilitates nuclear-signal transduction and potentiates cell survival.
Collapse
Affiliation(s)
- Takahiro Kato
- San Diego State University Heart Institute, Department of Biology, San Diego, California 92182, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chen L, Kis B, Busija DW, Yamashita H, Ueta Y. Adrenomedullin protects rat cerebral endothelial cells from oxidant damage in vitro. ACTA ACUST UNITED AC 2005; 130:27-34. [PMID: 15913808 DOI: 10.1016/j.regpep.2005.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/05/2005] [Accepted: 03/02/2005] [Indexed: 11/26/2022]
Abstract
Increased permeability and reduced cerebral endothelial cell (CEC) viability induced by oxidative stress are the hallmarks of the blood-brain barrier disruption. In our experiments hydrogen peroxide (H2O2, 0.5 mM) induced a continuous decrease of the transendothelial electrical resistance (TEER) and resulted in intercellular gap formations in cultured rat CECs. Adrenomedullin (AM) increased TEER, enhanced peripheral localization of F-actin bands and attenuated the increased permeability induced by H2O2. Furthermore, AM treatment preserved mitochondrial membrane potential, attenuated cytochrome c release, and consequently improved CEC viability in H2O2 treated cultures. These results suggest that AM treatment protects CECs against oxidative injury.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | |
Collapse
|
69
|
Yoshimoto T, Gochou N, Fukai N, Sugiyama T, Shichiri M, Hirata Y. Adrenomedullin inhibits angiotensin II-induced oxidative stress and gene expression in rat endothelial cells. Hypertens Res 2005; 28:165-72. [PMID: 16025744 DOI: 10.1291/hypres.28.165] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adrenomedullin (AM), a potent vasodilator peptide, has recently been suggested to function as an endogenous antioxidant. However, its potential site of action at the cellular level has not been clarified. The present study was undertaken to investigate whether AM directly inhibits intracellular reactive oxygen species (ROS) generation and redox-sensitive gene expression stimulated by angiotensin (Ang) II in rat aortic endothelial cells (ECs). Ang II (10(-7) mol/l) significantly increased intracellular ROS levels in ECs as measured by dichlorofluorescein (DCF) fluorescence. AM inhibited Ang II-stimulated ROS generation in a dose-dependent manner and this effect was abolished by a superoxide radical scavenger, NAD(P)H oxidase inhibitor, and a protein kinase A (PKA) inhibitor, and mimicked by a cell-permeable cAMP analog. A real-time reverse transcription-polymerase chain reaction (RT-PCR) study showed that Ang II significantly upregulated a set of redox-sensitive genes (ICAM-1, VCAM-1, PAI-1, tissue factor, MCP-1, osteopontin), and these effects were blocked by an antioxidant, N-acetyl cysteine (NAC). AM similarly and dose-dependently inhibited the Ang II-induced upregulation of the entire set of these genes via a receptor-mediated and PKA-dependent pathway, and the degrees of inhibition were similar to those by NAC. In conclusion, the present study demonstrated that AM potently blocked the Ang II-stimulated intracellular ROS generation from NAD(P)H oxidase and the subsequent redox-sensitive gene expression via a cAMP-dependent mechanism in ECs, suggesting that AM has vasculoprotective effects against pro-oxidant stimuli.
Collapse
Affiliation(s)
- Takanobu Yoshimoto
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
70
|
Julián M, Cacho M, García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Martínez A, Cuttitta F. Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities. Eur J Med Chem 2005; 40:737-50. [PMID: 15927308 DOI: 10.1016/j.ejmech.2004.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 10/25/2022]
Abstract
Adrenomedullin (AM) is a 52-amino acid peptide with a pluripotential activity. AM is expressed in many tissues throughout the body, and plays a critical role in several diseases such as cancer, diabetes, cardiovascular and renal disorders, among others. While AM is a protective agent against cardiovascular disorders, it behaves as a stimulating factor in other pathologies such as cancer and diabetes. Therefore, AM is a new and promising target for the development of molecules which, through their ability to regulate AM levels, could be used in the treatment of these pathologies.
Collapse
Affiliation(s)
- Miguel Julián
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Hamid SA, Baxter GF. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 2005; 100:387-96. [PMID: 16010601 DOI: 10.1007/s00395-005-0538-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/18/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Adrenomedullin (AM) is a vascular-derived polypeptide that exerts numerous actions in cardiovascular homeostasis. Recent studies have demonstrated a cytoprotective action of exogenously applied or genetically over-expressed AM in experimental myocardial infarction. The present studies were undertaken to test the hypothesis that AM exerts its effects through direct augmentation of NO generation in the myocardium during early reperfusion. Rat isolated hearts underwent 35 min left coronary artery occlusion followed by 120 min reperfusion. Infarct size (as percentage of ischaemic riskzone) was determined by Evans' blue and tetrazolium double staining. AM 1 nM administered 5 min prior to and during the first 15 min of ischaemia did not significantly influence infarct size. However, the same concentration of AM given during the last 5 min ischaemia and first 15 min of reperfusion significantly limited infarct size (AM reperfusion 15.9 +/- 3.5% vs control 31.4 +/- 2.1%, P < 0.01). AM at reperfusion improved coronary flow and LV contractility. The protective effects of adrenomedullin were abolished in the presence of the NO synthase inhibitor, L-NAME 100 microM (infarct size 24.6 +/- 5.7%, P > 0.05 vs control). AM treatment at reperfusion was associated with augmented phosphorylation of the pro-survival kinase, Akt, determined by immunoblotting of tissue sampled 30 min following reperfusion. These studies provide the first evidence that AM exerts its cytoprotective action specifically during early reperfusion through a NO-dependent mechanism.
