51
|
Carll AP, Willis MS, Lust RM, Costa DL, Farraj AK. Merits of non-invasive rat models of left ventricular heart failure. Cardiovasc Toxicol 2011; 11:91-112. [PMID: 21279739 DOI: 10.1007/s12012-011-9103-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is characterized as a limitation to cardiac output that prevents the heart from supplying tissues with adequate oxygen and predisposes individuals to pulmonary edema. Impaired cardiac function is secondary to either decreased contractility reducing ejection (systolic failure), diminished ventricular compliance preventing filling (diastolic failure), or both. To study HF etiology, many different techniques have been developed to elicit this condition in experimental animals, with varying degrees of success. Among rats, surgically induced HF models are the most prevalent, but they bear several shortcomings, including high mortality rates and limited recapitulation of the pathophysiology, etiology, and progression of human HF. Alternatively, a number of non-invasive HF induction methods avoid many of these pitfalls, and their merits in technical simplicity, reliability, survivability, and comparability to the pathophysiologic and pathogenic characteristics of HF are reviewed herein. In particular, this review focuses on the primary pathogenic mechanisms common to genetic strains (spontaneously hypertensive and spontaneously hypertensive heart failure), pharmacological models of toxic cardiomyopathy (doxorubicin and isoproterenol), and dietary salt models, all of which have been shown to induce left ventricular HF in the rat. Additional non-invasive techniques that may potentially enable the development of new HF models are also discussed.
Collapse
Affiliation(s)
- Alex P Carll
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, 27599 USA.
| | | | | | | | | |
Collapse
|
52
|
Martinez PF, Okoshi K, Zornoff LAM, Oliveira SA, Campos DHS, Lima ARR, Damatto RL, Cezar MDM, Bonomo C, Guizoni DM, Padovani CR, Cicogna AC, Okoshi MP. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol (1985) 2011; 111:543-51. [PMID: 21617080 DOI: 10.1152/japplphysiol.01154.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In studies of congestive heart failure (CHF) treatment, it is essential to select animals with a similar degree of cardiac dysfunction. However, this is difficult to establish without hemodynamic evaluation in rat postinfarction-induced CHF. This study aimed to diagnose CHF in long-term follow-up postinfarction rats using only echocardiographic criteria through a J-tree cluster analysis and Fisher's linear discriminant function. Two sets of sham and infarcted rats were studied. The first was used to perform cluster analysis and the second to prospectively validate the results. Six months after inducing myocardial infarction (MI), rats were subjected to transthoracic echocardiography. Infarct size was measured by histological analysis. Six echocardiographic variables were used in the cluster analysis: left ventricular (LV) systolic dimension, LV diastolic dimension-to-body weight ratio, left atrial diameter-to-body weight ratio, LV posterior wall shortening velocity, E wave, and isovolumetric relaxation time. Cluster analysis joined the rats into one sham and two MI groups. One MI cluster had more severe anatomical and echocardiographic changes and was called MI with heart failure (MI/HF+, n = 24, infarct size: 42.7 ± 5.8%). The other had less severe changes and was called MI without heart failure (MI/HF-, n = 11, infarct size: 32.3 ± 9.9%; P < 0.001 vs. MI/HF+). Three rats with small infarct size (21.6 ± 2.2%) presenting mild cardiac alterations were misallocated in the sham group. Fisher's linear discriminant function was built using these groups and used to prospectively classify additional groups of sham-operated (n = 20) and infarcted rats (n = 57) using the same echocardiographic parameters. The discriminant function therefore detected CHF with 100% specificity and 80% sensitivity considering allocation in MI/HF+ and sham group, and 100% specificity and 58.8% sensitivity considering MI/HF+ and MI/HF- groups, taking into account pathological criteria of CHF diagnosis. Echocardiographic analysis can be used to accurately predict congestive heart failure in postinfarction rats.
Collapse
Affiliation(s)
- Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
de La Roque ED, Thiaudière E, Ducret T, Marthan R, Franconi JM, Guibert C, Parzy E. Effect of chronic hypoxia on pulmonary artery blood velocity in rats as assessed by electrocardiography-triggered three-dimensional time-resolved MR angiography. NMR IN BIOMEDICINE 2011; 24:225-230. [PMID: 20945307 DOI: 10.1002/nbm.1574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/30/2010] [Accepted: 05/12/2010] [Indexed: 05/30/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease that leads to increased pulmonary vascular resistance and right heart failure. Noninvasive methods are needed to detect changes in the pulmonary artery circulation during PAH establishment and/or treatment. Pulmonary blood flow velocity can be evaluated by dynamic MR angiography, although the relevance of such data in the context of PAH remains to be demonstrated. A novel dynamic MR angiography technique was used in this work to measure blood flow velocity in the pulmonary arteries of the same living animals, before and after the establishment of chronic hypoxia-induced PAH. Chronic hypoxia decreased significantly the blood flow velocity (43.8 ± 4.9 vs 24.3 ± 8.7 cm/s) on electrocardiography-triggered time-resolved angiograms. In parallel, chronic hypoxia-induced PAH was confirmed from invasive measurements of the mean pulmonary arterial pressure (32.1 ± 4.8 vs 12.5 ± 2.2 mmHg) and the ratio of the right ventricle weight to the left ventricle plus septum weight (Fulton index: 0.54 ± 0.06 vs 0.27 ± 0.04). This study demonstrates the potential interest of dynamic MR angiography for the investigation of experimental models and for the evaluation of treatment efficacy.
Collapse
|
54
|
Gopalakrishnan K, Morgan EE, Yerga-Woolwine S, Farms P, Kumarasamy S, Kalinoski A, Liu X, Wu J, Liu L, Joe B. Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension. Hypertension 2011; 57:764-71. [PMID: 21357277 DOI: 10.1161/hypertensionaha.110.165803] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using congenic strains of the Dahl salt-sensitive (S) rat introgressed with genomic segments from the normotensive Lewis rat, a blood pressure quantitative trait locus was previously mapped within 104 kb on chromosome 10. The goal of the current study was to conduct extensive phenotypic studies and to further fine-map this locus. At 14 weeks of age, the blood pressure of the congenic rats fed a low-salt diet was significantly higher by 47 mm Hg (P<0.001) compared with that of the S rat. A time-course study showed that the blood pressure effect was significant from very young ages of 50 to 52 days (13 mm Hg; P<0.01). The congenic strain implanted with electrocardiography transmitters demonstrated shorter-QT intervals and increased heart rate compared with S rats (P<0.01). The average survival of the congenic strain was shorter (134 days) compared with the S rat (175 days; P<0.0007). The critical region was narrowed to <42.5 kb containing 171 variants and a single gene, rififylin. Both the mRNA and protein levels of rififylin were significantly higher in the hearts of the congenic strain. Overexpression of rififylin is known to delay endocytic recycling. Endocytic recycling of fluorescently labeled holotransferrin from cardiomyocytes of the congenic strain was slower than that of S rats (P<0.01). Frequency of cardiomyocyte beats in the congenic strain (62±9 bpm) was significantly higher than that of the S rat (24±6 bpm; P<0.001). Taken together, our study provides evidence to suggest that early perturbations in endocytic recycling caused by the overexpression of Rffl is a novel physiological mechanism potentially underlying the development of hypertension.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH 43614-2598, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
High-Resolution Echocardiographic Assessment of Infarct Size and Cardiac Function in Mice with Myocardial Infarction. J Am Soc Echocardiogr 2011; 24:219-26. [DOI: 10.1016/j.echo.2010.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Indexed: 12/22/2022]
|
56
|
Ceconi C, Comini L, Suffredini S, Stillitano F, Bouly M, Cerbai E, Mugelli A, Ferrari R. Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol 2011; 300:H366-73. [DOI: 10.1152/ajpheart.01117.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of chronic heart rate (HR) reduction with the hyperpolarization-activated current inhibitor ivabradine on the global phenotype of left ventricular (LV) remodeling in a ligated rat model. Seven days after coronary artery ligation, Wistar rats received ivabradine (10 mg·kg−1·day−1 administered in drinking water) [myocardial infarction + ivabradine (MI+IVA), n = 22] or vehicle only (drinking water) (MI, n = 20) for 90 days. A sham group ( n = 20) was included for model validation. MI+IVA rats had 12% lower HR ( P < 0.01), improved LV volumes, 15% higher LV ejection fraction (LVEF, P < 0.01) than MI rats, and 33% reductions in both plasma atrial natriuretic peptide (ANP, P = 0.052) and cardiac hydroxyproline. Using patch-clamp, action potential duration was reduced and transient outward current density increased ( P < 0.05). Cardiac energy metabolism was also improved (+33% creatine phosphate, P < 0.001; +15% ATP; and +9% energy charge, P < 0.05). Significant correlations were found between HR and parameters of cardiac metabolism, ANP, and LVEF (all P < 0.05). The HR-reducing properties of ivabradine prevent changes in the global phenotype of LV remodeling in the rat, optimize energy consumption, and avoid electrophysiological and structural remodeling.
