51
|
Xing J, Sinoway L, Li J. Differential responses of sensory neurones innervating glycolytic and oxidative muscle to protons and capsaicin. J Physiol 2008; 586:3245-52. [PMID: 18450773 DOI: 10.1113/jphysiol.2008.154450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Activation of thin fibre muscle afferent nerves by metabolic by-products plays a critical role in the initiation and maintenance of the autonomic response to exercise and the metabolic profile of active muscle can influence the response. The purpose of this report was to determine the responsiveness of sensory neurones innervating muscles comprising predominantly glycolytic and oxidative fibres to protons and capsaicin using whole-cell patch clamp methods. Dorsal root ganglion (DRG) neurones from 4- to 6-week-old rats were labelled by injecting the fluorescence tracer DiI into the muscle 3-5 days prior to the recording experiments. The percentage of the DRG neurones innervating glycolytic and oxidative muscle was similar in response to both protons and capsaicin. However, the neurones innervating glycolytic muscle had greater inward current amplitude responses to protons and capsaicin as compared with oxidative muscle. The peak current amplitudes to pH 6.0 were 0.84 +/- 0.06 nA (oxidative muscle) versus 1.36 +/- 0.07 nA (glycolytic muscle, P < 0.05). The capsaicin-induced current amplitudes were 2.3 +/- 0.15 nA (oxidative muscle) versus 3.1 +/- 0.21 nA (glycolytic muscle, P < 0.05). Of neurones that responded to pH 6.0 with a sustained current, 88% also responded to capsaicin. Capsaicin exposure enhanced the proton responsiveness in the neurones innervating the muscle; and protons also increased the capsaicin response. These data suggest that (1) receptors mediating protons and capsaicin responses coexist in the DRG neurones innervating muscle; (2) the responsiveness of acidosis and capsaicin can be sensitized by each other; and (3) DRG neurones with nerve endings in a glycolytic muscle developed greater inward current responses to protons and capsaicin than did those with nerve endings in an oxidative muscle.
Collapse
Affiliation(s)
- Jihong Xing
- Penn State Heart & Vascular Institute and Department of Medicine, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
52
|
Cui J, Moradkhan R, Mascarenhas V, Momen A, Sinoway LI. Cyclooxygenase inhibition attenuates sympathetic responses to muscle stretch in humans. Am J Physiol Heart Circ Physiol 2008; 294:H2693-700. [PMID: 18441194 DOI: 10.1152/ajpheart.91505.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Passive muscle stretch performed during a period of post-exercise muscle ischemia (PEMI) increases muscle sympathetic nerve activity (MSNA), and this suggests that the muscle metabolites may sensitize mechanoreceptors in healthy humans. However, the responsible substance(s) has not been studied thoroughly in humans. Human and animal studies suggest that cyclooxygenase products sensitize muscle mechanoreceptors. Thus we hypothesized that local cyclooxygenase inhibition in exercising muscles could attenuate MSNA responses to passive muscle stretch during PEMI. Blood pressure (Finapres), heart rate, and MSNA (microneurography) responses to passive muscle stretch were assessed in 13 young healthy subjects during PEMI before and after cyclooxygenase inhibition, which was accomplished by a local infusion of 6 mg ketorolac tromethamine in saline via Bier block. In the second experiment, the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased prostaglandin synthesis to approximately 34% of the baseline. Before ketorolac Bier block, passive muscle stretch evoked significant increases in MSNA (P < 0.005) and mean arterial blood pressure (P < 0.02). After ketorolac Bier block, passive muscle stretch did not evoke significant responses in MSNA (P = 0.11) or mean arterial blood pressure (P = 0.83). Saline Bier block had no effect on the MSNA or blood pressure response to ischemic stretch. These observations indicate that cyclooxygenase inhibition attenuates MSNA responses seen during PEMI and suggest that cyclooxygenase products sensitize the muscle mechanoreceptors.