Collapse
Affiliation(s)
- S A Hamid
- Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK, United Kingdom.
| | | |
Collapse
|
72
|
Cao YN, Kuwasako K, Kato J, Yanagita T, Tsuruda T, Kawano J, Nagoshi Y, Chen AF, Wada A, Suganuma T, Eto T, Kitamura K. Beyond vasodilation: The antioxidant effect of adrenomedullin in Dahl salt-sensitive rat aorta. Biochem Biophys Res Commun 2005; 332:866-72. [PMID: 15913562 DOI: 10.1016/j.bbrc.2005.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/01/2005] [Indexed: 12/26/2022]
Abstract
We have investigated the antioxidant effect of adrenomedullin (AM) on endothelial function in the Dahl salt-sensitive (DS) rat hypertension model. Dahl salt-resistant (DR) and DS rats were fed an 8% NaCl diet. In addition, the DS rats were subcutaneously infused with either saline or recombinant human AM for 4 weeks. Although systolic blood pressures measured weekly in AM- and saline-infused rats did not significantly differ, aortic O2*- levels were significantly (P<0.01) higher in the latter. Likewise, both endothelial nitric oxide synthase (eNOS) mRNA and protein were significantly higher in saline-infused DS rats. Infusion of AM reduced both O2*- and eNOS expression to levels comparable to those seen in DR rats. AM infusion also upregulated the gene expression of guanosine-5'-triphosphate cyclohydrolase I and downregulated the expression of p22(phox), suggesting that AM increased the NOS coupling and bioavailability of NO. AM possesses significant antioxidant properties that improve endothelial function.
Collapse
Affiliation(s)
- Yuan-Ning Cao
- First Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hamid SA, Baxter GF. Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. Pharmacol Ther 2005; 105:95-112. [PMID: 15670621 DOI: 10.1016/j.pharmthera.2004.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During and following acute myocardial infarction, a variety of endogenous mediators are elevated, one of which is adrenomedullin (AM). AM is a multifunctional peptide that has been identified as having a putative beneficial role following an ischemic insult at both systemic and local levels. Classically described as a potent vasodilator, natriuretic, and diuretic agent, experimental infarct models also demonstrate AM to exhibit antiproliferative and antiapoptotic functions in the myocardium, counterregulating the effects of mediators such as angiotensin-II and endothelin-1. Less well documented are the angiogenic and inflammatory modulating potentials of AM, which may also contribute toward reducing adverse ventricular remodeling. The review examines clinical and experimental studies, looking at the effects of AM and cellular mechanisms that could be involved in mediating cardioprotective effects and ultimately optimizing left ventricular remodeling. Finally, the possibility of enhancing endogenous actions of AM by pharmacological intervention is considered.
Collapse
Affiliation(s)
- Shabaz A Hamid
- Department of Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
74
|
Der Sarkissian S, Huentelman MJ, Stewart J, Katovich MJ, Raizada MK. ACE2: A novel therapeutic target for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:163-98. [PMID: 16009403 DOI: 10.1016/j.pbiomolbio.2005.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypertension afflicts over 65 million Americans and poses an increased risk for cardiovascular morbidity such as stroke, myocardial infarction and end-stage renal disease resulting in significant mortality. Overactivity of the renin-angiotensin system (RAS) has been identified as an important determinant that is implicated in the etiology of these diseases and therefore represents a major target for therapy. In spite of the successes of drugs inhibiting various elements of the RAS, the incidence of hypertension and cardiovascular diseases remain steadily on the rise. This has lead many investigators to seek novel and innovative approaches, taking advantage of new pathways and technologies, for the control and possibly the cure of hypertension and related pathologies. The main objective of this review is to forward the concept that gene therapy and the genetic targeting of the RAS is the future avenue for the successful control and treatment of hypertension and cardiovascular diseases. We will present argument that genetic targeting of angiotensin-converting enzyme 2 (ACE2), a newly discovered member of the RAS, is ideally poised for this purpose. This will be accomplished by discussion of the following: (i) summary of our current understanding of the RAS with a focus on the systemic versus tissue counterparts as they relate to hypertension and other cardiovascular pathologies; (ii) the newly discovered ACE2 enzyme with its physiological and pathophysiological implications; (iii) summary of the current antihypertensive pharmacotherapy and its limitations; (iv) the discovery and design of ACE inhibitors; (v) the emerging concepts for ACE2 drug design; (vi) the current status of genetic targeting of the RAS; (vii) the potential of ACE2 as a therapeutic target for hypertension and cardiovascular disease treatment; and (viii) future perspectives for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shant Der Sarkissian
- Department of Physiology and Functional Genomics, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
75
|