Collapse
Affiliation(s)
| | - Laura Comini
- Cardiovascular Pathophysiology Research Center, Foundation Salvatore Maugeri IRCCS, Lumezzane
| | - Silvia Suffredini
- Center of Molecular Medicine, University of Florence, Firenze, Italy
| | | | - Muriel Bouly
- Institut de Recherches Internationales Servier, Courbevoie, France
| | - Elisabetta Cerbai
- Center of Molecular Medicine, University of Florence, Firenze, Italy
| | | | - Roberto Ferrari
- Department of Cardiology, University of Ferrara
- Cardiovascular Pathophysiology Research Center, Foundation Salvatore Maugeri IRCCS, Lumezzane
| |
Collapse
|
57
|
Christopher BA, Huang HM, Berthiaume JM, McElfresh TA, Chen X, Croniger CM, Muzic RF, Chandler MP. Myocardial insulin resistance induced by high fat feeding in heart failure is associated with preserved contractile function. Am J Physiol Heart Circ Physiol 2010; 299:H1917-27. [PMID: 20852054 DOI: 10.1152/ajpheart.00687.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have reported that high fat feeding in mild to moderate heart failure (HF) results in the preservation of contractile function. Recent evidence has suggested that preventing the switch from fatty acid to glucose metabolism in HF may ameliorate dysfunction, and insulin resistance is one potential mechanism for regulating substrate utilization. This study was designed to determine whether peripheral and myocardial insulin resistance exists with HF and/or a high-fat diet and whether myocardial insulin signaling was altered accordingly. Rats underwent coronary artery ligation (HF) or sham surgery and were randomized to normal chow (NC; 14% kcal from fat) or a high-fat diet (SAT; 60% kcal from fat) for 8 wk. HF + SAT animals showed preserved systolic (+dP/dt and stroke work) and diastolic (-dP/dt and time constant of relaxation) function compared with HF + NC animals. Glucose tolerance tests revealed peripheral insulin resistance in sham + SAT, HF + NC, and HF + SAT animals compared with sham + NC animals. PET imaging confirmed myocardial insulin resistance only in HF + SAT animals, with an uptake ratio of 2.3 ± 0.3 versus 4.6 ± 0.7, 4.3 ± 0.4, and 4.2 ± 0.6 in sham + NC, sham + SAT, and HF + NC animals, respectively; the myocardial glucose utilization rate was similarly decreased in HF + SAT animals only. Western blot analysis of insulin signaling protein expression was indicative of cardiac insulin resistance in HF + SAT animals. Specifically, alterations in Akt and glycogen synthase kinase-3β protein expression in HF + SAT animals compared with HF + NC animals may be involved in mediating myocardial insulin resistance. In conclusion, HF animals fed a high-saturated fat exhibited preserved myocardial contractile function, peripheral and myocardial insulin resistance, decreased myocardial glucose utilization rates, and alterations in cardiac insulin signaling. These results suggest that myocardial insulin resistance may serve a cardioprotective function with high fat feeding in mild to moderate HF.
Collapse
Affiliation(s)
- Bridgette A Christopher
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Atluri P, Panlilio CM, Liao GP, Hiesinger W, Harris DA, McCormick RC, Cohen JE, Jin T, Feng W, Levit RD, Dong N, Woo YJ. Acute myocardial rescue with endogenous endothelial progenitor cell therapy. Heart Lung Circ 2010; 19:644-54. [PMID: 20719564 DOI: 10.1016/j.hlc.2010.06.1056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 11/19/2022]
Abstract
PURPOSE Post-myocardial infarction heart failure is a major health concern with limited therapy. Molecular revascularisation utilising granulocyte-macrophage colony stimulating factor (GMCSF) mediated endothelial progenitor cell (EPC) upregulation and stromal cell derived factor-1α (SDF) mediated myocardial EPC chemokinesis, may prevent myocardial loss and adverse remodelling. Vasculogenesis, viability, and haemodynamic improvements following therapy were investigated. PROCEDURES Lewis rats (n=91) underwent LAD ligation and received either intramyocardial SDF and subcutaneous GMCSF or saline injections at the time of infarction. Molecular and haemodynamic assessments were performed at pre-determined time points following ligation. FINDINGS SDF/GMCSF therapy upregulated EPC density as shown by flow cytometry (0.12±0.02% vs. 0.06±0.01% circulating lymphocytes, p=0.005), 48hours following infarction. A marked increase in perfusion was evident eight weeks after therapy, utilising confocal angiography (5.02±1.7×10(-2)μm(3)blood/μm(3)myocardial tissue vs. 2.03±0.710(-2)μm(3)blood/μm(3)myocardial tissue, p=0.00004). Planimetric analysis demonstrated preservation of wall thickness (0.98±0.09mm vs. 0.67±0.06mm, p=0.003) and ventricular diameter (7.81±0.99mm vs. 9.41±1.1mm, p=0.03). Improved haemodynamic function was evidenced by echocardiography and PV analysis (ejection fraction: 56.4±18.1% vs. 25.3±15.6%, p=0.001; pre-load adjusted maximal power: 6.6±2.6mW/μl(2) vs. 2.7±1.4mW/μl(2), p=0.01). CONCLUSION Neovasculogenic therapy with GMCSF-mediated EPC upregulation and SDF-mediated EPC chemokinesis maybe an effective therapy for infarct modulation and preservation of myocardial function following acute myocardial infarction.
Collapse
Affiliation(s)
- Pavan Atluri
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Berthiaume JM, Bray MS, McElfresh TA, Chen X, Azam S, Young ME, Hoit BD, Chandler MP. The myocardial contractile response to physiological stress improves with high saturated fat feeding in heart failure. Am J Physiol Heart Circ Physiol 2010; 299:H410-21. [PMID: 20511406 DOI: 10.1152/ajpheart.00270.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Impaired myocardial contractile function is a hallmark of heart failure (HF), which may present under resting conditions and/or during physiological stress. Previous studies have reported that high fat feeding in mild to moderate HF/left ventricular (LV) dysfunction is associated with improved contractile function at baseline. The goal of this study was to determine whether myocardial function is compromised in response to physiological stress and to evaluate the global gene expression profile of rats fed high dietary fat after infarction. Male Wistar rats underwent ligation or sham surgery and were fed normal chow (NC; 10% kcal fat; Sham + NC and HF + NC groups) or high-fat chow (SAT; 60% kcal saturated fat; Sham + SAT and HF + SAT groups) for 8 wk. Myocardial contractile function was assessed using a Millar pressure-volume conductance catheter at baseline and during inferior vena caval occlusions and dobutamine stress. Steady-state indexes of systolic function, LV +dP/dt(max), stroke work, and maximal power were increased in the HF + SAT group versus the HF + NC group and reduced in the HF + NC group versus the Sham + NC group. Preload recruitable measures of contractility were decreased in HF + NC group but not in the HF + SAT group. beta-Adrenergic responsiveness [change in LV +dP/dt(max) and change in cardiac output with dobutamine (0-10 microg x kg(-1) x min(-1))] was reduced in HF, but high fat feeding did not further impact the contractile reserve in HF. The contractile reserve was reduced by the high-fat diet in the Sham + SAT group. Microarray gene expression analysis revealed that the majority of significantly altered pathways identified contained multiple gene targets correspond to cell signaling pathways and energy metabolism. These findings suggest that high saturated fat improves myocardial function at rest and during physiological stress in infarcted hearts but may negatively impact the contractile reserve under nonpathological conditions. Furthermore, high fat feeding-induced alterations in gene expression related to energy metabolism and specific signaling pathways revealed promising targets through which high saturated fat potentially mediates cardioprotection in mild to moderate HF/LV dysfunction.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- Dept. of Physiology and Biophysics, School of Medicine E521, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
George JC, Liner A, Hoit BD. Isoproterenol-induced myocardial injury: a systematic comparison of subcutaneous versus intraperitoneal delivery in a rat model. Echocardiography 2010; 27:716-21. [PMID: 20345437 DOI: 10.1111/j.1540-8175.2009.01107.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Isoproterenol (ISO)-induced myocardial injury is widely used as an experimental animal model; however, the optimal route of delivery, i.e., subcutaneous (SC) versus intraperitoneal (IP) has not been clarified. We systematically compared changes in cardiac function (echocardiography, Doppler and strain imaging) and exercise capacity induced by ISO via SC versus IP delivery. METHODS Twelve rats were used in this study and classified into three groups: Control (n = 2), SC-ISO (n = 5), and IP-ISO (n = 5), each receiving serial injections of ISO (100 mcg/kg) for 5 days (days 1-5). All rats underwent echocardiographic analysis of left ventricular function and functional capacity (FC) assessment on a treadmill protocol at baseline and post treatment. Hearts were excised and weighed at the end of the study. RESULTS Left ventricular (LV) systolic and diastolic dysfunctions were adequately induced by both SC and IP delivery: > or =13% reduction in fractional shortening, > or =12% increase in wall motion score index, and > or =35% increase in myocardial performance index; > or =49% increase in E/A ratio; > or =9% decline in anterior wall tissue velocity; > or =12% decline in circumferential and radial tissue strain and strain rates; > or =20% decline in FC; and > or =40% increase in echocardiographic LV mass and gross heart weight in both groups. CONCLUSION Short-duration ISO administration with serial injections via SC and IP routes induces significant myocardial dysfunction and impairs FC with few differences between both modalities.
Collapse
Affiliation(s)
- Jon C George
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
61
|
Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, Mohr FW, Schwarzer M. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 2009; 86:461-70. [PMID: 20035032 DOI: 10.1093/cvr/cvp414] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Left ventricular hypertrophy is a risk factor for heart failure. However, it also is a compensatory response to pressure overload, accommodating for increased workload. We tested whether the changes in energy substrate metabolism may be predictive for the development of contractile dysfunction. METHODS AND RESULTS Chronic pressure overload was induced in Sprague-Dawley rats by aortic arch constriction for 2, 6, 10, or 20 weeks. Contractile function in vivo was assessed by echocardiography and by invasive pressure measurement. Glucose and fatty acid oxidation as well as contractile function ex vivo were assessed in the isolated working heart, and respiratory capacity was measured in isolated cardiac mitochondria. Pressure overload caused progressive hypertrophy with normal ejection fraction (EF) at 2, 6, and 10 weeks, and hypertrophy with dilation and impaired EF at 20 weeks. The lung-to-body weight ratio, as marker for pulmonary congestion, was normal at 2 weeks (indicative of compensated hypertrophy) but significantly increased already after 6 and up to 20 weeks, suggesting the presence of heart failure with normal EF at 6 and 10 weeks and impaired EF at 20 weeks. Invasive pressure measurements showed evidence for contractile dysfunction already after 6 weeks and ex vivo cardiac power was reduced even at 2 weeks. Importantly, there was impairment in fatty acid oxidation beginning at 2 weeks, which was associated with a progressive decrease in glucose oxidation. In contrast, respiratory capacity of isolated mitochondria was normal until 10 weeks and decreased only in hearts with impaired EF. CONCLUSION Pressure overload-induced impairment in fatty acid oxidation precedes the onset of congestive heart failure but mitochondrial respiratory capacity is maintained until the EF decreases in vivo. These temporal relations suggest a tight link between impaired substrate oxidation capacity in the development of heart failure and contractile dysfunction and may imply therapeutic and prognostic value.