Collapse
Affiliation(s)
- Jian Cui
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
53
|
Gao Z, Koba S, Sinoway L, Li J. 20-HETE increases renal sympathetic nerve activity via activation of chemically and mechanically sensitive muscle afferents. J Physiol 2008; 586:2581-91. [PMID: 18372304 DOI: 10.1113/jphysiol.2008.150730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Arachidonic acid and its metabolites produced via cyclooxygenase (COX) and lipoxygenase pathways have been reported to contribute to the cardiovascular reflexes evoked by stimulating thin fibre muscle afferents during muscle contraction. 20-Hydroxyeicosatetraenoic acid (20-HETE), a primarily metabolized product of arachidonic acid by cytochrome P450 enzymes, can be accumulated in contracting muscles. Thus, the purpose of this study was to determine the role of 20-HETE in modulating the reflex sympathetic responses to activation of chemically and mechanically sensitive muscle afferents. The renal sympathetic nerve activity (RSNA) and cardiovascular responses were examined after injections of 20-HETE into the arterial blood supply of the hindlimb muscles of decerebrated rats. This induced a dose-dependent increases in RSNA and mean arterial pressure (MAP). We also tested the hypothesis that 20-HETE would sensitize muscle afferents and, thereby, augment the RSNA and blood pressure response to muscle stretch. The results show that arterial infusion of 20-HETE significantly enhanced the RSNA and MAP responses to muscle stretch. In contrast, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine, a potent inhibitor of 20-HETE production, attenuated the reflex muscle responses. Furthermore, the sensitizing effect of 20-HETE on the muscle reflex was significantly attenuated after blocking COX activity with indomethacin. Our data suggest that 20-HETE plays a role in modulating muscle afferent-mediated sympathetic responses, probably through engagement of a COX-dependent mechanism.
Collapse
Affiliation(s)
- Zhaohui Gao
- Penn State Heart & Vascular Institute, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
54
|
Momen A, Cui J, McQuillan P, Sinoway LI. Local prostaglandin blockade attenuates muscle mechanoreflex-mediated renal vasoconstriction during muscle stretch in humans. Am J Physiol Heart Circ Physiol 2008; 294:H2184-90. [PMID: 18326807 DOI: 10.1152/ajpheart.00948.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, muscle mechanoreflex-mediated sympathoexcitation evokes renal vasoconstriction. Animal studies suggest that prostaglandins generated within the contracting muscle sensitize muscle mechanoreflexes. Thus we hypothesized that local prostaglandin blockade would attenuate renal vasoconstriction during ischemic muscle stretch. Eleven healthy subjects performed static handgrip before and after local prostaglandin blockade (6 mg ketorolac tromethamine infused into the exercising forearm) via Bier block. Renal blood flow velocity (RBV; Duplex Ultrasound), mean arterial pressure (MAP; Finapres), and heart rate (HR; ECG) were obtained during handgrip, post-handgrip muscle ischemia (PHGMI) followed by PHGMI with passive forearm muscle stretch (PHGMI + stretch). Renal vascular resistance (RVR, calculated as MAP/RBV) was increased from baseline during all paradigms except during PHGMI + stretch after the ketorolac Bier block trial where RVR did not change from baseline. Before Bier block, RVR rose more during PHGMI + stretch than during PHGMI alone (P < .01). Similar results were found after a saline Bier block trial (Delta53 +/- 13% vs. Delta35 +/- 10%; P < 0.01). However, after ketorolac Bier block, RVR was not greater during PHGMI + stretch than during PHGMI alone [Delta39 +/- 8% vs. Delta40 +/- 12%; P = not significant (NS)]. HR and MAP responses were similar during PHGMI and PHGMI + stretch (P = NS). Passive muscle stretch during ischemia augments renal vasoconstriction, suggesting that ischemia sensitizes mechanically sensitive afferents. Inhibition of prostaglandin synthesis eliminates this mechanoreceptor sensitization-mediated constrictor responses. Thus mechanoreceptor sensitization in humans is linked to the production of prostaglandins.
Collapse
Affiliation(s)
- Afsana Momen
- Heart & Vascular Inst.itute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
55
|
Taguchi T, Kozaki Y, Katanosaka K, Mizumura K. Compression-induced ATP release from rat skeletal muscle with and without lengthening contraction. Neurosci Lett 2008; 434:277-81. [PMID: 18313220 DOI: 10.1016/j.neulet.2008.01.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/10/2008] [Accepted: 01/29/2008] [Indexed: 11/16/2022]
Abstract
Adenosine triphosphate (ATP) is well known to be released from injured or inflamed tissues, and to excite/sensitize nociceptors in response to heat and mechanical stimulation. To determine whether muscle releases ATP when it is compressed, we measured ATP release from the extensor digitorum longus muscle (EDL). In addition, we investigated whether there is any difference in ATP release from the EDL of rats 2 days after lengthening contraction (LC), since the condition of the muscle is different, i.e., mechanically hyperalgesic and swollen. The EDL was put in a small chamber and superfused with Krebs-Henseleit solution equilibrated with a gas mixture of 95% oxygen and 5% carbon dioxide. The muscle was quantitatively stimulated with a servo-controlled mechanical stimulator. Reproducibility of ATP release was examined with stimulation using a 20 g force. Stimulus intensity-dependency of ATP release was also examined with 5 time compression with intensities of 5, 10, 20 and 40 g force. Bioluminescent determination by the luciferin-luciferase method was used to quantify ATP in the sample. The ATP release was decreased by repetitive mechanical stimulation of the EDL with 30 min intervals, and it was stimulus intensity (5-40 g force)-dependent. The amount of ATP released from the muscle preparations was not different between the non-treated control and the LC group. These results provide clear evidence that ATP is released from rat skeletal muscle by compression.