Fujita M, Kuwaki T, Ando K, Fujita T. Sympatho-Inhibitory Action of Endogenous Adrenomedullin Through Inhibition of Oxidative Stress in the Brain. Hypertension 2005; 45:1165-72. [PMID: 15867131 DOI: 10.1161/01.hyp.0000165690.85505.37] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central sympathetic activation is one of the possible mechanisms underlying hypertension, in which reactive oxygen species may play a role. Thus, we examined whether adrenomedullin, an antioxidant peptide, is involved in the central regulation of arterial pressure through sympatho-modulatory action. Adrenomedullin knockout mice were fed with high-salt diet for 4 weeks to stimulate adrenomedullin production. In the wild-type littermates, brain adrenomedullin content was significantly increased with salt loading, but not in the knockout mice. Intracerebroventricular hyperosmotic saline increased arterial pressure and sympathetic nerve activity in a dose-dependent fashion. With the normal salt diet, the hyperosmotic saline-induced response did not significantly differ between the knockout and wild-type mice; with the high-salt diet, however, the response was significantly greater in the knockout mice than in wild-type littermates (arterial pressure: 35.3±5.7% versus 20.1±2.1%,
P
<0.05; sympathetic nerve activity: 30.3±4.8% versus 15.9±1.5%,
P
<0.05; respectively). Moreover, pretreatment with 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol), a membrane-permeable superoxide dismutase mimetic, inhibited the augmented response to central hyperosmotic saline in salt-loaded knockout mice. Consistently, the hyperosmotic saline-induced production of reactive oxygen species, measured by the lucigenin chemiluminescence method, was significantly greater in the isolated hypothalamus of salt-loaded knockout mice than in that of salt-loaded wild-type ones. In conclusion, endogenous adrenomedullin in the brain may inhibit sympathetic activation through its antioxidant action.
Collapse
Affiliation(s)
- Megumi Fujita
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Tokyo, 113-8655, Japan.
| | | | | | | |
Collapse
|
76
|
Nagaya N, Mori H, Murakami S, Kangawa K, Kitamura S. Adrenomedullin: angiogenesis and gene therapy. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1432-7. [PMID: 15886352 DOI: 10.1152/ajpregu.00662.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adrenomedullin (AM) is a potent, long-lasting vasodilator peptide that was originally isolated from human pheochromocytoma. AM signaling is of particular significance in endothelial cell biology since the peptide protects cells from apoptosis, promotes angiogenesis, and affects vascular tone and permeability. The angiogenic effect of AM is mediated by activation of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and focal adhesion kinase in endothelial cells. Both AM and its receptor, calcitonin receptor-like receptor, are upregulated through a hypoxia-inducible factor-1-dependent pathway under hypoxic conditions. Thus AM signaling plays an important role in the regulation of angiogenesis in hypoxic conditions. Recently, we have developed a nonviral vector, gelatin. Positively charged gelatin holds negatively charged plasmid DNA in its lattice structure. DNA-gelatin complexes can delay gene degradation, leading to efficient gene transfer. Administration of AM DNA-gelatin complexes induces potent angiogenic effects in a rabbit model of hindlimb ischemia. Thus gelatin-mediated AM gene transfer may be a new therapeutic strategy for the treatment of tissue ischemia. Endothelial progenitor cells (EPCs) play an important role in endothelial regeneration. Interestingly, EPCs phagocytose ionically linked DNA-gelatin complexes in coculture, which allows nonviral gene transfer into EPCs. AM gene transfer into EPCs inhibits cell apoptosis and induces proliferation and migration, suggesting that AM gene transfer strengthens the therapeutic potential of EPCs. Intravenous administration of AM gene-modified EPCs regenerate pulmonary endothelium, resulting in improvement of pulmonary hypertension. These results suggest that in vivo and in vitro transfer of AM gene using gelatin may be applicable for intractable cardiovascular disease.
Collapse
Affiliation(s)
- Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
77
|
Yang JH, Jia YX, Pan CS, Zhao J, Ouyang M, Yang J, Chang JK, Tang CS, Qi YF. Effects of intermedin(1-53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem Biophys Res Commun 2005; 327:713-9. [PMID: 15649405 DOI: 10.1016/j.bbrc.2004.12.071] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Indexed: 10/26/2022]
Abstract
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified from human and other vertebrate tissues. Preprointermedin (preproIMD) can generate a 47 amino acid mature peptide (IMD(1-47)) and a shorter 40 amino acid one (IMD(8-47)) by proteolytic cleavage. Amino acid sequence analysis showed that cleavage sites are located between two basic amino acids at Arg93-Arg94, resulting in the production of preproIMD(95-147), namely IMD(1-53). The present study was designed to observe the effects of IMD(1-53) on cardiac function in ischemia/reperfusion (I/R) injury in isolated rat hearts. Perfusion with high-dose IMD(1-53) gave higher left ventricular systolic pressure (LVSP) and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)), and coronary perfusion flow (CPF) than those of controls. Cardiac I/R induced a marked inhibition of cardiac function and myocardial injury. Reperfusion with IMD(1-53) significantly ameliorated the inhibited cardiac function and bradycardia induced by I/R. Compared with the I/R-treatment alone, IMD(1-53) reperfusion augmented CPF, LVSP, and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)) and decreased LVDP. In addition, reperfusion with IMD(1-53)markedly attenuated the leakage of lactate dehydrogenase and malondialdehyde content in myocardia compared with I/R alone. Reperfusion with IMD(1-53)increased the content of cyclic adenosine monophosphate in comparison with I/R alone. Interestingly, the above IMD(1-53) effects are similar to those of adrenomedullin. These results suggest that IMD(1-53), like adrenomedullin, has cardioprotective effects against myocardial I/R injury.