Collapse
Affiliation(s)
- Torsten Doenst
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Strümpellstr. 39, 04289 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Xu J, Zhang C, Khanna A. Wideband high-frequency echocardiography to evaluate myocardial infarct size. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2009; 28:1527-1534. [PMID: 19854968 DOI: 10.7863/jum.2009.28.11.1527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE This study was designed to validate the feasibility of wideband high-frequency ultrasound imaging to resolve in vivo the degree, location, and morphologic changes of myocardial infarction (MI) in a rat model. METHODS The left anterior descending coronary artery was ligated in the test group (n = 41), and the sham control group did not have ligation (n = 7). The rats were examined with 10- to 22-MHz echocardiography to evaluate the MI size, location, and geometric formation. RESULTS The endocardial chamber shape was deformed, with enlargement of the anteroposterior dimension and fractional shortening, and was comparable with the degree of MI both in short- and long-axis sections of the left ventricle. Histologic analysis showed remodeling to different extents corresponding to different MI sizes (small, medium, and large). CONCLUSIONS The results suggest that this technique can be used in vivo to evaluate the MI location, size, and morphologic changes corresponding to the extent of the injury.
Collapse
Affiliation(s)
- Jianping Xu
- Division of Cardiology, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
63
|
Das H, George JC, Joseph M, Das M, Abdulhameed N, Blitz A, Khan M, Sakthivel R, Mao HQ, Hoit BD, Kuppusamy P, Pompili VJ. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One 2009; 4:e7325. [PMID: 19809493 PMCID: PMC2752797 DOI: 10.1371/journal.pone.0007325] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/17/2009] [Indexed: 01/11/2023] Open
Abstract
Background Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+) genetically modified with VEGF plus PDGF genes (VIP). Methods and Findings Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP) compared to nanofiber expanded cells (Exp), freshly isolated cells (FCB) or media control (Media). Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. Conclusion Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction.
Collapse
Affiliation(s)
- Hiranmoy Das
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lee HG, Chen Q, Wolfram JA, Richardson SL, Liner A, Siedlak SL, Zhu X, Ziats NP, Fujioka H, Felsher DW, Castellani RJ, Valencik ML, McDonald JA, Hoit BD, Lesnefsky EJ, Smith MA. Cell cycle re-entry and mitochondrial defects in myc-mediated hypertrophic cardiomyopathy and heart failure. PLoS One 2009; 4:e7172. [PMID: 19779629 PMCID: PMC2747003 DOI: 10.1371/journal.pone.0007172] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/30/2009] [Indexed: 11/18/2022] Open
Abstract
While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a "fetal re-expression" pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart.
Collapse
Affiliation(s)
- Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HgL); (MAS)
| | - Qun Chen
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julie A. Wolfram
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sandy L. Richardson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anna Liner
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas P. Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hisashi Fujioka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rudy J. Castellani
- Department of Pathology, University of Maryland, Baltimore, Maryland, United States of America
| | - Maria L. Valencik
- Department of Biochemistry, University of Nevada Reno, Reno, Nevada, United States of America
| | - John A. McDonald
- Department of Biochemistry, University of Nevada Reno, Reno, Nevada, United States of America
| | - Brian D. Hoit
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Edward J. Lesnefsky
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland DVAMC, Cleveland, Ohio, United States of America
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HgL); (MAS)
| |
Collapse
|
65
|
Bonacchi M, Nistri S, Nanni C, Gelsomino S, Pini A, Cinci L, Maiani M, Zecchi-Orlandini S, Lorusso R, Fanti S, Silvertown J, Bani D. Functional and histopathological improvement of the post-infarcted rat heart upon myoblast cell grafting and relaxin therapy. J Cell Mol Med 2009; 13:3437-3448. [PMID: 18798866 PMCID: PMC4516499 DOI: 10.1111/j.1582-4934.2008.00503.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/07/2008] [Indexed: 01/14/2023] Open
Abstract
Although the myocardium contains progenitor cells potentially capable of regenerating tissue upon lethal ischaemic injury, their actual role in post-infarction heart healing is negligible. Therefore, transplantation of extra-cardiac stem cells is a promising therapeutic approach for post-infarction heart dysfunction. Paracrine cardiotropic factors released by the grafted cells, such as the cardiotropic hormone relaxin (RLX), may beneficially influence remodelling of recipient hearts. The current study was designed to address whether grafting of mouse C2C12 myoblasts, genetically engineered to express green fluorescent protein (C2C12/GFP) or GFP and RLX (C2C12/RLX), are capable of improving long-term heart remodelling in a rat model of surgically induced chronic myocardial infarction. One month after myocardial infarction, rats were treated with either culture medium (controls), or C2C12/GFP cells, or C2C12/RLX cells plus exogenous RLX, or exogenous RLX alone. The therapeutic effects were monitored for 2 further months. Cell transplantation and exogenous RLX improved the main echocardiographic parameters of cardiac function, increased myocardial viability (assessed by positron emission tomography), decreased cardiac sclerosis and myocardial cell apoptosis and increased microvascular density in the post-infarction scar tissue. These effects were maximal upon treatment with C2C12/RLX plus exogenous RLX. These functional and histopathological findings provide further experimental evidence that myoblast cell grafting can improve myocardial performance and survival during post-infarction heart remodelling and dysfunction. Further, this study provides a proof-of-principle to the novel concept that genetically engineered grafted cells can be effectively employed as cell-based vehicles for the local delivery of therapeutic cardiotropic substances, such as RLX, capable of improving adverse heart remodelling.
Collapse
Affiliation(s)
- Massimo Bonacchi
- Department of Medical and Surgical Critical Area, Cardiac Surgery Unit, University of FlorenceFlorence, Italy
| | - Silvia Nistri
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Cristina Nanni
- Nuclear Medicine Unit, S.Orsola-Malpighi HospitalBologna, Italy
| | | | - Alessandro Pini
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Lorenzo Cinci
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| | - Massimo Maiani
- Department of Medical and Surgical Critical Area, Cardiac Surgery Unit, University of FlorenceFlorence, Italy
| | | | | | - Stefano Fanti
- Nuclear Medicine Unit, S.Orsola-Malpighi HospitalBologna, Italy
| | - Josh Silvertown
- Ontario Cancer Institute, University Health NetworkToronto, Canada
| | - Daniele Bani
- Department of Anatomy, Histology & Forensic Medicine, University of FlorenceFlorence, Italy
| |
Collapse
|
66
|
Maron MB, Luther DJ, Pilati CF, Ohanyan V, Li T, Koshy S, Horne WI, Meszaros JG, Walro JM, Folkesson HG. Beta-adrenoceptor stimulation of alveolar fluid clearance is increased in rats with heart failure. Am J Physiol Lung Cell Mol Physiol 2009; 297:L487-95. [PMID: 19592457 DOI: 10.1152/ajplung.90629.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The alveolar epithelium plays a critical role in resolving pulmonary edema. We thus hypothesized that its function might be upregulated in rats with heart failure, a condition that severely challenges the lung's ability to maintain fluid balance. Heart failure was induced by left coronary artery ligation. Echocardiographic and cardiovascular hemodynamics confirmed its development at 16 wk postligation. At that time, alveolar fluid clearance was measured by an increase in protein concentration over 1 h of a 5% albumin solution instilled into the lungs. Baseline alveolar fluid clearance was similar in heart failure and age-matched control rats. Terbutaline was added to the instillate to determine whether heart failure rats responded to beta-adrenoceptor stimulation. Alveolar fluid clearance in heart failure rats was increased by 194% after terbutaline stimulation compared with a 153% increase by terbutaline in control rats. To determine the mechanisms responsible for this accelerated alveolar fluid clearance, we measured ion transporter expression (ENaC, Na-K- ATPase, CFTR). No significant upregulation was observed for these ion transporters in the heart failure rats. Lung morphology showed significant alveolar epithelial type II cell hyperplasia in heart failure rats. Thus, alveolar epithelial type II cell hyperplasia is the likely explanation for the increased terbutaline-stimulated alveolar fluid clearance in heart failure rats. These data provide evidence for previously unrecognized mechanisms that can protect against or hasten resolution of alveolar edema in heart failure.
Collapse
Affiliation(s)
- Michael B Maron
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Martin JH, Connelly KA, Boyle A, Kompa A, Zhang Y, Kelly D, Gilbert RE, Krum H. Effect of atorvastatin on cardiac remodelling and mortality in rats following hyperglycemia and myocardial infarction. Int J Cardiol 2009; 143:353-60. [PMID: 19395095 DOI: 10.1016/j.ijcard.2009.03.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 12/21/2008] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
UNLABELLED Effect of HMGCoA Reductase Inhibitors on Cardiac Remodelling and Mortality in Rats. Following Hyperglycemia and Myocardial Infarction. AIMS The presence of diabetes mellitus (DM) in patients with myocardial infarction (MI) increases mortality, due in part to the presence of known cardiovascular risk factors. However little is known about the impact of DM on cardiac remodelling and on clinical outcomes. We aimed to investigate whether hyperglycaemia may adversely and additionally affect LV remodelling post-MI, and whether the addition of a statin, known to reduce mortality both post MI and in humans with DM, has an effect on these outcomes. METHODS Eight week old Sprague-Dawley rats were allocated to 5 groups--control (non-DM)/sham, control-MI, DM-sham, DM-MI and DM-MI with statin gavage (DM-MI/ATV). Echocardiogram and invasive pressure volume analysis were performed prior to sacrifice for estimation of cardiac function. Tissue was analysed for total cardiac collagen, collagen I and III. RESULTS Hyperglycaemia in the remodelling period significantly increased mortality (70% survival in the C-MI group vs 27% in the DM-MI group), worsened cardiac function and increased fibrosis. All of these variables were attenuated by the addition of a statin. CONCLUSION Hyperglycaemia increased mortality in MI and exacerbated LV remodeling, and this was attenuated with statin use. This study confirms the importance of early and intensive treatment of hyperglycaemia in patients with MI and suggests that in humans with both DM and MI the addition of a statin may be beneficial.