Collapse
Affiliation(s)
- Toru Taguchi
- Department of Neuroscience II, Division of Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
56
|
Cui J, Mascarenhas V, Moradkhan R, Blaha C, Sinoway LI. Effects of muscle metabolites on responses of muscle sympathetic nerve activity to mechanoreceptor(s) stimulation in healthy humans. Am J Physiol Regul Integr Comp Physiol 2008; 294:R458-66. [DOI: 10.1152/ajpregu.00475.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 ± 74 to 673 ± 90 U/min, P < 0.01) and mean blood pressure (102 ± 2 to 106 ± 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.
Collapse
|
57
|
Drew RC, Bell MPD, White MJ. Modulation of spontaneous baroreflex control of heart rate and indexes of vagal tone by passive calf muscle stretch during graded metaboreflex activation in humans. J Appl Physiol (1985) 2007; 104:716-23. [PMID: 18079267 DOI: 10.1152/japplphysiol.00956.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether spontaneous baroreflex modulation of heart rate and other indexes of cardiac vagal tone could be altered by passive stretch of the human calf muscle during graded concurrent activation of the muscle metaboreflex. Ten healthy subjects performed four trials: a control trial, resting for 1.5 min (0% trial); or 1.5 min of one-legged isometric plantar flexor exercise at 30, 50, and 70% maximal voluntary contraction. The incremental increases in blood pressure (BP) caused were then partially sustained by subsequent local circulatory occlusion (CO). After 3.5 min of CO alone, sustained calf stretch and CO were applied for 3 min. Spontaneous baroreflex sensitivity (SBRS) was progressively decreased with increasing exercise intensity (P < 0.05). During CO, stretch decreased SBRS and increased BP similarly in all trials (P < 0.05). Within 15 s of stretch onset, heart rate (HR) increased by 6 +/- 1, 6 +/- 1, 8 +/- 1, and 6 +/- 2 beats/min in the 0, 30, 50, and 70% trials, respectively (P < 0.05), and root mean square of successive differences was decreased from CO-alone levels (P < 0.05). During the second and third minutes of stretch, HR fell back but remained significantly above CO levels, and common coefficient of variance of R-R interval decreased progressively with increasing prior exercise intensity (P < 0.05; 70% trial). This suggests that passive stretch of the human calf muscles decreases cardiac vagal outflow irrespective of the levels of BP increase caused by muscle metaboreflex activation and implies that central modulation of baroreceptor input, mediated by the actions of stretch-activated mechanoreceptive muscle afferent fibers, continues.
Collapse
Affiliation(s)
- Rachel C Drew
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|
58
|
Hayes SG, McCord JL, Kaufman MP. Role played by P2X and P2Y receptors in evoking the muscle chemoreflex. J Appl Physiol (1985) 2007; 104:538-41. [PMID: 18063804 DOI: 10.1152/japplphysiol.00929.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role played by purinergic 2Y receptors in evoking the muscle chemoreflex is not well defined. To shed light on this issue, we compared the pressor responses with popliteal arterial injection of UTP (1 mg/kg), a selective P2Y agonist, with those to popliteal arterial injection of ATP (1 mg/kg), a P2X and P2Y agonist, and to alpha,beta-methylene ATP (50 mug/kg), a selective P2X1 and P2X3 agonist, in decerebrate unanesthetized cats. We found that injection of ATP and alpha,beta-methylene ATP increased mean arterial pressure by 19 +/- 2 and 15 +/- 4 mmHg, whereas UTP had no affect on arterial pressure. In addition, the pressor responses to injection of ATP and alpha,beta-methylene ATP were abolished by section of the sciatic nerve, demonstrating that they were reflex in origin. We conclude that P2Y receptors on thin fiber muscle afferents play no role in evoking the muscle chemoreflex.
