51
|
Ferrantini C, Coppini R, Sacconi L, Tosi B, Zhang ML, Wang GL, de Vries E, Hoppenbrouwers E, Pavone F, Cerbai E, Tesi C, Poggesi C, ter Keurs HEDJ. Impact of detubulation on force and kinetics of cardiac muscle contraction. ACTA ACUST UNITED AC 2014; 143:783-97. [PMID: 24863933 PMCID: PMC4035744 DOI: 10.1085/jgp.201311125] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
T-tubule uncoupling from the plasma membrane leads to myocardial contractile abnormalities. Action potential–driven Ca2+ currents from the transverse tubules (t-tubules) trigger synchronous Ca2+ release from the sarcoplasmic reticulum of cardiomyocytes. Loss of t-tubules has been reported in cardiac diseases, including heart failure, but the effect of uncoupling t-tubules from the sarcolemma on cardiac muscle mechanics remains largely unknown. We dissected intact rat right ventricular trabeculae and compared force, sarcomere length, and intracellular Ca2+ in control trabeculae with trabeculae in which the t-tubules were uncoupled from the plasma membrane by formamide-induced osmotic shock (detubulation). We verified disconnection of a consistent fraction of t-tubules from the sarcolemma by two-photon fluorescence imaging of FM4-64–labeled membranes and by the absence of tubular action potential, which was recorded by random access multiphoton microscopy in combination with a voltage-sensitive dye (Di-4-AN(F)EPPTEA). Detubulation reduced the amplitude and prolonged the duration of Ca2+ transients, leading to slower kinetics of force generation and relaxation and reduced twitch tension (1 Hz, 30°C, 1.5 mM [Ca2+]o). No mechanical changes were observed in rat left atrial trabeculae after formamide shock, consistent with the lack of t-tubules in rodent atrial myocytes. Detubulation diminished the rate-dependent increase of Ca2+-transient amplitude and twitch force. However, maximal twitch tension at high [Ca2+]o or in post-rest potentiated beats was unaffected, although contraction kinetics were slower. The ryanodine receptor (RyR)2 Ca-sensitizing agent caffeine (200 µM), which increases the velocity of transverse Ca2+ release propagation in detubulated cardiomyocytes, rescued the depressed contractile force and the slower twitch kinetics of detubulated trabeculae, with negligible effects in controls. We conclude that partial loss of t-tubules leads to myocardial contractile abnormalities that can be rescued by enhancing and accelerating the propagation of Ca2+-induced Ca2+ release to orphan RyR2 clusters.
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Raffaele Coppini
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Leonardo Sacconi
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Benedetta Tosi
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Mei Luo Zhang
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Guo Liang Wang
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ewout de Vries
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ernst Hoppenbrouwers
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Francesco Pavone
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Cerbai
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Chiara Tesi
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Corrado Poggesi
- Center of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, ItalyCenter of Molecular Medicine, Department of Experimental and Clinical Medicine, Division of Physiology, Department of NeuroFarBa, Division of Pharmacology, LENS, European Laboratory for Non-Linear Spectroscopy, and Department of Physics, University of Florence, 50121 Florence, Italy
| | - Henk E D J ter Keurs
- Department of Cardiac Sciences of the Libin Institute at the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
52
|
Caldwell JL, Smith CER, Taylor RF, Kitmitto A, Eisner DA, Dibb KM, Trafford AW. Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res 2014; 115:986-96. [PMID: 25332206 DOI: 10.1161/circresaha.116.303448] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Transverse tubules (t-tubules) regulate cardiac excitation-contraction coupling and exhibit interchamber and interspecies differences in expression. In cardiac disease, t-tubule loss occurs and affects the systolic calcium transient. However, the mechanisms controlling t-tubule maintenance and whether these factors differ between species, cardiac chambers, and in a disease setting remain unclear. OBJECTIVE To determine the role of the Bin/Amphiphysin/Rvs domain protein amphiphysin II (AmpII) in regulating t-tubule maintenance and the systolic calcium transient. METHODS AND RESULTS T-tubule density was assessed by di-4-ANEPPS, FM4-64 or WGA staining using confocal microscopy. In rat, ferret, and sheep hearts t-tubule density and AmpII protein levels were lower in the atrium than in the ventricle. Heart failure (HF) was induced in sheep using right ventricular tachypacing and ferrets by ascending aortic coarctation. In both HF models, AmpII protein and t-tubule density were decreased in the ventricles. In the sheep, atrial t-tubules were also lost in HF and AmpII levels decreased. Conversely, junctophilin 2 levels did not show interchamber differences in the rat and ferret nor did they change in HF in the sheep or ferret. In addition, in rat atrial and sheep HF atrial cells where t-tubules were absent, junctophilin 2 had sarcomeric intracellular distribution. Small interfering RNA-induced knockdown of AmpII protein reduced t-tubule density, calcium transient amplitude, and the synchrony of the systolic calcium transient. CONCLUSIONS AmpII is intricately involved in t-tubule maintenance. Reducing AmpII protein decreases t-tubule density, reduces the amplitude, and increases the heterogeneity of the systolic calcium transient.
Collapse
Affiliation(s)
- Jessica L Caldwell
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Charlotte E R Smith
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rebecca F Taylor
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - David A Eisner
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Katharine M Dibb
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology and Cardiac Biophysics Group, Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
53
|
Frisk M, Koivumäki JT, Norseng PA, Maleckar MM, Sejersted OM, Louch WE. Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol 2014; 307:H609-20. [PMID: 24951751 DOI: 10.1152/ajpheart.00295.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although t-tubules have traditionally been thought to be absent in atrial cardiomyocytes, recent studies have suggested that t-tubules exist in the atria of large mammals. However, it is unclear whether regional differences in t-tubule organization exist that define cardiomyocyte function across the atria. We sought to investigate regional t-tubule density in pig and rat atria and the consequences for cardiomyocyte Ca(2+) homeostasis. We observed t-tubules in approximately one-third of rat atrial cardiomyocytes, in both tissue cryosections and isolated cardiomyocytes. In a minority (≈10%) of atrial cardiomyocytes, the t-tubular network was well organized, with a transverse structure resembling that of ventricular cardiomyocytes. In both rat and pig atrial tissue, we observed higher t-tubule density in the epicardium than in the endocardium. Consistent with high variability in the distribution of t-tubules and Ca(2+) channels among cells, L-type Ca(2+) current amplitude was also highly variable and steeply dependent on capacitance and t-tubule density. Accordingly, Ca(2+) transients showed great variability in Ca(2+) release synchrony. Simultaneous imaging of the cell membrane and Ca(2+) transients confirmed t-tubule functionality. Results from mathematical modeling indicated that a transmural gradient in t-tubule organization and Ca(2+) release kinetics supports synchronization of contraction across the atrial wall and may underlie transmural differences in the refractory period. In conclusion, our results indicate that t-tubule density is highly variable across the atria. We propose that higher t-tubule density in cells localized in the epicardium may promote synchronization of contraction across the atrial wall.