Collapse
Affiliation(s)
- Jennifer H Martin
- Diamantina Institute, The University of Queensland, Royal Brisbane and Women's Hospital, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Shainberg A, Yitzhaki S, Golan O, Jacobson KA, Hochhauser E. Involvement of UTP in protection of cardiomyocytes from hypoxic stress. Can J Physiol Pharmacol 2009; 87:287-99. [PMID: 19370082 PMCID: PMC3415250 DOI: 10.1139/y09-010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Massive amounts of nucleotides are released during ischemia in the cardiovascular system. Although the effect of the purine nucleotide ATP has been intensively studied in myocardial infarction, the cardioprotective role of the pyrimidine nucleotide UTP is still unclear, especially in the cardiovascular system. The purpose of our study was to elucidate the protective effects of UTP receptor activation and describe the downstream cascade for the cardioprotective effect. Cultured cardiomyocytes and left anterior descending (LAD)-ligated rat hearts were pretreated with UTP and exposed to hypoxia-ischemia. In vitro experiments revealed that UTP reduced cardiomyocyte death induced by hypoxia, an effect that was diminished by suramin. UTP caused several effects that could trigger a cardioprotective response: a transient increase of [Ca2+]i, an effect that was abolished by PPADS or RB2; phosphorylation of the kinases ERK and Akt, which was abolished by U0126 and LY294002, respectively; and reduced mitochondrial calcium elevation after hypoxia. In vivo experiments revealed that UTP maintained ATP levels, improved mitochondrial activity, and reduced infarct size. In conclusion, UTP administrated before ischemia reduced infarct size and improved myocardial function. Reduction of mitochondrial calcium overload can partially explain the protective effect of UTP after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | | | | | | | | |
Collapse
|
69
|
Rennison JH, McElfresh TA, Chen X, Anand VR, Hoit BD, Hoppel CL, Chandler MP. Prolonged exposure to high dietary lipids is not associated with lipotoxicity in heart failure. J Mol Cell Cardiol 2009; 46:883-90. [PMID: 19265702 DOI: 10.1016/j.yjmcc.2009.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that elevated myocardial lipids in a model of mild-to-moderate heart failure increased mitochondrial function, but did not alter left ventricular function. Whether more prolonged exposure to high dietary lipids would promote a lipotoxic phenotype in mitochondrial and myocardial contractile function has not been determined. We tested the hypothesis that prolonged exposure to high dietary lipids, following coronary artery ligation, would preserve myocardial and mitochondrial function in heart failure. Rats underwent ligation or sham surgery and were fed normal (10% kcal fat) (SHAM, HF) or high fat diet (60% kcal saturated fat) (SHAM+FAT, HF+FAT) for sixteen weeks. Although high dietary fat was accompanied by myocardial tissue triglyceride accumulation (SHAM 1.47+/-0.14; SHAM+FAT 2.32+/-0.14; HF 1.34+/-0.14; HF+FAT 2.21+/-0.20 micromol/gww), fractional shortening was increased 16% in SHAM+FAT and 28% in HF+FAT compared to SHAM and HF, respectively. Despite increased medium-chain acyl-CoA dehydrogenase (MCAD) activity in interfibrillar mitochondria (IFM) of both SHAM+FAT and HF+FAT, dietary lipids also were associated with decreased state 3 respiration using palmitoylcarnitine (SHAM 369+/-14; SHAM+FAT 307+/-23; HF 354+/-13; HF+FAT 366+/-18 nAO min(-1) mg(-1)) in SHAM+FAT compared to SHAM and HF+FAT. State 3 respiration in IFM also was decreased in SHAM+FAT relative to SHAM using succinate and DHQ. In conclusion, high dietary lipids promoted myocardial lipid accumulation, but were not accompanied by alterations in myocardial contractile function typically associated with lipotoxicity. In normal animals, high dietary fat decreased mitochondrial respiration, but also increased MCAD activity. These studies support the concept that high fat feeding can modify multiple cellular pathways that differentially affect mitochondrial function under normal and pathological conditions.
Collapse
Affiliation(s)
- Julie H Rennison
- Department of Physiology and Biophysics, School of Medicine E558, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Cicila GT, Morgan EE, Lee SJ, Farms P, Yerga-Woolwine S, Toland EJ, Ramdath RS, Gopalakrishnan K, Bohman K, Nestor-Kalinoski AL, Khuder SA, Joe B. Epistatic genetic determinants of blood pressure and mortality in a salt-sensitive hypertension model. Hypertension 2009; 53:725-32. [PMID: 19255363 DOI: 10.1161/hypertensionaha.108.126649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although genetic determinants protecting against the development of elevated blood pressure (BP) are well investigated, less is known regarding their impact on longevity. We concomitantly assessed genomic regions of rat chromosomes 3 and 7 (RNO3 and RNO7) carrying genetic determinants of BP without known epistasis, for their independent and combinatorial effects on BP and the presence of genetic determinants of survival using Dahl salt-sensitive (S) strains carrying congenic segments from Dahl salt-resistant (R) rats. Although congenic and bicongenic S.R strains carried independent BP quantitative trait loci within the RNO3 and RNO7 congenic regions, only the RNO3 allele(s) independently affected survival. The bicongenic S.R strain showed epistasis between R-rat RNO3 and RNO7 alleles for BP under salt-loading conditions, with less-than-additive effects observed on a 2% NaCl diet and greater-than-additive effects observed after prolonged feeding on a 4% NaCl diet. These RNO3 and RNO7 congenic region alleles had more-than-additive effects on survival. Increased survival of bicongenic compared with RNO3 congenic rats was attributable, in part, to maintaining lower BP despite chronic exposure to an increased dietary salt (4% NaCl) intake, with both strains showing delays in reaching highest BP. R-rat RNO3 alleles were also associated with superior systolic function, with the S.R bicongenic strain showing epistasis between R-rat RNO3 and RNO7 alleles leading to compensatory hypertrophy. Whether these alleles affect survival by additional actions within other BP-regulating tissues/organs remains unexplored. This is the first report of simultaneous detection of independent and epistatic loci dictating, in part, longevity in a hypertensive rat strain.
Collapse
Affiliation(s)
- George T Cicila
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave, Mail Stop 1008, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Santos AA, Helber I, Flumignan RL, Antonio EL, Carvalho AC, Paola ÂA, Tucci PJ, Moises VA. Doppler Echocardiographic Predictors of Mortality in Female Rats After Myocardial Infarction. J Card Fail 2009; 15:163-8. [DOI: 10.1016/j.cardfail.2008.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 09/17/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|
72
|
Campos EC, Romano MMD, Prado CM, Rossi MA. Isoproterenol induces primary loss of dystrophin in rat hearts: correlation with myocardial injury. Int J Exp Pathol 2008; 89:367-81. [PMID: 18808529 DOI: 10.1111/j.1365-2613.2008.00604.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Collapse
Affiliation(s)
- Erica C Campos
- Department of Pathology (Cellular and Molecular Cardiology), Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
73
|
Sharma N, Okere IC, Barrows BR, Lei B, Duda MK, Yuan CL, Previs SF, Sharov VG, Azimzadeh AM, Ernsberger P, Hoit BD, Sabbah H, Stanley WC. High-sugar diets increase cardiac dysfunction and mortality in hypertension compared to low-carbohydrate or high-starch diets. J Hypertens 2008; 26:1402-10. [PMID: 18551017 DOI: 10.1097/hjh.0b013e3283007dda] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Sugar consumption affects insulin release and, in hypertension, may stimulate cardiac signaling mechanisms that accelerate left ventricular hypertrophy and the development of heart failure. We investigated the effects of high-fructose or sucrose diets on ventricular function and mortality in hypertensive Dahl salt-sensitive rats. METHODS Rats were fed chows that were either high starch (70% starch, 10% fat by energy), high fat (20% carbohydrates, 60% fat), high fructose (61% fructose, 9% starch, 10% fat), or high sucrose (61% sucrose, 9% starch, 10% fat). Hypertension was induced by adding 6% salt to the chow (n = 8-11/group). RESULTS After 8 weeks of treatment, systolic blood pressure and left ventricular mass were similarly increased in all rats that were fed high-salt diets. Hypertension caused a switch in mRNA myosin heavy chain isoform from alpha to beta, and this effect was greater in the high-salt sucrose and fructose groups than in starch and fat groups. The cardiac mRNA for atrial natriuretic factor was also increased in all high-salt groups compared to respective controls, with the increase being significantly greater in the hypertensive sucrose fed group. Mortality was greater in the sucrose group (44%) compared to all the other hypertensive groups (12-18%), as was cardiomyocyte apoptosis. Left ventricular ejection fraction was lower in the high-salt sucrose group, which was due to an increase in end-systolic volume, and not increased end-diastolic volume. CONCLUSION Diets high in sugar accelerated cardiac systolic dysfunction and mortality in hypertension compared to either a low-carbohydrate/high-fat or high-starch diet.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Duda MK, O'Shea KM, Lei B, Barrows BR, Azimzadeh AM, McElfresh TE, Hoit BD, Kop WJ, Stanley WC. Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction. J Card Fail 2008; 14:327-35. [PMID: 18474346 DOI: 10.1016/j.cardfail.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 12/18/2022]
Abstract
BACKGROUND It is not known how carbohydrate and fat intake affect the development of left ventricular (LV) hypertrophy and contractile dysfunction in response to pressure overload. We hypothesized that a low-carbohydrate/high-fat diet prevents LV hypertrophy and dysfunction compared with high-carbohydrate diets. METHODS AND RESULTS Rats were fed high-carbohydrate diets composed of either starch or sucrose, or a low-carbohydrate/high-fat diet, and underwent abdominal aortic banding (AAB) for 2 months. AAB increased LV mass with all diets. LV end-diastolic and systolic volumes and the ratio of the mRNA for myosin heavy chain beta/alpha were increased with both high-carbohydrate diets but not with the low-carbohydrate/high-fat diet. Circulating levels of insulin and leptin, both stimulants for cardiac growth, were lower, and free fatty acids were higher with the low-carbohydrate/high-fat diet compared with high-carbohydrate diets. Among animals that underwent AAB, LV volumes were positively correlated with insulin and LV mass correlated with leptin. CONCLUSION A low-carbohydrate/high-fat diet attenuated pressure overload-induced LV remodeling compared with high-carbohydrate diets. This effect corresponded to lower insulin and leptin concentrations, suggesting they may contribute to the development of LV hypertrophy and dysfunction under conditions of pressure overload.