Collapse
Affiliation(s)
- Jing-Hui Yang
- Institute of Cardiovascular Research, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Yang JH, Qi YF, Jia YX, Pan CS, Zhao J, Yang J, Chang JK, Tang CS. Protective effects of intermedin/adrenomedullin2 on ischemia/reperfusion injury in isolated rat hearts. Peptides 2005; 26:501-7. [PMID: 15652657 DOI: 10.1016/j.peptides.2004.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 10/22/2004] [Accepted: 10/25/2004] [Indexed: 11/25/2022]
Abstract
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified from human and other vertebrate tissues. Preprointermedin can generate a 47-amino acid mature peptide (IMD(1-47)) and a shorter 40-amino acid one (IMD(8-47)) by proteolytic cleavage. The present study was designed to determine the protective effect of IMD on cardiac ischemia/reperfusion (I/R) injury and its possible mechanism. Isolated rat hearts were perfused on a Langendorff apparatus and subjected to 45-min global ischemia and 30-min reperfusion. Cardiac function was measured. The release of myocardial protein and lactate dehydrogenase (LDH) and the formation of malondialdehyde (MDA) were assayed. Myocardial cAMP content was determined by radioimmunoassay (RIA). Cardiac I/R induced a marked inhibition of cardiac function and myocardial injury. Reperfusion with IMD significantly attenuated the I/R injury. Compared with I/R alone, perfusion with 10(-8)mol/L IMD(1-47) and IMD(8-47) induced a 36% and 33% increase in Delta left ventricular pressure (DeltaLVP), 30% and 28% in maximal rate of increase of LV pressure (+LVdP/dt max), and 34% and 31% in maximal rate of decrease of LV pressure (-LVdP/dt max), respectively (all P<0.01) but an approximately 58% and 51% decrease in LV diastolic pressure, respectively (P<0.01). In addition, perfusion with IMD markedly attenuated the leakage of LDH, total protein and myoglobin from myocardia compared with I/R alone. The contents of ventricular myocardia cAMP after reperfusion with 10(-8)mol/L IMD(1-47) and IMD(8-47) were 130% and 91% higher, respectively, than that with I/R alone (all P<0.01). However, formations of myocardial MDA were 52% and 50% lower than that with I/R alone (all P<0.01), respectively. Interestingly, the above IMD effects were similar to those of adrenomedullin (10(-8)mol/L). These results suggest that IMD, like adrenomedullin, exerts cardio-protective effects against myocardial I/R injury.
Collapse
Affiliation(s)
- Jing-Hui Yang
- Institute of Cardiovascular Research, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Schiess MC, Poindexter BJ, Brown BS, Bick RJ. The effects of CGRP on calcium transients of dedifferentiating cultured adult rat cardiomyocytes compared to non-cultured adult cardiomyocytes: possible protective and deleterious results in cardiac function. Peptides 2005; 26:525-30. [PMID: 15652660 DOI: 10.1016/j.peptides.2004.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 10/06/2004] [Indexed: 11/16/2022]
Abstract
CGRP has potent cardiovascular effects but its role in heart failure is unclear. Effects of CGRP on calcium concentrations in fresh adult rat cardiomyocytes, cultured adult cardiomyocytes and neonatal cardiomyocytes were determined by real time fluorescence spectrophotometry. Treatment of cultured adult cardiomyocytes with CGRP resulted in a rapid cessation of beating and a reduction in intracellular calcium. Similar results were obtained in cultured neonatal myocytes. However, rod-shaped adult cardiomyocytes revealed a number of responses; (a) non-beating cells began to beat with increased intracellular calcium; (b) spontaneously beating cells exhibited increased intracellular calcium content and a faster beating rate or (c), myocytes increased their beating rate and became arrhythmic, suggesting that CGRP action on cultured dedifferentiated adult and neonatal myocytes depletes intracellular calcium, whereas in the rod-shaped mature myocytes calcium is retained, pointing to a different mode of action for CGRP on developing and dedifferentiating cardiomyocytes, compared to fully developed cardiomyocytes.