Collapse
Affiliation(s)
- Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway;
| | - Jussi T Koivumäki
- Center for Biomedical Computing, Simula Research Laboratory, Oslo, Norway; and Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway
| | - Per A Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Mary M Maleckar
- Center for Biomedical Computing, Simula Research Laboratory, Oslo, Norway; and Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Moench I, Lopatin AN. Ca(2+) homeostasis in sealed t-tubules of mouse ventricular myocytes. J Mol Cell Cardiol 2014; 72:374-83. [PMID: 24787472 DOI: 10.1016/j.yjmcc.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
We have recently shown that in mouse ventricular myocytes, t-tubules can be quickly and tightly sealed during the resolution of hyposmotic shock of physiologically relevant magnitude. Sealing of t-tubules is associated with trapping extracellular solution inside the myocytes but the ionic homeostasis of sealed t-tubules and the consequences of potential transtubular ion fluxes remain unknown. In this study we investigated the dynamics of Ca(2+) movements associated with sealing of t-tubules. The data show that under normal conditions sealed t-tubules contain Ca(2+) at concentrations below 100μM. However, blockade of voltage-dependent Ca(2+) channels with 10μM nicardipine, or increasing extracellular concentration of K(+) from 5.4mM to 20mM led to several fold increase in concentration of t-tubular Ca(2+). Alternatively, the release of Ca(2+) from sarcoplasmic reticulum using 10mM caffeine led to the restoration of t-tubular Ca(2+) towards extracellular levels within few seconds. Sealing of t-tubules in the presence of extracellular 1.5mM Ca(2+) and 5.4mM extracellular K(+) led to occasional and sporadic intracellular Ca(2+) transients. In contrast, sealing of t-tubules in the presence of 10mM caffeine was characterized by a significant long lasting increase in intracellular Ca(2+). The effect was completely abolished in the absence of extracellular Ca(2+) and significantly reduced in pre-detubulated myocytes but was essentially preserved in the presence of mitochondrial decoupler dinitrophenol. This study shows that sealed t-tubules are capable of highly regulated transport of Ca(2+) and present a major route for Ca(2+) influx into the cytosol during sealing process.
Collapse
Affiliation(s)
- I Moench
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - A N Lopatin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
55
|
Ferrantini C, Crocini C, Coppini R, Vanzi F, Tesi C, Cerbai E, Poggesi C, Pavone FS, Sacconi L. The transverse-axial tubular system of cardiomyocytes. Cell Mol Life Sci 2013; 70:4695-710. [PMID: 23846763 PMCID: PMC11113601 DOI: 10.1007/s00018-013-1410-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
A characteristic histological feature of striated muscle cells is the presence of deep invaginations of the plasma membrane (sarcolemma), most commonly referred to as T-tubules or the transverse-axial tubular system (TATS). TATS mediates the rapid spread of the electrical signal (action potential) to the cell core triggering Ca(2+) release from the sarcoplasmic reticulum, ultimately inducing myofilament contraction (excitation-contraction coupling). T-tubules, first described in vertebrate skeletal muscle cells, have also been recognized for a long time in mammalian cardiac ventricular myocytes, with a structure and a function that in recent years have been shown to be far more complex and pivotal for cardiac function than initially thought. Renewed interest in T-tubule function stems from the loss and disorganization of T-tubules found in a number of pathological conditions including human heart failure (HF) and dilated and hypertrophic cardiomyopathies, as well as in animal models of HF, chronic ischemia and atrial fibrillation. Disease-related remodeling of the TATS leads to asynchronous and inhomogeneous Ca(2+)-release, due to the presence of orphan ryanodine receptors that have lost their coupling with the dihydropyridine receptors and are either not activated or activated with a delay. Here, we review the physiology of the TATS, focusing first on the relationship between function and structure, and then describing T-tubular remodeling and its reversal in disease settings and following effective therapeutic approaches.
Collapse
Affiliation(s)
- C. Ferrantini
- Division of Physiology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- Centre of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
| | - C. Crocini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - R. Coppini
- Centre of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
- Division of Pharmacology, Department “NeuroFarBa”, University of Florence, Florence, Italy
| | - F. Vanzi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - C. Tesi
- Division of Physiology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- Centre of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
| | - E. Cerbai
- Centre of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
- Division of Pharmacology, Department “NeuroFarBa”, University of Florence, Florence, Italy
| | - C. Poggesi
- Division of Physiology, Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- Centre of Molecular Medicine (C.I.M.M.B.A.), University of Florence, Florence, Italy
| | - F. S. Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Florence, Italy
| | - L. Sacconi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Florence, Italy
| |
Collapse
|
56
|
Cros C, Brette F. Functional subcellular distribution of β1- and β2-adrenergic receptors in rat ventricular cardiac myocytes. Physiol Rep 2013; 1:e00038. [PMID: 24303124 PMCID: PMC3834995 DOI: 10.1002/phy2.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022] Open
Abstract
β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca(2+) transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca(2+) transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca(2+) transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells.
Collapse
Affiliation(s)
- Caroline Cros
- Faculty of Life Sciences, The University of Manchester Manchester, M13 9NT, U.K
| | | |
Collapse
|
57
|
Orchard CH, Bryant SM, James AF. Do t-tubules play a role in arrhythmogenesis in cardiac ventricular myocytes? J Physiol 2013; 591:4141-7. [PMID: 23652596 DOI: 10.1113/jphysiol.2013.254540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transverse (t-) tubules of mammalian ventricular myocytes are invaginations of the surface membrane. The function of many of the key proteins involved in excitation-contraction coupling is located predominantly at the t-tubules, which thus form a Ca(2+)-handling micro-environment that is central to the normal rapid activation and relaxation of the ventricular myocyte. Although cellular arrhythmogenesis shares many ion flux pathways with normal excitation-contraction coupling, the role of the t-tubules in such arrhythmogenesis has not previously been considered. In this brief review we consider how the location and co-location of proteins at the t-tubules may contribute to the generation of arrhythmogenic delayed and early afterdepolarisations, and how the loss of t-tubules that occurs during heart failure may alter the generation of such arrhythmias, as well as contributing to other types of arrhythmia as a result of changes of electrical heterogeneity within the whole heart.
Collapse
Affiliation(s)
- C H Orchard
- C. H. Orchard: University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
58
|
Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW. A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 2013; 58:84-91. [PMID: 23147188 DOI: 10.1016/j.yjmcc.2012.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022]
Abstract
Mammalian ventricular myocytes are characterised by the presence of an extensive transverse (t-) tubule network which is responsible for the synchronous rise of intracellular Ca(2+) concentration ([Ca(2+)]i) during systole. Disruption to the ventricular t-tubule network occurs in various cardiac pathologies and leads to heterogeneous changes of [Ca(2+)]i which are thought to contribute to the reduced contractility and increased susceptibility to arrhythmias of the diseased ventricle. Here we review evidence that, despite the long-held dogma of atrial cells having no or very few t-tubules, there is indeed an extensive and functionally significant t-tubule network present in atrial myocytes of large mammals including human. Moreover, the atrial t-tubule network is highly plastic in nature and undergoes far more extensive remodelling in heart disease than is the case in the ventricle with profound consequences for the resulting systolic Ca(2+) transient. In addition to considering the functional role of the t-tubule network in the healthy and diseased atria we also provide an overview of recent data concerning the putative factors controlling the formation of t-tubules and conclude by posing some important questions that currently remain to be addressed and whether or not targeting t-tubules offers potential novel therapeutic possibilities for heart disease.