Collapse
Affiliation(s)
- Shawn G Hayes
- Heart and Vascular Institute H047, Penn State College of Medicine, 500 Univ. Dr., Hershey, PA 17033, USA.
| | | | | |
Collapse
|
59
|
Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol (1985) 2007; 104:542-50. [PMID: 18032577 DOI: 10.1152/japplphysiol.01053.2007] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetic and electrical stimulation at different levels of the neuraxis show that supraspinal and spinal factors limit force production in maximal isometric efforts ("central fatigue"). In sustained maximal contractions, motoneurons become less responsive to synaptic input and descending drive becomes suboptimal. Exercise-induced activity in group III and IV muscle afferents acts supraspinally to limit motor cortical output but does not alter motor cortical responses to transcranial magnetic stimulation. "Central" and "peripheral" fatigue develop more slowly during submaximal exercise. In sustained submaximal contractions, central fatigue occurs in brief maximal efforts even with a weak ongoing contraction (<15% maximum). The presence of central fatigue when much of the available motor pathway is not engaged suggests that afferent inputs contribute to reduce voluntary activation. Small-diameter muscle afferents are likely to be activated by local activity even in sustained weak contractions. During such contractions, it is difficult to measure central fatigue, which is best demonstrated in maximal efforts. To show central fatigue in submaximal contractions, changes in motor unit firing and force output need to be characterized simultaneously. Increasing central drive recruits new motor units, but the way this occurs is likely to depend on properties of the motoneurons and the inputs they receive in the task. It is unclear whether such factors impair force production for a set level of descending drive and thus represent central fatigue. The best indication that central fatigue is important during submaximal tasks is the disproportionate increase in subjects' perceived effort when maintaining a low target force.
Collapse
Affiliation(s)
- Janet L Taylor
- Prince of Wales Medical Research Institute, Barker St., Randwick, Sydney, New South Wales, Australia.
| | | |
Collapse
|
60
|
Kindig AE, Hayes SG, Kaufman MP. Blockade of purinergic 2 receptors attenuates the mechanoreceptor component of the exercise pressor reflex. Am J Physiol Heart Circ Physiol 2007; 293:H2995-3000. [PMID: 17766474 DOI: 10.1152/ajpheart.00743.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch.
Collapse
Affiliation(s)
- Angela E Kindig
- Division of Cardiovascular Medicine, University of California Davis, Davis, California, USA
| | | | | |
Collapse
|
61
|
Koba S, Xing J, Sinoway LI, Li J. Differential sympathetic outflow elicited by active muscle in rats. Am J Physiol Heart Circ Physiol 2007; 293:H2335-43. [PMID: 17573458 DOI: 10.1152/ajpheart.00469.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to test the hypothesis that activation of the muscle reflex elicits less sympathetic activation in skeletal muscle than in internal organs. In decerebrate rats, we examined renal and lumbar (mainly innervating hindlimb blood vessels) sympathetic nerve activities (RSNA and LSNA, respectively) during 1 min of 1) repetitive (1- to 4-s stimulation-to-relaxation) contraction of the triceps surae muscle, 2) repetitive tendon stretch, and 3) repetitive contraction with hindlimb circulatory occlusion. During these interventions, RSNA and LSNA responded synchronously as tension developed. The increase was greater in RSNA than in LSNA [+51 +/- 14 vs. +24 +/- 5% (P < 0.05) with contraction, +46 +/- 8 vs. +17 +/- 4% (P < 0.05) with stretch, +76 +/- 20 vs. 39 +/- 7% (P < 0.05) with contraction during occlusion] during all three interventions: repetitive contraction (n = 10, +508 +/- 48 g tension from baseline), tendon stretch (n = 12, +454 +/- 34 g), and contraction during occlusion (n = 9, +473 +/- 33 g). Additionally, hindlimb circulatory occlusion significantly enhanced RSNA and LSNA responses to contraction. These data demonstrate that RSNA responses to muscle contraction and stretch are greater than LSNA responses. We suggest that activation of the muscle afferents induces the differential sympathetic outflow that is directed toward the kidney as opposed to the limbs. This differential outflow contributes to the distribution of cardiac output observed during exercise. We further suggest that as exercise proceeds, muscle metabolites produced in contracting muscle sensitize muscle afferents and enhance sympathetic drive to limbs and renal beds.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
62
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
63
|
Gao Z, Li JD, Sinoway LI, Li J. Effect of muscle interstitial pH on P2X and TRPV1 receptor-mediated pressor response. J Appl Physiol (1985) 2007; 102:2288-93. [PMID: 17379752 DOI: 10.1152/japplphysiol.00161.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of purinergic P2X receptors and transient receptor potential vanilloid type 1 (TRPV1) on muscle afferent nerve evokes the pressor response. Because P2X and TRPV1 receptors are sensitive to changes in pH, the aim of this study was to examine the effects of muscle acidification on those receptor-mediated cardiovascular responses. In decerebrate rats, the pH in the hindlimb muscle was adjusted by infusing acidic Ringer solutions into the femoral artery. Dialysate was then collected using microdialysis probes inserted into the muscles, and pH was measured. The interstitial pH was 7.53+/-0.01, 7.22+/-0.02, 6.94+/-0.04, and 6.59+/-0.03 in response to arterial infusion of the Ringer solution at pH 7.4, 6.5, 5.5, and 4.5, respectively. Femoral arterial injection of alpha,beta-methylene-ATP (P2X receptor agonist) in the concentration of 0.25 mM (volume, 0.15-0.25 ml; injection duration, 1 min) at the infused pH of 7.4, 6.5, and 5.5 increased mean arterial pressure (MAP) by 29+/-2, 24+/-3, and 21+/-3 mmHg, respectively (P<0.05, pH 5.5 vs. pH 7.4). When pH levels in the infused solution were 7.4, 6.5, 5.5, and 4.5, capsaicin (1 microg/kg), a TRPV1 agonist, was injected into the artery. This elevated MAP by 29+/-4, 33+/-2, 35+/-3, and 40+/-3 mmHg, respectively (P<0.05, pH 4.5 vs. pH 7.4). Furthermore, blocking acid-sensing ion channel (ASIC) blunted pH effects on TRPV1 response. Our data indicate that 1) muscle acidosis attenuates P2X-mediated pressor response but enhances TRPV1 response; 2) exaggerated TRPV1 response may require lower pH in muscle, and the effect is likely to be mediated via ASIC mechanisms. This study provides evidence that muscle pH may be important in modulating P2X and TRPV1 responsiveness in exercising muscle.