Collapse
Affiliation(s)
- Monika K Duda
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Stuckey DJ, Carr CA, Tyler DJ, Clarke K. Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart. NMR IN BIOMEDICINE 2008; 21:765-72. [PMID: 18457349 DOI: 10.1002/nbm.1268] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two-dimensional echocardiography is the most commonly used non-invasive method for measuring in vivo cardiac function in experimental animals. In humans, measurements of cardiac function made using cine-MRI compare favourably with those made using echocardiography. However, no rigorous comparison has been made in small animals. Here, standard short-axis two-dimensional (2D) echocardiography (2D-echo) and cine-MRI measurements were made in the same rats, both control and after chronic myocardial infarction. Correlations between the two techniques were found for end diastolic area, stroke area and ejection fraction, but cine-MRI measurements of ejection fraction were 12+/-6% higher than those made using 2D-echo, because of the 1.8-fold higher temporal resolution of the MRI technique (4.6 ms vs 8.3 ms). Repeated measurements on the same group of rats over several days showed that the cine-MRI technique was more reproducible than 2D-echo, in that 2D-echo would require five times more animals to find a statistically significant difference. In summary, caution should be exercised when comparing functional results acquired using short-axis 2D-echo vs cine-MRI. The accuracy of cine-MRI allows identification of alterations in heart function that may be missed when using 2D-echo.
Collapse
Affiliation(s)
- Daniel J Stuckey
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
76
|
He H, Liu Q, Shi M, Zeng X, Yang J, Wu L, Li L. Retracted: Cardioprotective effects of hydroxysafflor yellow A on diabetic cardiac insufficiency attributed to up-regulation of the expression of intracellular calcium handling proteins of sarcoplasmic reticulum in rats. Phytother Res 2008; 22:1107-14. [DOI: 10.1002/ptr.2468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
77
|
Maczewski M, Maczewska J, Duda M. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors. Br J Pharmacol 2008; 154:1640-8. [PMID: 18536757 DOI: 10.1038/bjp.2008.218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. EXPERIMENTAL APPROACH MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. KEY RESULTS High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. CONCLUSIONS AND IMPLICATIONS Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors.
Collapse
Affiliation(s)
- M Maczewski
- Department of Clinical Physiology, Medical Center of Postgraduate Education, Warsaw, Poland.
| | | | | |
Collapse
|
78
|
He H, Shi M, Yang X, Zeng X, Wu L, Li L. Comparison of cardioprotective effects using salvianolic acid B and benazepril for the treatment of chronic myocardial infarction in rats. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:311-22. [PMID: 18500511 DOI: 10.1007/s00210-008-0287-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare the cardioprotective effects of salvianolic acid B (Sal B) and the angiotension-converting enzyme inhibitor, benazepril, in rats with chronic myocardial infarction (MI) that resulted from a coronary artery ligation for 4 weeks. The rats were divided into four groups: those undergoing a sham operation; a MI group; a MI+SalB group (100 mg/kg by a gavage, once a day for 4 weeks); a MI+benazepril group (10 mg/kg by a gavage, once a day for 4 weeks). The following parameters were measured: echocardiographic, hemodynamic and hemorheological changes, angiogenesis, infarct size and cardiac remodeling and the messenger ribonucleic acid (mRNA) of vascular endothelium growth factor (VEGF). Rats treated with SalB or benazepril manifested the following: (1) marked improvements in echocardiographic, hemodynamic and hemorheological parameters; (2) significant reduction of infarct size; (3) significantly attenuated heart, kidney and lung hypertrophies, left ventricular (LV) dilatation and fibrosis. The unique effects of SalB were angiogenesis and augmented VEGF expression in the border and remote noninfarcted left ventricular area. These results suggest that both SalB and benazepril exerted beneficial cardioprotective effects in our experimental system, but that the modality of Sal B was different from that of benazepril. The additional beneficial effects of Sal B relative to benazpril, augmenting VEGF expression and promoting angiogenesis, may result in improved myocardial microcirculation.
Collapse
Affiliation(s)
- Haibo He
- Institute of Chinese Herbal Medicine, College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
79
|
He H, Shi M, Yang J, Zeng X, Qiao H, Wu L, Li L. Retracted: The correlation between angiogenesis and abnormal expression of SERCA2a, phospholamban and the endothelin pathway in heart failure, and improvement by puerarin. Phytother Res 2008; 22:948-56. [DOI: 10.1002/ptr.2437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
80
|
Ghanem A, Troatz C, Elhafi N, Dewald O, Heeschen C, Nickenig G, Stypmann J, Tiemann K. Quantitation of myocardial borderzone using reconstructive 3-D echocardiography after chronic infarction in rats: incremental value of low-dose dobutamine. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:559-566. [PMID: 17996357 DOI: 10.1016/j.ultrasmedbio.2007.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/05/2007] [Accepted: 09/19/2007] [Indexed: 05/25/2023]
Abstract
Myocardial remodeling determines the degree of left ventricular dysfunction and mortality after transmural chronic myocardial infarction (CMI). Noninvasive characterization and quantitation of myocardial borderzone and collagenous scar are therefore parameters of clinical interest. The aims of this study were (i) to measure accuracy of reconstructive 3-D echocardiography (3DE) in scar and myocardial borderzone size assessment and (ii) to investigate the incremental value of low-dose dobutamine stress. 3DE was performed in 14 immunodeficient rats (rnu-rnu, 180-200 g) with anterior CMI 25 d after coronary ligation. Briefly, consecutive parallel short-axis cineloops were obtained electrocardiogram-gated starting from base to the apex. Morphology (mass, surface) and function (contractility, contractile reserve) of different compartments were assessed and correlated with 3-D histomorphometry. Histology was done using picrosirius red for collagen staining. 3DE left ventricular mass correlated closely with histomorphometry (y = 0.89x + 155, p < 0.0001, r = 0.80). Hypo- and akinetic myocardial surface correlated well with borderzone myocardium (y = 0.34x + 17, p = 0.009, r = 0.62) and collagenous scar (y = 1.9x + 4.4, p < 0.0001, r = 0.79), respectively. Extent of abnormal wall motion was closely related to borderzone and scar tissue area (y = 0.82x + 7, p < 0.0001, r = 0.77). 3DE quantitation of borderzone myocardium, but not collagenous scar, was more closely correlated to histomorphometry during inotropic stimulation. Global contractile reserve is positively associated with the size of myocardial borderzone. Regional contractile reserve of borderzone myocardium is not negatively associated with its collagen content. 3DE allows precise quantitation of myocardial borderzone and identification of transmural scar tissue noninvasively. Assessment of contractile reserve improves characterization and estimation of myocardial borderzone after CMI.
Collapse
Affiliation(s)
- Alexander Ghanem
- Department of Medicine/Cardiology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure. Cardiovasc Res 2008; 79:331-40. [DOI: 10.1093/cvr/cvn066] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
82
|
Kennedy DJ, Elkareh J, Shidyak A, Shapiro AP, Smaili S, Mutgi K, Gupta S, Tian J, Morgan E, Khouri S, Cooper CJ, Periyasamy SM, Xie Z, Malhotra D, Fedorova OV, Bagrov AY, Shapiro JI. Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. Am J Physiol Renal Physiol 2007; 294:F450-4. [PMID: 18032546 DOI: 10.1152/ajprenal.00472.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because of the plethora of genetic manipulations available in the mouse, we performed a partial nephrectomy in the mouse and examined whether the phenotypical features of uremic cardiomyopathy described in humans and rats were also present in the murine model. A 5/6 nephrectomy was performed using a combination of electrocautory to decrease renal mass on the left kidney and right surgical nephrectomy. This procedure produced substantial and persistent hypertension as well as increases in circulating concentrations of marinobufagenin. Invasive physiological measurements of cardiac function demonstrated that the 5/6 nephrectomy resulted in impairment of both active and passive left ventricular relaxation at 4 wk whereas tissue Doppler imaging detected changes in diastolic function after 6 wk. Morphologically, hearts demonstrated enlargement and progressive fibrosis, and biochemical measurements demonstrated downregulation of the sarcoplasmic reticulum calcium ATPase as well as increases in collagen-1, fibronectin, and vimentin expression. Our results suggest that partial nephrectomy in the mouse establishes a model of uremic cardiomyopathy which shares phenotypical features with the rat model as well as patients with chronic renal failure.