Collapse
Affiliation(s)
- Katharine M Dibb
- Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
59
|
Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 2013; 112:1567-76. [PMID: 23609114 DOI: 10.1161/circresaha.112.300370] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is located predominantly along invaginations of the cell membrane known as t-tubules. OBJECTIVE We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these isoforms in ventricular myocytes. METHODS AND RESULTS We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. The ACVI isoform is localized in the plasma membrane outside the t-tubular region and is responsible for β1-adrenergic receptor signaling-mediated enhancement of the L-type Ca(2+) current (ICa,L) in ventricular myocytes. In contrast, the ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase. We further demonstrate that the interaction between caveolin-3 with ACV and phosphodiesterase is responsible for the compartmentalization of ACV signaling. CONCLUSIONS Our results provide new insights into the compartmentalization of the 2 AC isoforms in the regulation of ICa,L in ventricular myocytes. Because caveolae are found in most mammalian cells, the mechanism of β- adrenergic receptor and AC compartmentalization may also be important for β-adrenergic receptor signaling in other cell types.
Collapse
Affiliation(s)
- Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Moench I, Meekhof KE, Cheng LF, Lopatin AN. Resolution of hyposmotic stress in isolated mouse ventricular myocytes causes sealing of t-tubules. Exp Physiol 2013; 98:1164-77. [PMID: 23585327 DOI: 10.1113/expphysiol.2013.072470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It has recently been shown that various stress-inducing manipulations in isolated ventricular myocytes may lead to significant remodelling of t-tubules. Osmotic stress is one of the most common complications in various experimental and clinical settings. This study was therefore designed to determine the effects of a physiologically relevant type of osmotic stress, hyposmotic challenge, to the integrity of the t-tubular system in mouse ventricular myocytes using the following two approaches: (1) electrophysiological measurements of membrane capacitance and inward rectifier (IK1) tail currents originating from K(+) accumulation in t-tubules; and (2) confocal microscopy of fluorescent dextrans trapped in sealed t-tubules. Importantly, we found that removal of '0.6 Na' (60% NaCl) hyposmotic solution, but not its application to myocytes, led to a ∼27% reduction in membrane capacitance, a ∼2.5-fold reduction in the amplitude of the IK1 tail current and a ∼2-fold reduction in the so-called IK1 'inactivation' (due to depletion of t-tubular K(+)) at negative membrane potentials; all these data were consistent with significant detubulation. Confocal imaging experiments also demonstrated that extracellularly applied dextrans become trapped in sealed t-tubules only upon removal of hyposmotic solutions, i.e. during the shrinking phase, but not during the initial swelling period. In light of these data, relevant previous studies, including those on excitation-contraction coupling phenomena during hyposmotic stress, may need to be reinterpreted, and the experimental design of future experiments should take into account the novel findings.
Collapse
Affiliation(s)
- I Moench
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
61
|
Eizaguirre A, Mó O, Yáñez M, Salpin JY, Tortajada J. Modelling peptide-metal dication interactions: formamide-Ca2+ reactions in the gas phase. Org Biomol Chem 2013; 10:7552-61. [PMID: 22892540 DOI: 10.1039/c2ob26166a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The collision induced dissociation of formamide-Ca(2+) complexes produced in the gas phase through nanoelectrospray ionization yields as main products ions [CaOH](+), [HCNH](+), [Ca(NH(2))](+), HCO(+) and [Ca(NH(3))](2+) and possibly [Ca(H(2)O)](2+) and [C,O,Ca](2+), the latter being rather minor. The mechanisms behind these fragmentation processes have been established by analyzing the topology of the potential energy surface by means of B3LYP calculations carried out with a core-correlated cc-pWCVTZ basis set. The Ca(2+) complexes formed by formamide itself and formimidic acid play a fundamental role. The former undergoes a charge separation reaction yielding [Ca(NH(2))](+) + HCO(+), and the latter undergoes the most favorable Coulomb explosion yielding [Ca-OH](+) + [HCNH](+) and is the origin of a multistep mechanism which accounts for the observed loss of water and HCN. Conversely, the other isomer of formamide, amino(hydroxyl)carbene, does not play any significant role in the unimolecular reactivity of the doubly charged molecular cation.
Collapse
Affiliation(s)
- Ane Eizaguirre
- Departamento de Química, Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
62
|
Garciarena CD, Ma YL, Swietach P, Huc L, Vaughan-Jones RD. Sarcolemmal localisation of Na+/H+ exchange and Na+-HCO3- co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes. J Physiol 2013; 591:2287-306. [PMID: 23420656 DOI: 10.1113/jphysiol.2012.249664] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Membrane acid extrusion by Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC) is essential for maintaining a low cytoplasmic [H(+)] (∼60 nm, equivalent to an intracellular pH (pHi) of 7.2). This protects myocardial function from the high chemical reactivity of H(+) ions, universal end-products of metabolism. We show here that, in rat ventricular myocytes, fluorescent antibodies map the NBC isoforms NBCe1 and NBCn1 to lateral sarcolemma, intercalated discs and transverse tubules (t-tubules), while NHE1 is absent from t-tubules. This unexpected difference matches functional measurements of pHi regulation (using AM-loaded SNARF-1, a pH fluorophore). Thus, myocyte detubulation (by transient exposure to 1.5 m formamide) reduces global acid extrusion on NBC by 40%, without affecting NHE1. Similarly, confocal pHi imaging reveals that NBC stimulation induces spatially uniform pHi recovery from acidosis, whereas NHE1 stimulation induces pHi non-uniformity during recovery (of ∼0.1 units, for 2-3 min), particularly at the ends of the cell where intercalated discs are commonly located, and where NHE1 immunostaining is prominent. Mathematical modelling shows that this induction of local pHi microdomains is favoured by low cytoplasmic H(+) mobility and long H(+) diffusion distances, particularly to surface NHE1 transporters mediating high membrane flux. Our results provide the first evidence for a spatial localisation of [H(+)]i regulation in ventricular myocytes, suggesting that, by guarding pHi, NHE1 preferentially protects gap junctional communication at intercalated discs, while NBC locally protects t-tubular excitation-contraction coupling.
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
63
|
Guo A, Zhang C, Wei S, Chen B, Song LS. Emerging mechanisms of T-tubule remodelling in heart failure. Cardiovasc Res 2013; 98:204-15. [PMID: 23393229 DOI: 10.1093/cvr/cvt020] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiac excitation-contraction coupling occurs primarily at the sites of transverse (T)-tubule/sarcoplasmic reticulum junctions. The orderly T-tubule network guarantees the instantaneous excitation and synchronous activation of nearly all Ca(2+) release sites throughout the large ventricular myocyte. Because of the critical roles played by T-tubules and the array of channels and transporters localized to the T-tubule membrane network, T-tubule architecture has recently become an area of considerable research interest in the cardiovascular field. This review will focus on the current knowledge regarding normal T-tubule structure and function in the heart, T-tubule remodelling in the transition from compensated hypertrophy to heart failure, and the impact of T-tubule remodelling on myocyte Ca(2+) handling function. In the last section, we discuss the molecular mechanisms underlying T-tubule remodelling in heart disease.
Collapse
Affiliation(s)
- Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
64
|
Ibarra C, Vicencio JM, Estrada M, Lin Y, Rocco P, Rebellato P, Munoz JP, Garcia-Prieto J, Quest AFG, Chiong M, Davidson SM, Bulatovic I, Grinnemo KH, Larsson O, Szabadkai G, Uhlén P, Jaimovich E, Lavandero S. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 2012; 112:236-45. [PMID: 23118311 DOI: 10.1161/circresaha.112.273839] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. OBJECTIVE To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling. METHODS AND RESULTS We report here that insulin-like growth factor 1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes, and adult rat cardiac myocytes. This fast and localized response is achieved by activation of insulin-like growth factor 1 receptor signaling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear insulin-like growth factor 1 receptor pool connects extracellular stimulation to local activation of nuclear Ca(2+) signaling and transcriptional upregulation through the perinuclear hydrolysis of phosphatidylinositol 4,5-biphosphate inositol 1,4,5-trisphosphate production, nuclear Ca(2+) release, and activation of the transcription factor myocyte-enhancing factor 2C. Genetically engineered Ca(2+) buffers--parvalbumin--with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signaling machinery. CONCLUSIONS These data reveal the existence of an inositol 1,4,5-trisphosphate-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signaling in response to an extracellular ligand.