Collapse
Affiliation(s)
- Zhaohui Gao
- Heart and Vascular Institute H047, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
64
|
Nakamoto T, Matsukawa K. Muscle mechanosensitive receptors close to the myotendinous junction of the Achilles tendon elicit a pressor reflex. J Appl Physiol (1985) 2007; 102:2112-20. [PMID: 17317871 DOI: 10.1152/japplphysiol.01344.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feedback regulation by activation of mechanosensitive afferents in the exercising muscle causes the cardiovascular and sympathetic nerve responses, which follow tension development and are almost identical between static contraction and passive stretch. The precise location of the mechanoreceptors contributing to the exercise pressor reflex, however, remained unknown. To test the hypothesis that the mechanoreceptors will be located around the myotendinous junction to monitor a change in muscle tension than a change in muscle length, we examined the reflex cardiovascular responses to passive stretch of the triceps surae muscle in anesthetized rats with three interventions; systemic injection of gadolinium, cutting the Achilles tendon, and local injection of lidocaine into the myotendinous junction. Gadolinium (42 micromol/kg iv) blunted the increases in heart rate and mean arterial blood pressure during passive stretch by 36 and 22-26%, respectively, suggesting that the reflex cardiovascular responses were evoked by stimulation of muscle mechanosensitive receptors. The cardiovascular responses to passive stretch were not different between the cut Achilles tendon and the intact tendon in the same rats, suggesting that any mechanoreceptors, terminated in the more distal part of the tendon, did not contribute to the reflex cardiovascular responses. Lidocaine (volume, 0.04-0.1 ml) injected into the myotendinous junction blunted the stretch-induced increases in heart rate and mean arterial blood pressure by 37-49 and 27-34%, respectively. We conclude that the muscle mechanosensitive receptors evoking the reflex cardiovascular responses at least partly locate at or close to the myotendinous junction of the Achilles tendon.
Collapse
Affiliation(s)
- Tomoko Nakamoto
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | |
Collapse
|
65
|
Kindig AE, Hayes SG, Kaufman MP. Purinergic 2 receptor blockade prevents the responses of group IV afferents to post-contraction circulatory occlusion. J Physiol 2006; 578:301-8. [PMID: 17038431 PMCID: PMC2075108 DOI: 10.1113/jphysiol.2006.119271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP, by activating purinergic 2 (P2) receptors on group III and IV afferents, is thought to evoke the metabolic component of the exercise pressor reflex. Previously we have shown that injection of PPADS, a P2 receptor antagonist, into the arterial supply of skeletal muscle of decerebrated cats attenuated the responses of group III and IV afferents to static contraction while the muscles were freely perfused. We have now tested the hypothesis that injection of PPADS (10 mg kg(-1)) attenuated the responses of group III (n = 13) and group IV afferents (n = 9) to post-contraction circulatory occlusion. In the present study, we found that PPADS attenuated the group III afferent responses to static contraction during circulatory occlusion (P < 0.05). Likewise, PPADS abolished the group IV afferent responses to static contraction during occlusion (P = 0.001). During a 1 minute period of post-contraction circulatory occlusion, four of the 13 group III afferents and eight of the nine group IV afferents maintained their increased discharge. A Fischer's exact probability test revealed that more group IV afferents than group III afferents were stimulated by post-contraction circulatory occlusion (P < 0.02). In addition, the nine group IV afferents increased their mean discharge rate over baseline levels during the post-contraction circulatory occlusion period, whereas the 13 group III afferents did not (P < 0.05). PPADS abolished this post-contraction increase in discharge by the group IV afferents (P < 0.05). Our findings suggest that P2 receptors on group IV afferents play a role in evoking the metabolic component of the exercise pressor reflex.