Collapse
Affiliation(s)
- Mya C Schiess
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
80
|
Affiliation(s)
- Tatsuo Shimosawa
- Department of Clinical Laboratory Medicine, University of Tokyo, Faculty of Medicine, Hongo, Tokyo, Japan
| | | |
Collapse
|
81
|
Bick RJ, Poindexter BJ, Schiess MC. Localization of calcitonin gene-related peptide in cardiomyocytes: comparison of neonatal and dedifferentiating cells to adult myocytes. Peptides 2005; 26:331-6. [PMID: 15629546 DOI: 10.1016/j.peptides.2004.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/02/2004] [Accepted: 09/02/2004] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to localize sites of calcitonin gene-related peptide binding in neonatal, freshly isolated and dedifferentiated adult cardiac myocytes in order to help us elucidate the mechanisms of action of this neuropeptides. Previous work has shown that treatment with calcitonin gene-related peptide results in dramatic changes in calcium transients, so we carried out multi-channel acquisitions of fluorescently labeled images to reveal where calcitonin gene-related protein and the L-type calcium channel were localized. Calcitonin gene-related protein was sparse and randomly distributed in rod-like adult cardiomyocytes, found in abundance in areas of the cell where striations were apparent and not where adhesion proteins predominated in dedifferentiating adult myocytes, and in a large perinuclear concentration, with some spreading into the cytoplasm in neonatal cells. Subsequent modeling demonstrated that calcitonin gene-related peptide and the L-type calcium channel protein were closely associated in each of the three myocyte types, suggesting that while the peptide has dramatic and different effects on intracellular calcium levels of the various cardiomyocytes, the action is probably via diverse mechanisms as a result of effects on different channels or pump proteins due to alterations in intracellular calcium concentrations.
Collapse
Affiliation(s)
- Roger J Bick
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA.
| | | | | |
Collapse
|
82
|
Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits. Biochim Biophys Acta Mol Basis Dis 2004; 1740:499-513. [PMID: 15949720 DOI: 10.1016/j.bbadis.2004.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/09/2004] [Accepted: 11/16/2004] [Indexed: 11/19/2022]
Abstract
To determine the temporal changes in oxidative stress, mitogen-activated protein (MAP) kinases and mitochondrial apoptotic proteins, and their relationship to myocyte apoptosis in the remote noninfarcted myocardium after myocardial infarction (MI), rabbits were randomly assigned to either coronary artery ligation to produce MI or sham operation. The animals were sacrificed at 1, 4, 8, or 12 weeks after coronary artery occlusion. Sham rabbits were sacrificed at 12 weeks after surgery. MI rabbits exhibited progressive increases of left ventricular (LV) end-diastolic pressure and end-diastolic dimension, and progressive decreases of LV fractional shortening and dP/dt over 12 weeks. The LV remodeling with LV chamber dilation and LV systolic dysfunction was temporally associated with progressive increases of cardiac oxidative stress as evidenced by decreased myocardial reduced-to-oxidized-glutathione ratio and increased myocardial 8-hydroxydeoxyguanosine and myocyte apoptosis. The ERK and JNK activities were decreased while p38 MAP kinase activity was increased with age of MI. The extent of p38 MAP kinase activation correlated with Bcl-2 phosphorylation. Bcl-2 protein was decreased in both mitochondrial and cytosolic fractions with age of MI. Bax protein was increased in both mitochondrial and cytosolic fractions. Cytochrome c was reduced in mitochondrial fraction and increased in cytosolic fraction in a time-dependent manner after MI. Cleaved caspase 9 and caspase 3 proteins were time-dependently increased after MI. These data suggest that p38 MAP kinase activation is not only time-dependent after MI, but also correlates with oxidative stress, Bcl-2 phosphorylation, and myocyte apoptosis. These changes in the remote noninfarcted myocardium may contribute to LV remodeling and dysfunction after MI.
Collapse
Affiliation(s)
- Fuzhong Qin
- Cardiology Unit, Department of Medicine, University of Rochester Medical Center, NY 14642, USA.
| | | | | |
Collapse
|
83
|
Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Adrenomedullin Gene Delivery Protects Against Cerebral Ischemic Injury by Promoting Astrocyte Migration and Survival. Hum Gene Ther 2004; 15:1243-54. [PMID: 15684700 DOI: 10.1089/hum.2004.15.1243] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adrenomedullin (AM) has been shown to protect against ischemia/reperfusion-induced myocardial infarction and apoptosis. In the present study, we examined the potential neuroprotective action of delayed AM gene transfer in cerebral ischemia. Three days after a 1-hr occlusion of the middle cerebral artery (MCAO), rats were injected intravenously with adenovirus harboring human AM cDNA. The experiment was terminated 7 days after MCAO. AM gene transfer significantly reduced cerebral infarct size compared with that of rats before virus injection and compared with that of rats injected with control virus. The expression of recombinant human AM was identified in ischemic brain by immunostaining. Morphological analyses showed that AM gene transfer enhanced the survival and migration of astrocytes into the ischemic core. Cerebral ischemia markedly increased astrocyte apoptosis, and AM gene delivery significantly reduced apoptosis to near normal levels as seen in sham control rats. Similarly, in primary cultured astrocytes, AM stimulated cell migration and inhibited hypoxia/reoxygenation-induced apoptosis. The effects of AM on both migration and apoptosis were abolished by calcitonin gene-related peptide [CGRP(8-37)], an AM receptor antagonist. Enhanced cell survival after AM gene transfer was accompanied by markedly increased cerebral nitric oxide and Bcl-2 levels, as well as Akt and GSK-3beta phosphorylation, but reduced NADPH oxidase activity and superoxide production. Inactivation of GSK-3beta by phosphorylation led to reduced GSK-3beta activity and caspase- 3 activation. These results indicate that exogenous AM provides neuroprotection against cerebral ischemia injury by enhancing astrocyte survival and migration and inhibiting apoptosis through suppression of oxidative stress-mediated signaling events.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
84
|
Muff R, Born W, Lutz TA, Fischer JA. Biological importance of the peptides of the calcitonin family as revealed by disruption and transfer of corresponding genes. Peptides 2004; 25:2027-38. [PMID: 15501537 DOI: 10.1016/j.peptides.2004.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
The hormone calcitonin (CT) of thyroid C-cell origin, the neuropeptides alpha- and beta-calcitonin gene-related peptide (CGRP), the widely expressed hormone and tissue factor adrenomedullin (AM), and amylin (AMY) that is co-produced with insulin in pancreatic beta-cells, are structurally related peptides. They have in common six or seven amino acid ring structures, linked by disulfide bridges between cysteine residues, and amidated carboxyl termini that are both required for biological activity. The actions of the peptides in vivo have traditionally been studied after intravenous and intracerebroventricular administration. As a result, CT lowers serum calcium and reduces pain perception. alpha- and beta CGRP and AM are highly potent vasodilatory peptides. AMY inhibits food intake through its action in the area postrema of the brain. Physiological actions of the peptides summarized in the present review have been defined through gene knockout and overexpression strategies.