Collapse
Affiliation(s)
- Cristian Ibarra
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Cheng LF, Wang F, Lopatin AN. Metabolic stress in isolated mouse ventricular myocytes leads to remodeling of t tubules. Am J Physiol Heart Circ Physiol 2011; 301:H1984-95. [PMID: 21890686 PMCID: PMC3213956 DOI: 10.1152/ajpheart.00304.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023]
Abstract
Cardiac ventricular myocytes possess an extensive t-tubular system that facilitates the propagation of membrane potential across the cell body. It is well established that ionic currents at the restricted t-tubular space may lead to significant changes in ion concentrations, which, in turn, may affect t-tubular membrane potential. In this study, we used the whole cell patch-clamp technique to study accumulation and depletion of t-tubular potassium by measuring inward rectifier potassium tail currents (I(K1,tail)), and inward rectifier potassium current (I(K1)) "inactivation". At room temperatures and in the absence of Mg(2+) ions in pipette solution, the amplitude of I(K1,tail) measured ~10 min after the establishment of whole cell configuration was reduced by ~18%, but declined nearly twofold in the presence of 1 mM cyanide. At ~35°C I(K1,tail) was essentially preserved in intact cells, but its amplitude declined by ~85% within 5 min of cell dialysis, even in the absence of cyanide. Intracellular Mg(2+) ions played protective role at all temperatures. Decline of I(K1,tail) was accompanied by characteristic changes in its kinetics, as well as by changes in the kinetics of I(K1) inactivation, a marker of depletion of t-tubular K(+). The data point to remodeling of t tubules as the primary reason for the observed effects. Consistent with this, detubulation of myocytes using formamide-induced osmotic stress significantly reduced I(K1,tail), as well as the inactivation of inward I(K1). Overall, the data provide strong evidence that changes in t tubule volume/structure may occur on a short time scale in response to various types of stress.
Collapse
Affiliation(s)
- Lu-Feng Cheng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA.
| | | | | |
Collapse
|
66
|
Richards MA, Clarke JD, Saravanan P, Voigt N, Dobrev D, Eisner DA, Trafford AW, Dibb KM. Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 2011; 301:H1996-2005. [PMID: 21841013 DOI: 10.1152/ajpheart.00284.2011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transverse (t) tubules are surface membrane invaginations that are present in all mammalian cardiac ventricular cells. The apposition of L-type Ca(2+) channels on t tubules with the sarcoplasmic reticulum (SR) constitutes a "calcium release unit" and allows close coupling of excitation to the rise in systolic Ca(2+). T tubules are virtually absent in the atria of small mammals, and therefore Ca(2+) release from the SR occurs initially at the periphery of the cell and then propagates into the interior. Recent work has, however, shown the occurrence of t tubules in atrial myocytes from sheep. As in the ventricle, Ca(2+) release in these cells occurs simultaneously in central and peripheral regions. T tubules in both the atria and the ventricle are lost in disease, contributing to cellular dysfunction. The aim of this study was to determine if the occurrence of t tubules in the atrium is restricted to sheep or is a more general property of larger mammals including humans. In atrial tissue sections from human, horse, cow, and sheep, membranes were labeled using wheat germ agglutinin. As previously shown in sheep, extensive t-tubule networks were present in horse, cow, and human atrial myocytes. Analysis shows half the volume of the cell lies within 0.64 ± 0.03, 0.77 ± 0.03, 0.84 ± 0.03, and 1.56 ± 0.19 μm of t-tubule membrane in horse, cow, sheep, and human atrial myocytes, respectively. The presence of t tubules in the human atria may play an important role in determining the spatio-temporal properties of the systolic Ca(2+) transient and how this is perturbed in disease.
Collapse
Affiliation(s)
- M A Richards
- Unit of Cardiac Physiology, University of Manchester, Core Technology Facility, Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Lueck JD, Rossi AE, Thornton CA, Campbell KP, Dirksen RT. Response to the letter: “On the localization of ClC-1 in skeletal muscle fibers”. J Gen Physiol 2011. [PMCID: PMC3047607 DOI: 10.1085/jgp.201010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John D. Lueck
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Ann E. Rossi
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Charles A. Thornton
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Kevin P. Campbell
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
68
|
Lueck JD, Rossi AE, Thornton CA, Campbell KP, Dirksen RT. Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle. J Gen Physiol 2010; 136:597-613. [PMID: 21078869 PMCID: PMC2995150 DOI: 10.1085/jgp.201010526] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/26/2010] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15-16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at -140 mV; -39.0 +/- 4.5 and -42.3 +/- 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V(1/2) was -61.0 +/- 1.7 and -64.5 +/- 2.8 mV; k was 20.5 ± 0.8 and 22.8 +/- 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 +/- 36 to 312 +/- 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an approximately 40 and 60% reduction in membrane capacitance in FDB fibers from 15-16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90 degrees out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein-tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle.
Collapse
Affiliation(s)
- John D. Lueck
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52246
| | - Ann E. Rossi
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Charles A. Thornton
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| | - Kevin P. Campbell
- Department of Molecular Physiology and Biophysics, Department of Internal Medicine, Department of Neurology, and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52246
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, and Department of Neurology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
69
|
Chase A, Orchard CH. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. J Mol Cell Cardiol 2010; 50:187-93. [PMID: 20971118 DOI: 10.1016/j.yjmcc.2010.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
The transverse (t-) tubule network is an important site for Ca influx and release during excitation-contraction coupling in cardiac ventricular myocytes; however, its role in Ca extrusion is less clear. The present study was designed to investigate the relative contributions of Ca extrusion pathways across the t-tubule and surface membranes. Ventricular myocytes were isolated from the hearts of adult male Wistar rats and detubulated using formamide. Intracellular Ca was monitored using fluo-3 and confocal microscopy. Caffeine (20 mmol/L) was used to induce SR Ca release; carboxyeosin (20 μmol/L) and nickel (10 mmol/L) were used to inhibit the sarcolemmal Ca ATPase and Na/Ca exchanger (NCX) respectively. Carboxyeosin decreased the rate constant of decay of the caffeine-induced Ca transient in control cells, but had no effect in detubulated cells, suggesting that Ca extrusion via the Ca ATPase occurs only across the t-tubule membrane. However nickel decreased the rate constant of the caffeine-induced Ca transient in control and detubulated cells, although its effect was greater in control cells, suggesting that Ca extrusion via NCX occurs across the surface and t-tubule membranes. The PKA inhibitor H-89 (10 μmol/L) was used to investigate the role of basal PKA activity in Ca extrusion; H-89 appeared to have no effect on Ca extrusion via the Ca ATPase, but reduced Ca extrusion via NCX at the t-tubules but not the surface membrane. Thus it appears that Ca extrusion via the sarcolemmal Ca ATPase occurs only at the t-tubules, and is not regulated by basal PKA activity, while Ca extrusion via NCX occurs across both the surface and t-tubule membranes, but predominantly across the t-tubule membrane due, in part, to localised stimulation of NCX by PKA at the t-tubules. This may be important in heart disease, in which changes in t-tubule structure and protein phosphorylation occur.