Collapse
Affiliation(s)
- David J Kennedy
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614-5809, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kung TA, Egbejimi O, Cui J, Ha NP, Durgan DJ, Essop MF, Bray MS, Shaw CA, Hardin PE, Stanley WC, Young ME. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol 2007; 43:744-53. [PMID: 17959196 DOI: 10.1016/j.yjmcc.2007.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g. cardiomyocytes, vascular smooth muscle cells) and possess the potential to regulate numerous aspects of cardiovascular physiology and pathophysiology. The present study tested the hypothesis that ischemia/reperfusion (I/R; 30 min occlusion of the rat left main coronary artery in vivo) alters the circadian clock within the ischemic, versus non-ischemic, region of the heart. Left ventricular anterior (ischemic) and posterior (non-ischemic) regions were isolated from I/R, sham-operated, and naïve rats over a 24-h period, after which mRNAs encoding for both circadian clock components and known clock-controlled genes were quantified. Circadian clock gene oscillations (i.e. peak-to-trough fold differences) were rapidly attenuated in the I/R, versus the non-ischemic, region. Consistent with decreased circadian clock output, we observe a rapid induction of E4BP4 in the ischemic region of the heart at both the mRNA and protein levels. In contrast with I/R, chronic (1 week) hypobaric chamber-induced hypoxia did not attenuate oscillations in circadian clock genes in either the left or right ventricle of the rat heart. In conclusion, these data show that in a rodent model of myocardial I/R, circadian clocks within the ischemic region become rapidly impaired, through a mechanism that appears to be independent of hypoxia.
Collapse
Affiliation(s)
- Theodore A Kung
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Duda MK, O'Shea KM, Lei B, Barrows BR, Azimzadeh AM, McElfresh TE, Hoit BD, Kop WJ, Stanley WC. Dietary supplementation with omega-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload. Cardiovasc Res 2007; 76:303-10. [PMID: 17643403 PMCID: PMC2747038 DOI: 10.1016/j.cardiores.2007.07.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Epidemiological studies suggest that consumption of omega-3 polyunsaturated fatty acids (omega-3 PUFA) decreases the risk of heart failure. We assessed the effects of dietary supplementation with omega-3 PUFA from fish oil on the response of the left ventricle (LV) to arterial pressure overload. METHODS Male Wistar rats were fed a standard chow or a omega-3 PUFA-supplemented diet. After 1 week rats underwent abdominal aortic banding or sham surgery (n=9-12/group). LV function was assessed by echocardiography after 8 weeks. In addition, we studied the effect of omega-3 PUFA on the cardioprotective adipocyte-derived hormone adiponectin, which may alter the pro-growth serine-threonine kinase Akt. RESULTS Banding increased LV mass to a greater extent with the standard chow (31%) than with omega-3 PUFA (18%). LV end diastolic and systolic volumes were increased by 19% and 105% with standard chow, respectively, but were unchanged with omega-3 PUFA. The expression of adiponectin was up-regulated in adipose tissue, and the plasma adiponectin concentration was significantly elevated. Treatment with omega-3 PUFA increased total Akt protein expression in the heart, but decreased the fraction of Akt in the active phosphorylated form, and thus did not alter the amount of active phospho-Akt. CONCLUSION Dietary supplementation with omega-3 PUFA attenuated pressure overload-induced LV dysfunction, which was associated with elevated plasma adiponectin.
Collapse
Affiliation(s)
- Monika K. Duda
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology and Biophysics, Case Western Reserve University; Cleveland, OH 44106
| | - Karen M. O'Shea
- Department of Nutrition, Case Western Reserve University; Cleveland, OH 44106
| | - Biao Lei
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201
| | - Brian R. Barrows
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201
| | | | - Tracy E. McElfresh
- Department of Physiology and Biophysics, Case Western Reserve University; Cleveland, OH 44106
| | - Brian D. Hoit
- Department of Medicine, Case Western Reserve University; Cleveland, OH 44106
| | - Willem J. Kop
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201
| | - William C. Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology and Biophysics, Case Western Reserve University; Cleveland, OH 44106
- Department of Nutrition, Case Western Reserve University; Cleveland, OH 44106
| |
Collapse
|
85
|
Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME. Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol Heart Circ Physiol 2007; 293:H1609-16. [PMID: 17545473 DOI: 10.1152/ajpheart.01338.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical studies have shown a greater incidence of myocardial infarction in diabetic patients, and following an infarction, diabetes is associated with an increased risk for the development of left ventricular (LV) dysfunction and heart failure. The goal of this study was to determine if the progression of heart failure following myocardial infarction in type 2 diabetic (T2D) rats is accelerated compared with nondiabetic rats. Male nondiabetic Wistar-Kyoto (WKY) and T2D Goto-Kakizaki (GK) rats underwent coronary artery ligation or sham surgery to induce heart failure. Postligation (8 and 20 wk), two-dimensional echocardiography and LV pressure measurements were made. Heart failure progression, as assessed by enhanced LV remodeling and contractile dysfunction, was accelerated 8 wk postligation in the T2D animals. LV remodeling was evident from increased end-diastolic and end-systolic diameters and areas in the GK compared with the WKY infarcted group. Furthermore, enhanced LV contractile dysfunction was evident from a greater deterioration in fractional shortening and enhanced myocardial performance index (an index of global LV dysfunction) in the GK infarcted group. This accelerated progression was accompanied by greater increases in atrial natriuretic factor and skeletal alpha-actin (gene markers of heart failure and hypertrophy) mRNA levels in GK infarcted hearts. Despite similar decreases in metabolic gene expression (i.e., peroxisome proliferator-activated receptor-alpha-regulated genes associated with fatty acid oxidation) between infarcted WKY and GK rat hearts, myocardial triglyceride levels were elevated in the GK hearts only. These results, demonstrating enhanced remodeling and LV dysfunction 8 wk postligation provide evidence of an accelerated progression of heart failure in T2D rats.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Blood Glucose/metabolism
- Cardiac Output, Low/metabolism
- Cardiac Output, Low/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Disease Progression
- Fatty Acids, Nonesterified/blood
- Heart Rate/physiology
- Male
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Rats, Inbred WKY
- Ventricular Dysfunction, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Margaret P Chandler
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Rennison JH, McElfresh TA, Okere IC, Vazquez EJ, Patel HV, Foster AB, Patel KK, Chen Q, Hoit BD, Tserng KY, Hassan MO, Hoppel CL, Chandler MP. High-fat diet postinfarction enhances mitochondrial function and does not exacerbate left ventricular dysfunction. Am J Physiol Heart Circ Physiol 2007; 292:H1498-506. [PMID: 17114240 DOI: 10.1152/ajpheart.01021.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (±dP/d t)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.
Collapse
Affiliation(s)
- Julie H Rennison
- Dept of Physiology and Biophysics, School of Medicine E558, Case Western Reserve Univ, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol 2007; 42:304-14. [PMID: 17070540 DOI: 10.1016/j.yjmcc.2006.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 09/12/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Clinical studies suggest increased arrhythmia risk associated with cell therapy for myocardial infarction (MI); however, the underlying mechanisms are poorly understood. We hypothesize that the degree of electrical viability in the infarct and border zone associated with skeletal myoblast (SKMB) or mesenchymal stem cell (MSC) therapy will determine arrhythmia vulnerability in the whole heart. Within 24 h of LAD ligation in rats, 2 million intramyocardially injected SKMB (n=6), intravenously infused MSC (n=7), or saline (n=7) was administered. One month after MI, cardiac function was determined and novel optical mapping techniques were used to assess electrical viability and arrhythmia inducibility. Shortening fraction was greater in rats receiving SKMB (17.8%+/-5.3%, p=0.05) or MSC (17.6%+/-3.0%, p<0.01) compared to MI alone (10.1%+/-2.2%). Arrhythmia inducibility score was significantly greater in SKMB (2.8+/-0.2) compared to MI (1.4+/-0.5, p=0.05). Inducibility score for MSC (0.6+/-0.4) was significantly lower than SKMB (p=0.01) and tended to be lower than MI. Optical mapping revealed that MSC therapy preserved electrical viability and impulse propagation in the border zone, but SKMB did not. In addition, injected SKMBs were localized to discrete cell clusters where connexin expression was absent. In contrast, infused MSCs engrafted in a more homogeneous pattern and expressed connexin proteins. Even though both MSC and SKMB therapy improved cardiac function following MI in rat, SKMB therapy significantly increased arrhythmia inducibility while MSC therapy tended to lower inducibility. In addition, only MSC therapy was associated with enhanced electrical viability, diffuse engraftment, and connexin expression, which may explain the differences in arrhythmia inducibility.
Collapse
Affiliation(s)
- William R Mills
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Okere IC, Chandler MP, McElfresh TA, Rennison JH, Kung TA, Hoit BD, Ernsberger P, Young ME, Stanley WC. CARNITINE PALMITOYL TRANSFERASE-I INHIBITION IS NOT ASSOCIATED WITH CARDIAC HYPERTROPHY IN RATS FED A HIGH-FAT DIET. Clin Exp Pharmacol Physiol 2007; 34:113-9. [PMID: 17201745 DOI: 10.1111/j.1440-1681.2007.04545.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. Cardiac lipotoxicity is characterized by hypertrophy and contractile dysfunction and can be triggered by impaired mitochondrial fatty acid oxidation and lipid accumulation. The present study investigated the effect of dietary fatty acid intake alone and in combination with inhibition of mitochondrial fatty acid uptake with the carnitine palmitoyl transferase (CPT)-I inhibitor oxfenicine. Long-chain fatty acids activate peroxisome proliferator-activated receptors (PPAR), thus mRNA levels of PPAR target genes were measured. 2. Rats were untreated or given the CPT-I inhibitor oxfenicine (150 mg/kg per day) and were fed for 8 weeks with either: (i) standard low-fat chow (10% of energy from fat); (ii) a long-chain saturated fatty acid diet; (iii) a long-chain unsaturated fatty acid diet; or (iv) a medium-chain fatty acid diet (which bypasses CPT-I). High-fat diets contained 60% of energy from fat. 3. Cardiac triglyceride content was increased in the absence of oxfenicine in the saturated fat group compared with other diets. Oxfenicine treatment further increased cardiac triglyceride stores in the saturated fat group and caused a significant increase in the unsaturated fat group. Despite elevations in triglyceride stores, left ventricular mass, end diastolic volume and systolic function were unaffected. 4. The mRNA levels of PPAR-regulated genes were increased by the high saturated and unsaturated fat diets compared with standard chow or the medium chain fatty acid chow. Oxfenicine did not further upregulate PPARalpha target genes within each dietary treatment group. 5. Taken together, the data suggest that consuming a high-fat diet or inhibiting CPT-I do not result in cardiac hypertrophy or cardiac dysfunction in normal rats.