Collapse
Affiliation(s)
- Roman Muff
- Department of Orthopedic Surgery, Research Laboratory for Calcium Metabolism, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland.
| | | | | | | |
Collapse
|
85
|
Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 2004; 288:H328-35. [PMID: 15345477 DOI: 10.1152/ajpheart.00453.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies demonstrated that resveratrol, a grape-derived polyphenolic phytoalexin, provides pharmacological preconditioning (PC) of the heart through a NO-dependent mechanism. Because adenosine receptors play a role in PC, we examined whether they play any role in resveratrol PC. Rats were randomly assigned to groups perfused for 15 min with 1) Krebs-Henseleit bicarbonate buffer (KHB) only; 2) KHB containing 10 microM resveratrol; 3) 10 microM resveratrol + 1 microM 8-cyclopentyl-1,3-dimethylxanthine (CPT; adenosine A(1) receptor blocker); 4) 10 microM resveratrol + 1 microM 8-(3-chlorostyryl)caffeine (CSC; adenosine A(2a) receptor blocker); 5) 10 microM resveratrol + 1 microM 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; adenosine A(3) receptor blocker); or 6) 10 microM resveratrol + 3 microM 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride [LY-294002, phosphatidylinositol (PI)3-kinase inhibitor], and groups perfused with adenosine receptor blockers alone. Hearts were then subjected to 30-min ischemia followed by 2-h reperfusion. The results demonstrated significant cardioprotection with resveratrol evidenced by improved ventricular recovery and reduced infarct size and cardiomyocyte apoptosis. CPT and MRS 1191, but not CSC, abrogated the cardioprotective abilities of resveratrol, suggesting a role of adenosine A(1) and A(3) receptors in resveratrol PC. Resveratrol induced expression of Bcl-2 and caused its phosphorylation along with phosphorylation of cAMP response element-binding protein (CREB), Akt, and Bad. CPT blocked phosphorylation of Akt and Bad without affecting CREB, whereas MRS 1191 blocked phosphorylation of all compounds, including CREB. LY-294002 partially blocked the cardioprotective abilities of resveratrol. The results indicate that resveratrol preconditions the heart through activation of adenosine A(1) and A(3) receptors, the former transmitting a survival signal through PI3-kinase-Akt-Bcl-2 signaling pathway and the latter protecting the heart through a CREB-dependent Bcl-2 pathway in addition to an Akt-Bcl-2 pathway.
Collapse
Affiliation(s)
- Samarjit Das
- Cardiovascular Research Center, Univ. of Connecticut, School of Medicine, Farmington, CT 06030-1110, USA
| | | | | | | |
Collapse
|
86
|
Nakamura R, Kato J, Kitamura K, Onitsuka H, Imamura T, Cao Y, Marutsuka K, Asada Y, Kangawa K, Eto T. Adrenomedullin Administration Immediately After Myocardial Infarction Ameliorates Progression of Heart Failure in Rats. Circulation 2004; 110:426-31. [PMID: 15262849 DOI: 10.1161/01.cir.0000136085.34185.83] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Adrenomedullin (AM) is expressed in cardiac tissue, and plasma AM levels increase in patients with acute myocardial infarction (MI). This study was performed to determine whether AM administration immediately after acute MI inhibits progression of heart failure in rats.
Methods and Results—
Rats were infused with 1.0 μg/h IP AM or saline over 7 days immediately after MI inducted by left coronary ligation and were examined 9 weeks after MI. Compared with the saline infusion, AM infusion significantly improved survival (59% versus 81%;
P
<0.05) and body weight gain (32%;
P
<0.01) and reduced heart weight (−28%;
P
<0.01), lung weight (−26%;
P
<0.01), left ventricular (LV) end-diastolic pressure (11.4±2.0 versus 4.0±0.6 mm Hg, mean± SEM;
P
<0.01), collagen volume fraction of noninfarcted LV (−39%;
P
<0.05), and plasma levels of endogenous rat AM (−38%;
P
<0.05) without affecting infarct size. To investigate the mechanism of AM actions, another series of MI rats infused with AM were killed on day 7. AM infusion had no effect on organ weights and hemodynamic parameters on day 7 of MI but significantly reduced urinary excretion of isoprostane (−61%;
P
<0.01) and noninfarcted LV mRNA levels of ACE (−31%;
P
<0.05) and p22-phox (−30%;
P
<0.05).