Collapse
Affiliation(s)
- Angela E Kindig
- TB-172, Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
66
|
Gao Z, Xing J, Sinoway L, Li J. P2X receptor-mediated muscle pressor reflex in myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 292:H939-45. [PMID: 17012345 DOI: 10.1152/ajpheart.00911.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous report from this laboratory demonstrated that the ATP-sensitive P2X receptor-mediated muscle pressor reflex was augmented in rats with heart failure (HF). The purpose of this study was to better understand the underlying mechanisms for this greater response in HF rats. We examined 1) responsiveness of the P2X receptor to alpha,beta-methylene ATP (alpha,beta-me-ATP), a P2X receptor agonist, in control and HF rats induced by myocardial infarction (MI); 2) the relationship between P2X-induced blood pressure response and left ventricular (LV) function; and 3) the expression of P2X receptors in the dorsal root ganglion (DRG) of control rats and rats with HF. Eight to 14 wk after coronary artery ligation, the severity of the MI was determined by echocardiography. In the first group of the experiment, alpha,beta-me-ATP (0.0625, 0.125, 0.25, and 0.5 mM) was injected into the arterial blood supply of the hindlimb muscles to evoke a pressor response in 17 decerebrated rats (6 controls, 6 small MIs with infarcts of the LV between 10 and 35%, and 5 large MIs with infarcts >35%). The P2X agonist increased blood pressure, and the effect was significantly accentuated in large MI rats compared with small MI rats and control rats. A significant correlation was observed between alpha,beta-me-ATP-evoked pressor response and the LV fractional shortening, an index of LV function. In the second group of the experiment, immunocytochemistry was used to examine the immunoreactivity of P2X receptor in the DRG neurons of small diameter fibers in six healthy control rats, five small MI, and five large MI rats. The percentage of P2X immunostaining-positive neurons in the DRG was markedly greater in large MI rats (52% vs. 29% in controls and 34% in small MIs, P < 0.05). In conclusion, our findings demonstrate that 1) muscle afferent-mediated pressor response of P2X activation was exaggerated in MI animals, and the responsiveness was related to the degree of LV dysfunction; and 2) augmented reflex response was associated with upregulated P2X receptors in the DRG neurons of thin fiber afferent nerves following MI. The data suggest that P2X-mediated responsiveness in the processing of muscle afferent signals may have important implications for understanding cardiovascular responses to exercise in HF.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Blood Pressure
- Decerebrate State
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ganglia, Spinal/metabolism
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Rate
- Male
- Muscle Contraction
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Neurons, Afferent/metabolism
- Purinergic P2 Receptor Agonists
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X3
- Reflex, Stretch
- Severity of Illness Index
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Time Factors
- Ventricular Function, Left
Collapse
Affiliation(s)
- Zhaohui Gao
- Heart & Vascular Institute and Department of Medicine, Pennsyvania State College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsyvania 17033, USA
| | | | | | | |
Collapse
|
67
|
Makowska A, Panfil C, Ellrich J. ATP induces sustained facilitation of craniofacial nociception through P2X receptors on neck muscle nociceptors in mice. Cephalalgia 2006; 26:697-706. [PMID: 16686909 DOI: 10.1111/j.1468-2982.2006.01095.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noxious input from neck muscles probably plays a key role in tension-type headache pathophysiology. ATP selectively excites group III and IV muscle afferents in vitro. Accordingly, ATP infusion into trapezius muscle induces strong pain and local tenderness in healthy man. The present study addresses the impact of ATP on neck muscle nociception in anaesthetized mice. Craniofacial nociceptive processing was tested by the jaw-opening reflex via noxious electrical tongue stimulation. Within 2 h after injection of 100 nmol/l or 1 micromol/l ATP into semispinal neck muscles, reflex integrals significantly increased by 114% or 328%, respectively. Preceding intramuscular administration of the P2X receptor antagonist PPADS (3-100 nmol/l) suppressed the ATP effect. Subsequent application of PPADS (100 nmol/l) caused a total recovery of facilitated reflex to baseline values. ATP induces sustained facilitation of craniofacial nociception by prolonged excitation of P2X receptors in neck muscles.