Collapse
Affiliation(s)
- Anabelle Chase
- Department of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
70
|
Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD. Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation–contraction coupling and inotropic stimulation. Cell Calcium 2010; 47:210-23. [DOI: 10.1016/j.ceca.2009.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/25/2009] [Accepted: 10/05/2009] [Indexed: 10/19/2022]
|
71
|
Localised Ca channel phosphorylation modulates the distribution of L-type Ca current in cardiac myocytes. J Mol Cell Cardiol 2010; 49:121-31. [PMID: 20188735 DOI: 10.1016/j.yjmcc.2010.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/01/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
Abstract
The t-tubule network is central to excitation-contraction coupling in mammalian cardiac ventricular myocytes, with recent studies showing that the majority of Ca influx via the L-type Ca current (I(Ca)) occurs across the t-tubule membrane. The present study investigated whether tonic phosphorylation of the L-type Ca channel is different at the t-tubule and surface membranes, and if this could account for the high density of I(Ca) at the t-tubules. Ventricular myocytes were isolated from male Wistar rats and detubulated using formamide. I(Ca) was recorded using the whole cell patch clamp technique, and Ca transients were recorded using fluo-3 in conjunction with confocal microscopy. The protein kinase A (PKA) inhibitor H-89 (10micromol/L) and the CaMKII inhibitor KN-93 (5micromol/L) decreased the amplitude of I(Ca) in intact cells but had no effect on I(Ca) amplitude in detubulated cells. These inhibitors also decreased the amplitude of the Ca transient in intact cells but not in detubulated cells. Antibody staining for phosphorylated L-type Ca channel showed significantly higher phosphorylation at the t-tubules than at the surface membrane in intact cells. Thus it appears that tonic phosphorylation of the L-type Ca channel maintains the amplitude of I(Ca) and occurs predominantly at the t-tubules. This may have important implications in heart disease, in which changes of phosphorylation and t-tubule density have been reported.
Collapse
|
72
|
Jayasinghe I, Cannell MB, Soeller C. Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys J 2009; 97:2664-73. [PMID: 19917219 PMCID: PMC2776253 DOI: 10.1016/j.bpj.2009.08.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022] Open
Abstract
Confocal and total internal reflection fluorescence imaging was used to examine the distribution of caveolin-3, sodium-calcium exchange (NCX) and ryanodine receptors (RyRs) in rat ventricular myocytes. Transverse and longitudinal optical sectioning shows that NCX is distributed widely along the transverse and longitudinal tubular system (t-system). The NCX labeling consisted of both punctate and distributed components, which partially colocalize with RyRs (27%). Surface membrane labeling showed a similar pattern but the fraction of RyR clusters containing NCX label was decreased and no nonpunctate labeling was observed. Sixteen percent of RyRs were not colocalized with the t-system and 1.6% of RyRs were found on longitudinal elements of the t-system. The surface distribution of RyR labeling was not generally consistent with circular patches of RyRs. This suggests that previous estimates for the number of RyRs in a junction (based on circular close-packed arrays) need to be revised. The observed distribution of caveolin-3 labeling was consistent with its exclusion from RyR clusters. Distance maps for all colocalization pairs were calculated to give the distance between centroids of punctate labeling and edges for distributed components. The possible roles for punctate NCX labeling are discussed.
Collapse
Affiliation(s)
- Izzy Jayasinghe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mark B. Cannell
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Christian Soeller
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
73
|
Dibb KM, Clarke JD, Horn MA, Richards MA, Graham HK, Eisner DA, Trafford AW. Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail 2009; 2:482-9. [PMID: 19808379 DOI: 10.1161/circheartfailure.109.852228] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In ventricular myocytes, the majority of structures that couple excitation to the systolic rise of Ca(2+) are located at the transverse tubular (t-tubule) membrane. In the failing ventricle, disorganization of t-tubules disrupts excitation contraction coupling. The t-tubule membrane is virtually absent in the atria of small mammals resulting in spatiotemporally distinct profiles of intracellular Ca(2+) release on stimulation in atrial and ventricular cells. The aims of this study were to determine (i) whether atrial myocytes from a large mammal (sheep) possess t-tubules, (ii) whether these are functionally important, and (iii) whether they are disrupted in heart failure. METHODS AND RESULTS Sheep left atrial myocytes were stained with di-4-ANEPPS. Nearly all control cells had an extensive t-tubule network resulting in each voxel in the cell being nearer to a membrane (sarcolemma or t-tubule) than would otherwise be the case. T-tubules decrease the distance of 50% of voxels from a membrane from 3.35 + or - 0.15 to 0.88 + or- 0.04 microm. During depolarization, intracellular Ca(2+) rises simultaneously at the cell periphery and center. In heart failure induced by rapid ventricular pacing, there was an almost complete loss of atrial t-tubules. The distance of 50% of voxels from a membrane increased to 2.04 + or - 0.08 microm, and there was a loss of early Ca(2+) release from the cell center. CONCLUSIONS Sheep atrial myocytes possess a substantial t-tubule network that synchronizes the systolic Ca(2+) transient. In heart failure, this network is markedly disrupted. This may play an important role in changes of atrial function in heart failure.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, University of Manchester, Core Technology Facility, 46 Grafton St, Manchester M13 9NT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
74
|
Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes. Biophys J 2009; 96:2532-46. [PMID: 19289075 DOI: 10.1016/j.bpj.2008.12.3896] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022] Open
Abstract
Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes in fractional dye fluorescence (DeltaF/F) at the t-tubule and surface membranes of in situ mouse ventricular cardiomyocytes. Peak DeltaF/F during action potential phase 0 depolarization averaged -21% for both dyes. The shape and time course of optical action potentials measured with the water-soluble ANNINE-6plus were indistinguishable from those of action potentials recorded with intracellular microelectrodes in the absence of the dye. In contrast, optical action potentials measured with the water-insoluble ANNINE-6 were significantly prolonged compared to the electrical recordings obtained from dye-free hearts, suggesting electrophysiological effects of ANNINE-6 and/or its solvents. With either dye, the kinetics of action potential-dependent changes in DeltaF/F during repolarization were found to be similar at the t-tubular and surface membranes. This study provides what to our knowledge are the first direct measurements of t-tubule electrical activity in ventricular cardiomyocytes, which support the concept that action potential duration is uniform throughout the sarcolemma of individual cells.
Collapse
|
75
|
Orchard CH, Pásek M, Brette F. The role of mammalian cardiac t-tubules in excitation-contraction coupling: experimental and computational approaches. Exp Physiol 2009; 94:509-19. [PMID: 19297389 DOI: 10.1113/expphysiol.2008.043984] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sarcolemmal membrane of mammalian cardiac ventricular myocytes is characterized by the presence of invaginations called transverse tubules (t-tubules). Transverse tubules occur at the Z-line as transverse elements with longitudinal extensions. While the existence of t-tubules has been known for some time, recent experimental studies have suggested that their structure and function are more complex than previously believed. There are, however, aspects of t-tubule function that are not currently amenable to experimental investigation, but can be investigated using computational and mathematical approaches. Such studies have helped elucidate further the possible role of t-tubules in cell function. This review summarizes recent experimental and complementary computational studies which highlight the important role of t-tubules in cardiac excitation-contraction coupling.