Conclusions—
AM administration during the early period of MI improved the survival and ameliorated progression of LV remodeling and heart failure. This beneficial effect was accompanied by reductions in oxidative stress and ACE mRNA expression in noninfarcted LV in the AM infusion period.
Collapse
Affiliation(s)
- Ryosai Nakamura
- First Department of Internal Medicine, Miyazaki Medical College, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yoshimoto T, Fukai N, Sato R, Sugiyama T, Ozawa N, Shichiri M, Hirata Y. Antioxidant effect of adrenomedullin on angiotensin II-induced reactive oxygen species generation in vascular smooth muscle cells. Endocrinology 2004; 145:3331-7. [PMID: 15070851 DOI: 10.1210/en.2003-1583] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent adrenomedullin (AM) gene-targeting studies have proposed a novel concept that AM plays a protective role against oxidative stress in vivo. The present study was undertaken to explore the underlying molecular mechanism of the putative antioxidant action of AM against angiotensin II (Ang II)induced reactive oxygen species (ROS) generation in rat vascular smooth muscle cells (VSMCs). Intracellular ROS levels were measured by dichlorofluoroscein fluorescence. Redox-sensitive c-Jun amino-terminal kinase (JNK) and ERK1/2 activation and gene expression induced by Ang II in VSMCs were also studied. AM dose-relatedly (10(-8)-10(-7) m) inhibited intracellular ROS generation stimulated by Ang II (10(-7) m), as mimicked by dibutyl-cAMP, the effect of which was inhibited by the pretreatment with N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride, a protein kinase A inhibitor, and calcitonin gene-related peptide(8-37), an AM/calcitonin gene-related peptide receptor antagonist. Ang II induced JNK and ERK1/2 activation via a redox-sensitive manner, whereas AM inhibited JNK, but not ERK1/2, activation by Ang II. Furthermore, AM inhibited Ang II-induced redox-sensitive gene expression (plasminogen activator inhibitor-1 and monocyte chemoattractant protein-1) in the same manner as N-acetyl-l-cysteine, a potent antioxidant. AM also inhibited Ang II-induced up-regulation of Nox1, a critical membrane-bound component of reduced nicotinamide adenine dinucleotide phosphate oxidase in VSMCs, in the same degree as N-acetyl-l-cysteine. Our study demonstrates for the first time that AM directly inhibits intracellular ROS generation via an AM receptor-mediated and c-AMP-protein kinase A-dependent mechanism in VSMCs and that AM with its potent antioxidant action inhibits redox-sensitive JNK activation and gene expression induced by Ang II. These data suggest that AM plays a protective role as an endogenous antioxidant in Ang II-induced vascular injury.
Collapse
MESH Headings
- Adrenomedullin
- Angiotensin II/pharmacology
- Animals
- Antioxidants/pharmacology
- Aorta, Thoracic/cytology
- Cells, Cultured
- Chemokine CCL2/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- JNK Mitogen-Activated Protein Kinases
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NADH, NADPH Oxidoreductases/genetics
- NADPH Oxidase 1
- Oxidation-Reduction
- Peptides/pharmacology
- Plasminogen Activator Inhibitor 1/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptors, Adrenomedullin
- Receptors, Peptide/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Takanobu Yoshimoto
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8513, Japan.
| | | | | | | | | | | | | |
Collapse
|
88
|
Matsui H, Shimosawa T, Itakura K, Guanqun X, Ando K, Fujita T. Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Circulation 2004; 109:2246-51. [PMID: 15096451 DOI: 10.1161/01.cir.0000127950.13380.fd] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic hypoxia is one of the major causes of pulmonary vascular remodeling associated with stimulating reactive oxygen species (ROS) production. Recent studies have indicated that hypoxia upregulates expression of adrenomedullin (AM), which is not only a potent vasodilator but also an antioxidant. Thus, using heterozygous AM-knockout (AM+/-) mice, we examined whether AM could attenuate pulmonary vascular damage induced by hypoxia. METHODS AND RESULTS Ten-week-old male wild-type (AM+/+) or AM+/- mice were housed under 10% oxygen conditions for 3 to 21 days. In AM+/+ mice, hypoxia enhanced AM mRNA expression, which was reduced by the administration of a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (hydroxy-TEMPO). Hypoxia induced pulmonary vascular remodeling, which was associated with the increased production of oxidative stress measured by electron spin resonance and immunostaining of 3-nitrotyrosine. The media wall thickness of the pulmonary arteries was significantly greater in AM+/- mice housed under hypoxia than in AM+/+ mice under hypoxia. Concomitantly, pulmonary ROS production induced by hypoxia was more enhanced in AM+/- mice than in AM+/+ mice. The administration of both exogenous AM and hydroxy-TEMPO normalized pulmonary vascular media wall thickness in not only AM+/+ but also AM+/- mice under hypoxic conditions associated with the normalization of ROS overproduction in the lung. CONCLUSIONS The present results suggest that an endogenous AM is a potential protective peptide against hypoxia-induced vascular remodeling, possibly through the suppression of ROS generation, which might provide an effective therapeutic strategy.