Collapse
Affiliation(s)
- Isidore C Okere
- Department of Physiology, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Morgan EE, Chandler MP, Young ME, McElfresh TA, Kung TA, Rennison JH, Tserng KY, Hoit BD, Stanley WC. Dissociation between gene and protein expression of metabolic enzymes in a rodent model of heart failure. Eur J Heart Fail 2006; 8:687-93. [PMID: 16513421 DOI: 10.1016/j.ejheart.2006.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/17/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022] Open
Abstract
Studies in advanced heart failure show down-regulation of fatty acid oxidation genes, possibly due to decreased expression of the nuclear transcription factors peroxisome proliferator activated receptor alpha (PPARalpha) and retinoid X receptor alpha (RXRalpha). We assessed mRNA and protein expression of PPARalpha and RXRalpha, and for several PPAR/RXR regulated metabolic proteins at 8 and 20 weeks following myocardial infarction induced by coronary artery ligation. Infarction resulted in heart failure, as indicated by reduced LV fractional shortening and increased end diastolic area compared to sham. There was a progressive increase in LV end systolic area, myocardial ceramide content and atrial natriuretic peptide mRNA, and a deterioration in LV fractional area of shortening from 8 to 20 weeks. Protein and mRNA expression of PPARalpha and RXRalpha were not different among groups. The mRNA for PPAR/RXR regulated genes (e.g. medium chain acyl-CoA dehydrogenase (MCAD)) was down-regulated at 8 and 20 weeks post-infarction; however, neither the protein expression nor activity of MCAD was reduced compared to sham. In conclusion, reduced mRNA expression of PPAR/RXR regulated genes is not dependent on reduced PPAR/RXR protein expression.
Collapse
Affiliation(s)
- Eric E Morgan
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Okere IC, Young ME, McElfresh TA, Chess DJ, Sharov VG, Sabbah HN, Hoit BD, Ernsberger P, Chandler MP, Stanley WC. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertension 2006; 48:1116-23. [PMID: 17060511 DOI: 10.1161/01.hyp.0000248430.26229.0f] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hypertrophy, remodeling, contractile dysfunction, and induction of molecular markers of hypertrophy (ie, expression of mRNA for atrial natriuretic factor and myosin heavy chain beta). Dahl salt-sensitive rats were fed either a low-fat (10% of total energy from fat) or a high-fat (60% of total energy from fat) diet on either low-salt or high-salt (6% NaCl) chow for 12 weeks. Hearts were analyzed for mRNA markers of ventricular remodeling and activities of the mitochondrial enzymes citrate synthase and medium chain acyl-coenzyme A dehydrogenase. Similar levels of hypertension were achieved with high-salt feeding in both diet groups (systolic pressure of approximately 190 mm Hg). In hypertensive rats fed low-fat chow, left ventricular mass, myocyte cross-sectional area, and end-diastolic volume were increased, and ejection fraction was decreased; however, these effects were not observed with the high-fat diet. Hypertensive animals on low-fat chow had increased atrial natriuretic factor mRNA, myosin heavy chain isoform switching (alpha to beta), and decreased activity of citrate synthase and medium chain acyl-coenzyme A dehydrogenase, which were all attenuated by high-fat feeding. In conclusion, increased dietary lipid intake can reduce cardiac growth, left ventricular remodeling, contractile dysfunction, and alterations in gene expression in response to hypertension.
Collapse
Affiliation(s)
- Isidore C Okere
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhang Y, Takagawa J, Sievers RE, Khan MF, Viswanathan MN, Springer ML, Foster E, Yeghiazarians Y. Validation of the wall motion score and myocardial performance indexes as novel techniques to assess cardiac function in mice after myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 292:H1187-92. [PMID: 17028161 DOI: 10.1152/ajpheart.00895.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the feasibility and accuracy of wall motion score index (WMSI) and myocardial performance index (MPI) for measuring regional and global left ventricular (LV) function with use of high-resolution echocardiography after myocardial infarction (MI) in mice. In 48 mice, myocardial infarction was induced by ligation in the middle of the left anterior descending coronary artery. Echocardiography was performed under anesthesia at baseline and 1 mo after MI. WMSI was analyzed by a 16-segment model on short-axis views, and wall motion was scored as 1 for normal, 2 for hypokinetic, 3 for akinetic, 4 for dyskinetic, and 5 for aneurysmal. WMSI was calculated as the sum of scores divided by the total number of segments. MPI was calculated on the basis of isovolumetric contraction time (IVCT), isovolumetric relaxation time (IVRT), and ejection time (ET): MPI = (IVCT + IVRT)/ET. We measured LV ejection fraction (LVEF), end-systolic and end-diastolic volumes (ESV and EDV), fractional shortening (FS), and infarct size (IS). LVEF at 4 wk after MI was reduced at 32.8 +/- 9.0%. Linear correlation analyses showed that WMSI (1.6 +/- 0.3) correlated with LVEF (r = -0.84, P < 0.0005), FS (r = -0.43, P = 0.003), and IS (34.3 +/- 15.3%, r = 0.86, P < 0.0005). MPI (0.67 +/- 0.09) correlated with LVEF (r = -0.67, P < 0.0005) and IS (r = 0.72, P < 0.0005). MPI also correlated with mitral inflow velocity (r = -0.68, P < 0.0005) and deceleration time (r = -0.42, P = 0.003). Stepwise regression analysis revealed that WMSI was independently associated with IS. IS, FS, mitral inflow velocity, and deceleration time were independent determinants of MPI. In conclusion, echocardiographic assessments of WMSI and MPI in mice are feasible and correlate strongly with two-dimensional measurement of LV function and IS. These novel parameters provide additional noninvasive assessment of regional and global LV function in mice after MI.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0124, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Morgan EE, Young ME, McElfresh TA, Kung TA, Hoit BD, Chandler MP, Stanley WC. Chronic treatment with trimetazidine reduces the upregulation of atrial natriuretic peptide in heart failure. Fundam Clin Pharmacol 2006; 20:503-5. [PMID: 16968422 DOI: 10.1111/j.1472-8206.2006.00424.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trimetazidine (TMZ) is effective for the treatment of ischemic cardiomyopathy; however, little is known about the effect of TMZ in established injury-induced heart failure. When rats with established infarct-induced heart failure were treated for 12 weeks with TMZ there was no effect on left ventricular function or dilation, or on mRNA expression of fatty acid oxidation enzymes. On the other hand, TMZ significantly reduced atrial natriuretic peptide mRNA levels compared with untreated rats.
Collapse
Affiliation(s)
- Eric E Morgan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Maczewski M, Maczewska J. Hypercholesterolemia exacerbates ventricular remodeling in the rat model of myocardial infarction. J Card Fail 2006; 12:399-405. [PMID: 16762804 DOI: 10.1016/j.cardfail.2006.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/03/2006] [Accepted: 03/08/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Detrimental left ventricular (LV) remodeling is exacerbated in hypercholesterolemic patients with myocardial infarction; however, this could result from either larger infarcts or more extensive remodeling itself in this population. Therefore, we sought to investigate whether high cholesterol feeding exacerbates LV remodeling and heart failure in rats with myocardial infarction independently from its influence on infarct size. METHODS AND RESULTS Myocardial infarction was induced by permanent ligation of left coronary artery in rats fed normal and high-cholesterol diet and the animals were followed for 8 weeks. Hypercholesterolemic rats were matched with normocholesterolemic animals for infarct size 24 hours after infarction and exhibited more pronounced LV dilation at 8 weeks after infarction (LV systolic/diastolic diameter 8.1 +/- 0.2/10.2 +/- 0.3 versus 6.7 +/- 0.2/8.9 +/- 0.2, respectively, measured by echocardiography, P < .05 each). Pressure-volume curves obtained in isolated Langendorff-perfused hearts revealed higher diastolic LV volumes (1677 +/- 102 versus 1385 +/- 46 muL/kg body weight, P < .05) and hemodynamic examination demonstrated higher LV end-diastolic pressure (21.8 +/- 0.7 versus 18.7 +/- 1.0 mm Hg, P < .05) in hypercholesterolemic rats compared with normocholesterolemic animals. CONCLUSION In a rat model of myocardial infarction, LV remodeling and heart failure are more pronounced in rats fed high-cholesterol diet in comparison to animals fed normal chow. This effect is independent from effect of hypercholesterolemia on infarct size.