Collapse
Affiliation(s)
- A Makowska
- Department of Neurosurgery, Experimental Neurosurgery Section, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
68
|
Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 2006; 110:433-54. [PMID: 16226312 DOI: 10.1016/j.pharmthera.2005.08.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 12/22/2022]
Abstract
Following hints in the early literature about adenosine 5'-triphosphate (ATP) injections producing pain, an ion-channel nucleotide receptor was cloned in 1995, P2X3 subtype, which was shown to be localized predominantly on small nociceptive sensory nerves. Since then, there has been an increasing number of papers exploring the role of P2X3 homomultimer and P2X2/3 heteromultimer receptors on sensory nerves in a wide range of organs, including skin, tongue, tooth pulp, intestine, bladder, and ureter that mediate the initiation of pain. Purinergic mechanosensory transduction has been proposed for visceral pain, where ATP released from epithelial cells lining the bladder, ureter, and intestine during distension acts on P2X3 and P2X2/3, and possibly P2Y, receptors on subepithelial sensory nerve fibers to send messages to the pain centers in the brain as well as initiating local reflexes. P1, P2X, and P2Y receptors also appear to be involved in nociceptive neural pathways in the spinal cord. P2X4 receptors on spinal microglia have been implicated in allodynia. The involvement of purinergic signaling in long-term neuropathic pain and inflammation as well as acute pain is discussed as well as the development of P2 receptor antagonists as novel analgesics.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
69
|
Gao Z, Kehoe V, Xing J, Sinoway L, Li J. Temperature modulates P2X receptor-mediated cardiovascular responses to muscle afferent activation. Am J Physiol Heart Circ Physiol 2006; 291:H1255-61. [PMID: 16501013 DOI: 10.1152/ajpheart.01303.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static muscle contraction increases ATP release into the muscle interstitial space. Elevated ATP in muscle stimulates thin fiber muscle afferents and increases blood pressure via engagement of purinergic P2X receptors. In addition, ATP activates P2X receptors and enhances cardiovascular responses induced by stimulation of muscle mechanoreceptors. In this study, we examined whether elevated muscle temperature would attenuate and whether reduced temperature would potentiate P2X effects on reflex muscle responses. alpha,beta-Methylene ATP (alpha,beta-MeATP) was injected into the arterial blood supply of hindlimb muscle to stimulate P2X receptors, and muscle stretch was induced to activate mechanically sensitive muscle afferents as alpha,beta-MeATP was injected in 10 anesthetized cats. Femoral arterial injection of alpha,beta-MeATP (1.0 mM) increased mean arterial pressure (MAP) by 35+/-5 (35 degrees C), 26+/-3 (37 degrees C), and 19+/-3 mmHg (39 degrees C; P<0.05 vs. 35 degrees C), respectively. Muscle stretch (2 kg) elevated MAP. The MAP response was significantly enhanced 34% and 36% when alpha,beta-MeATP (0.2 mM) was arterially infused 5 min before muscle stretch at 35 degrees and 37 degrees C, respectively. However, as muscle temperature reached 39 degrees C, the stretch-evoked response was augmented only 6% by alpha,beta-MeATP injection, and the response was significantly attenuated compared with the response with muscle temperature of 35 degrees and 37 degrees C. In addition, we also examined effects of muscle temperature on alpha,beta-MeATP enhancement of the cardiovascular responses to static muscle contraction while the muscles were freely perfused and the circulation to the muscles was occluded. Because muscle temperature was 37 degrees C, arterial injections of alpha,beta-MeATP significantly augmented contraction-evoked MAP response by 49% (freely perfused) and 53% (ischemic condition), respectively. It is noted that this effect was significantly attenuated at a muscle temperature of 39 degrees C. These data indicate that the effect of P2X receptor on reflex muscle response is sensitive to alternations of muscle temperature and that elevated temperature attenuates the response.
Collapse
Affiliation(s)
- Zhaohui Gao
- Heart and Vascular Institute, Division of Cardiology, Department of Medicine, H047, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
70
|
Kindig AE, Hayes SG, Hanna RL, Kaufman MP. P2 antagonist PPADS attenuates responses of thin fiber afferents to static contraction and tendon stretch. Am J Physiol Heart Circ Physiol 2005; 290:H1214-9. [PMID: 16258028 DOI: 10.1152/ajpheart.01051.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Injection into the arterial supply of skeletal muscle of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2 receptor antagonist, has been shown previously to attenuate the reflex pressor responses to both static contraction and to tendon stretch. In decerebrated cats, we tested the hypothesis that PPADS attenuated the responses of groups III and IV muscle afferents to static contraction as well as to tendon stretch. We found that injection of PPADS (10 mg/kg) into the popliteal artery attenuated the responses of both group III (n = 16 cats) and group IV afferents (n = 14 cats) to static contraction. Specifically, static contraction before PPADS injection increased the discharge rate of the group III afferents from 0.1 +/- 0.05 to 1.6 +/- 0.5 impulses/s, whereas contraction after PPADS injection increased the discharge of the group III afferents from 0.2 +/- 0.1 to only 1.0 +/- 0.5 impulses/s (P < 0.05). Likewise, static contraction before PPADS injection increased the discharge rate of the group IV afferents from 0.3 +/- 0.1 to 1.0 +/- 0.3 impulses/s, whereas contraction after PPADS injection increased the discharge of the group IV afferents from 0.2 +/- 0.1 to only 0.3 +/- 0.1 impulses/s (P < 0.05). In addition, PPADS significantly attenuated the responses of group III afferents to tendon stretch but had no effect on the responses of group IV afferents. Our findings suggest that both groups III and IV afferents are responsible for evoking the purinergic component of the exercise pressor reflex, whereas only group III afferents are responsible for evoking the purinergic component of the muscle mechanoreflex that is evoked by tendon stretch.