Collapse
Affiliation(s)
- Clive H Orchard
- Department of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
76
|
Dyachenko V, Husse B, Rueckschloss U, Isenberg G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 2008; 45:38-54. [PMID: 18635261 DOI: 10.1016/j.ceca.2008.06.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Cardiomyocytes respond to mechanical stretch with an increase [Ca2+]i. Here, we analyzed which ion channels could mediate this effect. Murine ventricular myocytes were attached to a glass coverslip and a cell-attached glass stylus sheared the upper cell part versus the attached cell bottom. At negative clamp potentials, stretch induced inward currents that increased with the extent of stretch and reversed within 2 min after relaxation from stretch. Stretch activated a nearly voltage-independent GsMTx-4-sensitive non-selective cation conductance Gns, antibodies against TRPC6 prevented Gns activation. In addition, stretch deactivated a Cs+-sensitive inwardly rectifying potassium conductance GK1, antibodies against Kir2.3 inhibited this effect. Immunolabeling localized TRPC6 and Kir2.3 in T-tubular membranes, and stretch-induced changes in membrane currents were absent in cells whose T-tubules had been removed. In absence of stretch, we could activate Gns and deactivate GK1 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and other amphipaths. We interpret that the function of TRPC6 and Kir2.3 channels is controlled by both tension and curvature of the surrounding lipid bilayer that are changed by incorporation of amphipaths. Stretch-activation of TRPC6 channels may increase Ca2+ influx directly and indirectly, by membrane depolarization (activation of voltage-gated Ca2+ channels) and by elevated [Na+]i (augmented Na+,Ca2+-exchange).
Collapse
Affiliation(s)
- V Dyachenko
- Department of Physiology, Martin-Luther-University Halle, 06097 Halle, Germany
| | | | | | | |
Collapse
|
77
|
Adav SS, Lee DJ. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. JOURNAL OF HAZARDOUS MATERIALS 2008; 154:1120-1126. [PMID: 18162303 DOI: 10.1016/j.jhazmat.2007.11.058] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
Abstract
Extracellular polymeric substances (EPS) were extracted from aerobic granules of compact interior structure using seven extraction methods. Ultrasound followed by the chemical reagents formamide and NaOH outperformed other methods in extracting EPS from aerobic granules of compact interior. The collected EPS revealed no contamination by intracellular substances and consisted mainly of proteins, polysaccharides, humic substances and lipids. The quantity of extracted proteins exhibited a weak correlation with quantity of extracted carbohydrates but no correlation with quantity of extracted humic substances. The total polysaccharides/total proteins (PN/PS) ratios for sludge flocs were approximately 0.9 regardless of extraction method. Protein content was significantly enriched in the granules, producing a PN/PS ratio of 3.4-6.2. This experimental result correlated with observations using excitation-emission matrix (EEM) and confocal laser scanning microscope technique. However, detailed study disproved the use of EEM results as a quantitative index of extracted EPS from sludge flocs or from granules.
Collapse
Affiliation(s)
- Sunil S Adav
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
78
|
Swift F, Birkeland JAK, Tovsrud N, Enger UH, Aronsen JM, Louch WE, Sjaastad I, Sejersted OM. Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase 2-isoform in heart failure. Cardiovasc Res 2008; 78:71-8. [DOI: 10.1093/cvr/cvn013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
79
|
Lauritzen HPM, Ploug T, Ai H, Donsmark M, Prats C, Galbo H. Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice. Diabetes 2008; 57:13-23. [PMID: 17914033 DOI: 10.2337/db07-0516] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Insulin stimulates muscle glucose transport by translocation of GLUT4 to sarcolemma and T-tubules. Despite muscle glucose uptake playing a major role in insulin resistance and type 2 diabetes, the temporal and spatial changes in insulin signaling and GLUT4 translocation during these conditions are not well described. RESEARCH DESIGN AND METHODS We used time-lapse confocal imaging of green fluorescent protein (GFP) ADP-ribosylation factor nucleotide-binding site opener (ARNO) (evaluation of phosphatidylinositide 3-kinase activation) and GLUT4-GFP-transfected quadriceps muscle in living, anesthetized mice either muscle denervated or high-fat fed. T-tubules were visualized with sulforhodamine B dye. In incubated muscle, glucose transport was measured by 2-deoxy-D-[(3)H]-glucose uptake, and functional detubulation was carried out by osmotic shock. Muscle fibers were immunostained for insulin receptors. RESULTS Denervation and high-fat diet reduced insulin-mediated glucose transport. In denervated muscle, insulin-stimulated phosphatidylinositol 3,4,5 P(3) (PIP3) production was abolished in T-tubules, while PIP3 production at sarcolemma was increased 2.6-fold. Correspondingly, GLUT4-GFP translocation to T-tubules was abolished, while translocation to sarcolemma was increased 2.3-fold. In high fat-fed mice, a approximately 65% reduction in both insulin-induced T-tubular PIP3 production and GLUT4-GFP translocation was seen. Sarcolemma was less affected, with reductions of approximately 40% in PIP3 production and approximately 15% in GLUT4-GFP translocation. Access to T-tubules was not compromised, and insulin receptor distribution in sarcolemma and T-tubules was unaffected by denervation or high-fat feeding. Detubulation of normal muscle reduced basal and abolished insulin-induced glucose transport. CONCLUSIONS Our findings demonstrate, for the first time, that impaired insulin signaling and GLUT4 translocation is compartmentalized in muscle and primarily localized to T-tubules and not sarcolemma during insulin resistance.
Collapse
Affiliation(s)
- Hans P M Lauritzen
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
The transverse tubules of mammalian cardiac ventricular myocytes are invaginations of the surface membrane. Recent data have revealed that their structure and function are more complex than previously believed. Here, we review current knowledge about their role in cardiac function, focusing on Ca2+ signaling and changes observed in pathological conditions.
Collapse
Affiliation(s)
- Fabien Brette
- Faculty of Life Sciences, University of Manchester, Manchester, United kingdom.
| | | |
Collapse
|
81
|
Despa S, Bers DM. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. Am J Physiol Cell Physiol 2007; 293:C321-7. [PMID: 17392375 DOI: 10.1152/ajpcell.00597.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na+/K+-ATPase (NKA) is the main route for Na+ extrusion from cardiac myocytes. Different NKA α-subunit isoforms are present in the heart. NKA-α1 is predominant, although there is a variable amount of NKA-α2 in adult ventricular myocytes of most species. It has been proposed that NKA-α2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-α1 vs. NKA-α2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (IPump) measurements and the different ouabain sensitivity of NKA-α1 (low) and NKA-α2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-α2, K1/2 = 0.38 ± 0.16 μM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-α1, K1/2 = 141 ± 17 μM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-α2 accounted for only 18.2 ± 1.1% of IPump. Thus, ∼63% of IPump generated by NKA-α2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-α2/NKA-α1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-α2 is ∼4.5 times higher in the T-tubules vs. ESL, whereas NKA-α1 is almost uniformly distributed between the TT and ESL.