Collapse
Affiliation(s)
- Michał Maczewski
- Department of Clinical Physiology, Medical Center of Postgraduate Education, Warsaw, Poland
| | | |
Collapse
|
94
|
Yitzhaki S, Shainberg A, Cheporko Y, Vidne BA, Sagie A, Jacobson KA, Hochhauser E. Uridine-5'-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochem Pharmacol 2006; 72:949-55. [PMID: 16939682 PMCID: PMC4429760 DOI: 10.1016/j.bcp.2006.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
We have previously found that uridine 5'-triphosphate (UTP) significantly reduced cardiomyocyte death induced by hypoxia via activating P2Y(2) receptors. To explore the effect of UTP following myocardial infarction (MI) in vivo we studied four groups: sham with or without LAD ligation, injected with UTP (0.44microg/kg i.v.) 30min before MI, and UTP injection (4.4microg/kg i.v.) 24h prior to MI. Left ventricular end diastolic area (LVEDA), end systolic area (LVESA) fractional shortening (FS), and changes in posterior wall (PW) thickness were performed by echocardiography before and 24h after MI. In addition, we measured different biochemical markers of damage and infarct size using Evans blue and TTC staining. The increase in LVEDA and LVESA of the treated animals was significantly smaller when compared to the MI rats (p<0.01). Concomitantly, FS was higher in groups pretreated with UTP 30min or 24h (56+/-14.3 and 36.7+/-8.2%, p<0.01, respectively). Ratio of infarct size to area at risk was smaller in the UTP pretreated hearts than MI rats (22.9+/-6.6, 23.1+/-9.1%, versus 45.4+/-7.6%, respectively, p<0.001). Troponin T and ATP measurements, demonstrated reduced myocardial damage. Using Rhod-2-AM loaded cardiomyocytes, we found that UTP reduced mitochondrial calcium levels following hypoxia. In conclusion, early or late UTP preconditioning is effective, demonstrating reduced infarct size and superior myocardial function. The resulting cardioprotection following UTP treatment post ischemia demonstrates a reduction in mitochondrial calcium overload, which can explain the beneficial effect of UTP.
Collapse
Affiliation(s)
- Smadar Yitzhaki
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Asher Shainberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- Corresponding author. Tel.: +972 3 5318265; fax: +972 3 7369231.
(A. Shainberg)
| | - Yelena Cheporko
- Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Tel Aviv University, Rabin Medical Center, Petach Tikva, Israel
| | - Bernardo A. Vidne
- Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Tel Aviv University, Rabin Medical Center, Petach Tikva, Israel
| | - Alex Sagie
- Cardiology Department, Rabin Medical Center, Petach Tikva, Israel
| | | | - Edith Hochhauser
- Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Tel Aviv University, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
95
|
Morgan EE, Rennison JH, Young ME, McElfresh TA, Kung TA, Tserng KY, Hoit BD, Stanley WC, Chandler MP. Effects of chronic activation of peroxisome proliferator-activated receptor-α or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 2006; 290:H1899-904. [PMID: 16339830 DOI: 10.1152/ajpheart.01014.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Intracardiac accumulation of lipid and related intermediates (e.g., ceramide) is associated with cardiac dysfunction and may contribute to the progression of heart failure (HF). Overexpression of nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) increases intramyocellular ceramide and left ventricular (LV) dysfunction. We tested the hypothesis that activation of fatty acid metabolism with fat feeding or a PPARα agonist increases myocardial triglyceride and/or ceramide and exacerbates LV dysfunction in HF. Rats with infarct-induced HF ( n = 38) or sham-operated rats ( n = 10) were either untreated (INF, n = 10), fed a high-fat diet (45% kcal fat, INF + Fat, n = 15), or fed the PPARα agonist fenofibrate (150 mg·kg−1·day−1, INF + Feno, n = 13) for 12 wk. LV ejection fraction was significantly reduced with HF (49 ± 6%) compared with sham operated (86 ± 2%) with no significant differences in ejection fraction (or other functional or hemodynamic measures) among the three infarcted groups. Treatment with the PPARα agonist resulted in LV hypertrophy (24% increase in LV/body mass ratio) and induced mRNAs encoding for PPARα-regulated genes, as well as protein expression and activity of medium chain acyl-CoA dehydrogenase (compared with INF and INF + Fat groups). Myocardial ceramide content was elevated in the INF group compared with sham-operated rats, with no further change in the INF + Fat or INF + Feno groups. Myocardial triglyceride was unaffected by infarction but increased in the INF + Fat group. In conclusion, LV dysfunction and dilation are not worsened despite upregulation of the fatty acid metabolic pathway and LV hypertrophy or accumulation of myocardial triglyceride in the rat infarct model of HF.
Collapse
Affiliation(s)
- Eric E Morgan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN, Tserng KY, Hoit BD, Ernsberger P, Young ME, Stanley WC. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol 2006; 291:H38-44. [PMID: 16443671 DOI: 10.1152/ajpheart.01295.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.
Collapse
Affiliation(s)
- Isidore C Okere
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Okere IC, Chess DJ, McElfresh TA, Johnson J, Rennison J, Ernsberger P, Hoit BD, Chandler MP, Stanley WC. High-fat diet prevents cardiac hypertrophy and improves contractile function in the hypertensive dahl salt-sensitive rat. Clin Exp Pharmacol Physiol 2006; 32:825-31. [PMID: 16173943 DOI: 10.1111/j.1440-1681.2005.04272.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The role that dietary lipid and plasma fatty acid concentration play in the development of cardiac hypertrophy in response to hypertension is not clear. 2. In the present study, we treated Dahl salt-sensitive rats with either normal chow (NC), normal chow with salt added (NC + salt) or a diet high in long-chain saturated fatty acids with added salt (HFD + salt). Cardiac function was assessed by echocardiography and left ventricular (LV) catheterization. 3. The HFD + salt group had significantly higher plasma free fatty acid concentrations and myocardial triglyceride content compared with the NC + salt group, but did not upregulate the activity of the fatty acid oxidation enzyme medium chain acyl-coenzyme A dehydrogenase. Systolic blood pressure was elevated to a similar extent in the NC + salt and HFD + salt groups compared with the NC group. Although LV mass was increased in the NC + salt group compared with the NC group, LV mass in the HFD + salt group did not differ from that of the NC group and was significantly lower than that in the NC + salt group. 4. There was no evidence of cardiac dysfunction in the NC + salt group compared with the NC group; however, high fat feeding significantly increased LV contractile performance (e.g. increased cardiac output and peak dP/dt). 5. In conclusion, the HFD + salt diet prevented the hypertrophic response to hypertension and improved the contractile performance of the heart. It remains to be determined whether preventing cardiac hypertrophic adaptations would be deleterious to the heart if the hypertensive stress is maintained long term.
Collapse
Affiliation(s)
- Isidore C Okere
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Jegger D, Jeanrenaud X, Nasratullah M, Chassot PG, Mallik A, Tevaearai H, von Segesser LK, Segers P, Stergiopulos N. Noninvasive Doppler-derived myocardial performance index in rats with myocardial infarction: validation and correlation by conductance catheter. Am J Physiol Heart Circ Physiol 2005; 290:H1540-8. [PMID: 16299257 DOI: 10.1152/ajpheart.00935.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.
Collapse
Affiliation(s)
- David Jegger
- Laboratory of Hemodynamics and Cardiovascular Technology, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Mills WR, Mal N, Forudi F, Popovic ZB, Penn MS, Laurita KR. Optical mapping of late myocardial infarction in rats. Am J Physiol Heart Circ Physiol 2005; 290:H1298-306. [PMID: 16214848 DOI: 10.1152/ajpheart.00437.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Late myocardial infarction (MI) is associated with ventricular arrhythmias and sudden cardiac death. The exact mechanistic relationship between abnormal cellular electrophysiology, conduction abnormalities, and arrhythmogenesis associated with late MI is not completely understood. We report a novel, rapid dye superfusion technique to enable whole heart, high-resolution optical mapping of late MI. Optical mapping of action potentials was performed in normal rats and rats with anterior MI 7 days after left anterior descending artery ligation. Hearts from normal rats exhibited normal action potentials and impulse conduction. With the use of programmed stimulation to assess arrhythmia inducibility, 29% of hearts with late MI had inducible sustained ventricular tachycardia, compared with 0% in normal rats. A causal relationship between the site of infarction, abnormal action potential conduction (i.e., block and slow conduction), and arrhythmogenesis was observed. Optical mapping techniques can be used to measure high-resolution action potentials in a whole heart model of late MI. This experimental model reproduces many of the electrophysiological characteristics (i.e., conduction slowing, block, and ventricular tachycardia) associated with MI in patients. Importantly, the results of this study can enhance our ability to understand the interplay between cellular heterogeneity, conduction abnormalities, and arrhythmogenesis associated with MI.
Collapse
Affiliation(s)
- William R Mills
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 MetroHealth Dr., Rammelkamp, 6th fl., Cleveland, Ohio 44109-1998, USA
| | | | | | | | | | | |
Collapse
|
100
|
Yu B, Otsuji Y, Yoshifuku S, Ikeda Y, Kamogawa Y, Yuasa T, Kuwahara E, Takasaki K, Uemura T, Nakashiki K, Miyata M, Hamasaki S, Biro S, Minagoe S, Tei C. Prediction of Prognosis in the UM-X7.1 Hamster Model of Congestive Heart Failure Using the Tei Index. Circ J 2005; 69:991-3. [PMID: 16041173 DOI: 10.1253/circj.69.991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cardiac function is difficult to evaluate in small animal models of heart disease. The Doppler Tei index is a simple and non-invasive measure that can express global cardiac function even in small animal models of congestive heart failure. However, its ability to predict prognosis has not been evaluated. METHODS AND RESULTS We tested the hypothesis that cardiac functional indices, such as the Tei index, can predict the prognosis of hamsters with cardiac dysfunction. The Tei index, defined as the sum of the isovolume contraction and relaxation time divided by ejection time, and the percent fractional shortening of the left ventricle was measured in 48 anesthetized male hamsters (19.7+/-0.4 weeks old) with cardiac dysfunction (UM-X7.1), using Doppler and 2-dimensional echocardiography. The hamsters were separated into 2 groups based on the median Tei index (0.50) and % fractional shortening (FS) (21%). Kaplan-Meier analysis determined the survival rates of the groups. Both the Tei index and %FS enabled significant distinction of better and poorer survival (p < 0.01), and the survival curves were less overlapped when the animals were separated according to the Tei index. CONCLUSION The Tei index can predict prognosis in a small animal model of heart failure.
Collapse
Affiliation(s)
- Bo Yu
- Department of Cardiovascular, Respiratory and Metabolic Medicine, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|