Collapse
Affiliation(s)
- Hiromitsu Matsui
- Department of Nephrology and Endocrinology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
89
|
|
90
|
Kawai J, Ando K, Tojo A, Shimosawa T, Takahashi K, Onozato ML, Yamasaki M, Ogita T, Nakaoka T, Fujita T. Endogenous Adrenomedullin Protects Against Vascular Response to Injury in Mice. Circulation 2004; 109:1147-53. [PMID: 14769703 DOI: 10.1161/01.cir.0000117231.40057.6d] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
In our previous study, adrenomedullin (AM) overexpression could limit the arterial intimal hyperplasia induced by cuff injury in rats. However, it remains to be elucidated whether endogenous AM plays a role against vascular injury.
Methods and Results—
We used the AM knockout mice to investigate the effect of endogenous AM. Compared with wild-type (AM
+/+
) mice, heterozygous AM knockout (AM
+/−
) mice had the increased intimal thickening of the cuff-injured femoral artery, concomitantly with lesser AM staining. In AM
+/−
mice, cuff placement increased both the production of superoxide anions (O
2
−
) measured by coelentarazine chemiluminescence and the immunostaining of p67
phox
and gp91
phox
, subunits of NAD(P)H oxidase in the adventitia, associated with the increment of CD45-positive leukocytes, suggesting that the stimulated formation of radical oxygen species accompanied chronic adventitial inflammation. Not only the AM gene transfection but also the treatment of NAD(P)H oxidase inhibitor apocynin and membrane-permeable superoxide dismutase mimetic tempol could limit cuff-induced intimal hyperplasia in AM
+/−
mice, associated with the inhibition of O
2
−
formation in cuff-injured artery.
Conclusions—
The overproduction of oxidative stress induced by the increased NAD(P)H oxidase activity might be involved in cuff-injured arterial intimal hyperplasia in AM
+/−
mice. Thus, it is suggested that endogenous AM possesses a protective action against the vascular response to injury, possibly through the inhibition of oxidative stress production.
Collapse
Affiliation(s)
- Junsuke Kawai
- Department of Internal Medicine, School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
A novel vasodilator, adrenomedullin (AM), which acts as an autocrine/paracrine factor in cardiovascular system, has antiproliferative and antimigrative effects. AM gene transfer prevents the development of cuff-induced vascular injury. Moreover, AM knockout mice exhibited an increase in angiotensin (Ang) II/salt loading-induced coronary arterial lesion, hypoxia-induced pulmonary vascular damage, and cuff-induced vascular injury associated with enhancement in reactive oxygen species (ROS) generation. In addition, AM expression was stimulated by ROS, and AM directly inhibits oxidative stress so that AM might be a negative feedback substance against ROS-induced organ damages. In addition, AM increases nitric oxide and ameliorates insulin resistance, leading to oxidative stress. Consequently, endogenous AM might compensatively inhibit the development of vascular diseases at least partly through an antioxidative effect.
Collapse
Affiliation(s)
- Katsuyuki Ando
- Department of Nephrology and Endocrinology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
92
|
Yin H, Chao L, Chao J. Adrenomedullin Protects Against Myocardial Apoptosis After Ischemia/Reperfusion Through Activation of Akt-GSK Signaling. Hypertension 2004; 43:109-16. [PMID: 14662648 DOI: 10.1161/01.hyp.0000103696.60047.55] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adrenomedullin (AM) is a potent vasoactive peptide and plays an important role in cardiovascular function. In this study, we delivered the AM gene locally into the heart, using a catheter-based technique to investigate the signaling mechanism mediated by AM in protection against cardiomyocyte apoptosis induced by acute ischemia/reperfusion. After adenovirus-mediated gene delivery, highly efficient and specific expression of luciferase, green fluorescent protein, or recombinant human AM was identified in the left ventricle. Delivery of the AM gene 5 days before ischemia/reperfusion attenuated myocardial apoptosis identified by in situ dUTP nick-end labeling and DNA laddering, and the effect was blocked by the AM antagonist human calcitonin gene–related peptide (CGRP 8 to 37). AM gene transfer increased phosphorylation of Akt and glycogen synthase kinase (GSK-3β) but reduced GSK-3β and caspase-3 activities in the heart. The effects of AM on GSK-3β and caspase-3 activities were blocked by CGRP (8-37) and by adenovirus containing dominant-negative Akt (DN-Akt). Furthermore, in cultured cardiomyocytes, AM also attenuated apoptosis induced by hypoxia/reoxygenation, which was accompanied by increased phospho-GSK-3β but reduced GSK-3 and caspase-3 activities. GSK-3 and caspase-3 activities were both blocked by Ad.DN-Akt and lithium, whereas only caspase-3 was inhibited by its inhibitor Z-VAD. The effects of AM on anti-apoptosis and promoting cell viability were blocked by DN-Akt but not by constitutively active Akt, lithium, or Z-VAD. These results indicate that AM protects against cardiomyocyte apoptosis induced by ischemia/reperfusion injury through the Akt-GSK-caspase signaling pathway.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425-2211, USA
| | | | | |
Collapse
|