Collapse
Affiliation(s)
- Sanda Despa
- Dept. of Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Ave., Maywood, IL 60153, USA
| | | |
Collapse
|
82
|
Brette F, Orchard CH. No Apparent Requirement for Neuronal Sodium Channels in Excitation-Contraction Coupling in Rat Ventricular Myocytes. Circ Res 2006; 98:667-74. [PMID: 16484618 DOI: 10.1161/01.res.0000209963.02720.70] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of Na channels in the heart are composed of the tetrodotoxin (TTX)-resistant (K
D
, 2 to 6 μmol/L) “cardiac” Na
V
1.5 isoform; however, TTX-sensitive (K
D
, 1 to 25 nmol/L) “neuronal” Na channel isoforms have recently been detected in several cardiac preparations. In the present study, we determined the functional subcellular localization of Na channel isoforms (according to their TTX sensitivity) in rat ventricular myocytes by recording
I
Na
in control and detubulated myocytes. We found that TTX-sensitive
I
Na
(K
D
, &8.8 nmol/L) makes up 14±3% of total
I
Na
in control and ≤4% in detubulated myocytes and calculated that &80% of TTX-sensitive
I
Na
is located in the t-tubules, where it generates &1/3 of t-tubular
I
Na
. In contrast, TTX-resistant
I
Na
is located predominantly (&78%) at the surface membrane. We also investigated the possible contribution of TTX-sensitive
I
Na
to excitation-contraction coupling, using 200 nmol/L TTX to selectively block TTX-sensitive
I
Na
. TTX decreased the rate of depolarization of the action potential by 10% but did not delay the rise of systolic Ca
2+
in the center of the cell (transverse confocal line scan), suggesting that TTX-sensitive
I
Na
does not play a role in synchronizing Ca
2+
release at the t-tubules; the amplitude of the Ca
2+
transient and contraction were also unchanged by 200 nmol/L TTX. The quantity of charge entering via
I
Ca
elicited by control or TTX action potential waveforms was similar, suggesting that the trigger for Ca
2+
release is not altered by blocking TTX-sensitive
I
Na
. We conclude that neuronal
I
Na
is concentrated at the t-tubules, but there is no evidence of a requirement for these channels in normal excitation-contraction coupling in ventricular myocytes.
Collapse
Affiliation(s)
- Fabien Brette
- Department of Physiology, University of Bristol, United Kingdom.
| | | |
Collapse
|
83
|
Brette F, Sallé L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J 2005; 90:381-9. [PMID: 16214862 PMCID: PMC1367035 DOI: 10.1529/biophysj.105.069013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The action potential of cardiac ventricular myocytes is characterized by its long duration, mainly due to Ca flux through L-type Ca channels. Ca entry also serves to trigger the release of Ca from the sarcoplasmic reticulum. The aim of this study was to investigate the role of cell membrane invaginations called transverse (T)-tubules in determining Ca influx and action potential duration in cardiac ventricular myocytes. We used the whole cell patch clamp technique to record electrophysiological activity in intact rat ventricular myocytes (i.e., from the T-tubules and surface sarcolemma) and in detubulated myocytes (i.e., from the surface sarcolemma only). Action potentials were significantly shorter in detubulated cells than in control cells. In contrast, resting membrane potential and action potential amplitude were similar in control and detubulated myocytes. Experiments under voltage clamp using action potential waveforms were used to quantify Ca entry via the Ca current. Ca entry after detubulation was reduced by approximately 60%, a value similar to the decrease in action potential duration. We calculated that Ca influx at the T-tubules is 1.3 times that at the cell surface (4.9 vs. 3.8 micromol/L cytosol, respectively) during a square voltage clamp pulse. In contrast, during a cardiac action potential, Ca entry at the T-tubules is 2.2 times that at the cell surface (3.0 vs. 1.4 micromol/L cytosol, respectively). However, more Ca entry occurs per microm(2) of junctional membrane at the cell surface than in the T-tubules (in nM/microm(2): 1.43 vs. 1.06 during a cardiac action potential). This difference is unlikely to be due to a difference in the number of Ca channels/junction at each site because we estimate that the same number of Ca channels is present at cell surface and T-tubule junctions ( approximately 35). This study provides the first evidence that the T-tubules are a key site for the regulation of action potential duration in ventricular cardiac myocytes. Our data also provide the first direct measurements of T-tubular Ca influx, which are consistent with the idea that cardiac excitation-contraction coupling largely occurs at the T-tubule dyadic clefts.
Collapse
Affiliation(s)
- F Brette
- Department of Physiology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
84
|
Duclohier H. Neuronal sodium channels in ventricular heart cells are localized near T-tubules openings. Biochem Biophys Res Commun 2005; 334:1135-40. [PMID: 16038878 DOI: 10.1016/j.bbrc.2005.06.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/19/2022]
Abstract
Cardiac voltage-dependent sodium channels (VDSC) are known to be tetrodotoxin (TTX)-resistant. However, recent immunochemical studies suggest the presence of TTX-sensitive neuronal-type VDSC in the heart. Scanning ion conductance microscopy (SICM) coupled to electrophysiology was used to obtain more direct functional evidence. TTX sensitivities of whole-cell sodium currents (I(Na)) in control and detubulated cells were compared. Addition of 200 nM TTX decreased I(Na) of control cells by 20%, whereas detubulated cells were hardly effected. The remaining current peaked slightly earlier and inactivation decay was faster (as in neuronal VDSC) than in detubulated cells. Single-channel activity was first assayed at random on the plasmalemma, and after topography had been revealed by SICM, at patched T-tubules openings. In the latter case, a single-channel conductance of 11-12pS was observed with a higher rate of success. This study provides independent evidence for neuronal VDSC in cardiomyocytes where they could rapidly and synchronously couple T-tubule and cell surface depolarizations.
Collapse
Affiliation(s)
- Hervé Duclohier
- Institut de Physiologie et Biologie Cellulaires (PBS), UMR 6187 CNRS-Université de Poitiers, France.
| |
Collapse
|
85
|
Shiels HA, White E. Temporal and spatial properties of cellular Ca2+flux in trout ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1756-66. [PMID: 15650128 DOI: 10.1152/ajpregu.00510.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal microscopy was used to investigate the temporal and spatial properties of Ca2+transients and Ca2+sparks in ventricular myocytes of the rainbow trout ( Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long (∼160 μm), thin (∼8 μm) morphology of trout myocytes. Line scan imaging of Ca2+transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca2+transients across the width of the myocytes. The Ca2+wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca2+channel agonist (−)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca2+from the cell periphery to the cell center, with SR Ca2+release contributing to the cytosolic Ca2+rise in a time-dependent manner. Spontaneous Ca2+sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca2+sparks were observed in 9 of 11 myocytes examined. Ca2+sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (−)BAY K 8644 or high Ca2+(6 mM). Reducing temperature to 15°C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca2+spark detection was without significant effects. Possible reasons for the rarity of Ca2+sparks in a cardiac myocyte with an active SR are discussed.
Collapse
|
86
|
Cingolani HE, Pérez NG, Aiello EA, de Hurtado MCC. Intracellular signaling following myocardial stretch: an autocrine/paracrine loop. ACTA ACUST UNITED AC 2005; 128:211-20. [PMID: 15837530 DOI: 10.1016/j.regpep.2004.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stretch of adult papillary muscle elicits a chain of autocrine/paracrine events in which the Na(+)/H(+) exchanger (NHE-1) activation is the central step. This activation is induced by a sequential angiotensin II-endothelin (Ang II-ET) release and results in an increase in intracellular Na(+) (Na(+)(i)) without significant changes in intracellular pH. The increase in Na(+)(i) negatively shifts the reverse potential of the Na(+)/Ca(2+) exchanger (NCX) thus inducing cell Ca(2+) influx that augments myocardial contractility. This increase in force represents the mechanical counterpart of the autocrine/paracrine mechanism triggered by stretch and has been called the slow force response (SFR) to stretch.
Collapse
Affiliation(s)
- Horacio E Cingolani
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
87
|
Fowler MR, Naz JR, Graham MD, Bru-Mercier G, Harrison SM, Orchard CH. Decreased Ca2+extrusion via Na+/Ca2+exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am J Physiol Heart Circ Physiol 2005; 288:H2431-8. [PMID: 15615841 DOI: 10.1152/ajpheart.01069.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY; control). We monitored intracellular Ca2+using fluo 3 or fura 2; caffeine (20 mmol/l) was used to release Ca2+from the sarcoplasmic reticulum (SR), and Ni2+(10 mM) was used to inhibit Na+/Ca2+exchange (NCX) function. SHR myocytes were significantly larger than those from WKY hearts, consistent with cellular hypertrophy. Subepicardial myocytes from SHR hearts showed larger Ca2+transient amplitude and SR Ca2+content and less Ca2+extrusion via NCX compared with subepicardial WKY myocytes. These parameters did not change in subendocardial myocytes. The time course of decline of the Ca2+transient was the same in all groups of cells, but its time to peak was shorter in subepicardial cells than in subendocardial cells in WKY and SHR and was slightly prolonged in subendocardial SHR cells compared with WKY subendocardial myocytes. It is concluded that the major change in Ca2+cycling during compensated hypertrophy in SHR is a decrease in NCX activity in subepicardial cells; this increases SR Ca2+content and hence Ca2+transient amplitude, thus helping to maintain the strength of contraction in the face of an increased afterload.
Collapse
Affiliation(s)
- Mark R Fowler
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
88
|
Endothelin-1 stimulates the Na+/Ca2+ exchanger reverse mode through intracellular Na+ (Na+i)-dependent and Na+i-independent pathways. Hypertension 2004; 45:288-93. [PMID: 15611361 DOI: 10.1161/01.hyp.0000152700.58940.b2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to explore the signaling pathways involved in the positive inotropic effect (PIE) of low doses of endothelin-1 (ET-1). Cat papillary muscles were used for force and intracellular Na(+) concentration (Na(+)(i)) measurements, and isolated cat ventricular myocytes for patch-clamp experiments. ET-1 (5 nmol/L) induced a PIE and an associated increase in Na(+)(i) that were abolished by Na(+)/H(+) exchanger (NHE) inhibition with HOE642. Reverse-mode Na(+)/Ca(2+) exchanger (NCX) blockade with KB-R7943 reversed the ET-1-induced PIE. These results suggest that the ET-1-induced PIE is totally attributable to the NHE-mediated Na(+)(i) increase. However, an additional direct stimulating effect of ET-1 on NCX after the necessary increase in Na(+)(i) could occur. Thus, the ET-1-induced increase in Na(+)(i) and contractility was compared with that induced by partial inhibition of the Na(+)/K(+) ATPase by lowering extracellular K(+) (K(+)(o)). For a given Na(+)(i), ET-1 induced a greater PIE than low K(+)(o). In the presence of HOE642 and after increasing contractility and Na(+)(i) by low K(+)(o), ET-1 induced an additional PIE that was reversed by KB-R7943 or the protein kinase C (PKC) inhibitor chelerythrine. ET-1 increased the NCX current and negatively shifted the NCX reversal potential (E(NCX)). HOE642 attenuated the increase in NCX outward current and abolished the E(NCX) shift. These results indicate that whereas the NHE-mediated ET-1-induced increase in Na(+)(i) seems to be mandatory to drive NCX in reverse and enhance contractility, Na(+)(i)-independent and PKC-dependent NCX stimulation appears to additionally contribute to the PIE. However, it is important to stress that the latter can only occur after the primary participation of the former.
Collapse
|
89
|
Despa S, Brette F, Orchard CH, Bers DM. Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J 2004; 85:3388-96. [PMID: 14581240 PMCID: PMC1303616 DOI: 10.1016/s0006-3495(03)74758-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Formamide-induced detubulation of rat ventricular myocytes was used to investigate the functional distribution of the Na/Ca exchanger (NCX) and Na/K-ATPase between the t-tubules and external sarcolemma. Detubulation resulted in a 32% decrease in cell capacitance, whereas cell volume was unchanged. Thus, the surface-to-volume ratio was used to assess the success of detubulation. NCX current (I(NCX)) and Na/K pump current (I(pump)) were recorded using whole-cell patch clamp, as Cd-sensitive and K-activated currents, respectively. Both inward and outward I(NCX) density was significantly reduced by approximately 40% in detubulated cells. I(NCX) density at 0 mV decreased from 0.19 +/- 0.03 to 0.10 +/- 0.03 pA/pF upon detubulation. I(pump) density was also lower in detubulated myocytes over the range of voltages (-50 to +100 mV) and internal [Na] ([Na](i)) investigated (7-22 mM). At [Na](i) = 10 mM and -20 mV, I(pump) density was reduced by 39% in detubulated myocytes (0.28 +/- 0.02 vs. 0.17 +/- 0.03 pA/pF), but the apparent K(m) for [Na](i) was unchanged (16.9 +/- 0.4 vs. 17.0 +/- 0.3 mM). These results indicate that although thet-tubules represent only approximately 32% of the total sarcolemma, they contribute approximately 60% to the total I(NCX) and I(pump). Thus, the functional density of NCX and Na/K pump in the t-tubules is 3-3.5-fold higher than in the external sarcolemma.
Collapse
Affiliation(s)
- S Despa
- Department of Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
90
|
Brette F, Sallé L, Orchard CH. Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circ Res 2004; 95:e1-7. [PMID: 15192026 DOI: 10.1161/01.res.0000135547.53927.f6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have characterized modulation of ICa by Ca2+ at the t-tubules (ie, in control cells) and surface sarcolemma (ie, in detubulated cells) of cardiac ventricular myocytes, using the whole-cell patch clamp technique to record ICa. ICa inactivation was significantly slower in detubulated cells than in control cells (27.1+/-7.8 ms, n=22, versus 16.4+/-7.9 ms, n=22; P<0.05). In atrial myocytes, which lack t-tubules, ICa inactivation was not changed by the treatment used to produce detubulation. In the presence of ryanodine or BAPTA, or when Ba2+ was used as the charge carrier, the rate of inactivation was not significantly different in control and detubulated cells. Frequency-dependent facilitation occurred in control cells but not in detubulated cells, and was abolished by ryanodine. These results suggest that Ca2+ released from the SR has a greater effect on ICa in the t-tubules than at the surface sarcolemma. This does not appear to be due to differences in local Ca2+ release from the SR, because the gain of Ca2+ release was not significantly different in control and detubulated cells. These data suggest that the t-tubules are a key site for the regulation of transsarcolemmal Ca2+ flux by Ca2+ release from the SR; this could play a role in altered Ca2+ homeostasis in pathological conditions. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
91
|
Abstract
The transverse tubules (t-tubules) of mammalian cardiac ventricular myocytes are invaginations of the surface membrane. Recent studies have suggested that the structure and function of the t-tubules are more complex than previously believed; in particular, many of the proteins involved in cellular Ca2+ cycling appear to be concentrated at the t-tubule. Thus, the t-tubules are an important determinant of cardiac cell function, especially as the main site of excitation-contraction coupling, ensuring spatially and temporally synchronous Ca2+ release throughout the cell. Changes in t-tubule structure and protein expression occur during development and in heart failure, so that changes in the t-tubules may contribute to the functional changes observed in these conditions. The purpose of this review is to provide an overview of recent studies of t-tubule structure and function in cardiac myocytes.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|