Collapse
Affiliation(s)
- Angela E Kindig
- Division of Cardiovascular Medicine, TB 172, One Shields Dr., University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
71
|
Abstract
Within the past 20 years numerous animal and human experiments have provided supportive evidence of arterial baroreflex resetting during exercise. In addition, it has been demonstrated that both the feedforward mechanism of central command and the feedback mechanism associated with skeletal muscle afferents (the exercise pressor reflex) play both independent and interactive roles in the resetting of the arterial baroreflex with exercise. A fundamental alteration associated with baroreflex resetting during exercise is the movement of the operating point of the reflex away from the centring point and closer to the threshold, thereby increasing the ability of the reflex to buffer hypertensive stimuli. Recent studies suggest that central command and the cardiopulmonary baroreceptors may play a role in this movement of the operating point on the baroreflex-heart rate and baroreflex-blood pressure curve, respectively. Current research is focusing on the investigation of central neural mechanisms involved in cardiovascular control, including use of electrophysiological and molecular biological techniques in rat and mouse models to investigate baroreflex resetting as well as use of state of the art brain imaging techniques in humans. However, the purpose of this review is to describe the role of the arterial baroreflex in the regulation of arterial blood pressure during physical activity from a historical perspective with a particular emphasis on human investigations.
Collapse
Affiliation(s)
- Peter B Raven
- The Department of Integrative Physiology, University of North Texas, Health Science Center, TX 76107, USA.
| | | | | |
Collapse
|
72
|
Gao Z, Henig O, Kehoe V, Sinoway LI, Li J. Vanilloid type 1 receptor and the acid-sensing ion channel mediate acid phosphate activation of muscle afferent nerves in rats. J Appl Physiol (1985) 2005; 100:421-6. [PMID: 16210435 DOI: 10.1152/japplphysiol.00659.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reflex cardiovascular responses to contracting skeletal muscle are mediated by mechanical and metabolic stimulation of thin-fiber muscle afferents. Diprotonated phosphate (H2PO4-) excites those thin-fiber nerves and evokes the muscle pressor reflex. The receptors mediating this response are unknown. Thus we examined the role played by purinergic receptors, vanilloid type 1 receptors (VR1), and acid-sensing ion channels (ASIC) in mediating H2PO4- -evoked pressor responses. Phosphate and blocking agents were injected into the arterial blood supply of the hindlimb muscles of 53 decerebrated rats. H2PO4- (86 mM, pH 6.0) increased mean arterial pressure by 25 +/- 2 mmHg, whereas monoprotonated phosphate (HPO4(2-), pH 7.5) had no effect. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (a purinergic receptor antagonist, 2 mM) did not block the response. However, capsazepine (a VR1 antagonist, 1 mg/kg) attenuated the reflex by 60% and amiloride (an ASIC blocker, 6 microg/kg) by 52%. Of note, the H2PO4- -induced pressor response was attenuated by 87% when both capsazepine and amiloride were injected before the H2PO4-. In conclusion, VR1 and ASIC mediate the pressor response due to H2PO4-. The H2PO4- -evoked response was greater when VR1 and ASIC blockers were given simultaneously than when the respective blockers were given separately. Our laboratory's previous study has shown that H+ stimulates ASIC (but not VR1) on thin-fiber afferent nerves in evoking the reflex response. Thus VR1 and ASIC are likely to play a coordinated and interactive role in processing the muscle afferent response to H2PO4-. Furthermore, the physiological mechanisms mediating the response to H+ and H2PO4- are likely to be different.
Collapse
Affiliation(s)
- Zhaohui Gao
- Department of Medicine, Division of Cardiology, H047, Penn State College of Medicine, Milton S. Hershey Medical Center, 500 Univ. Dr., Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
73
|
Sinoway LI, Li J. A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol (1985) 2005; 99:5-22. [PMID: 16036901 DOI: 10.1152/japplphysiol.01405.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we examine the exercise pressor reflex in health and disease. The role of metabolic and mechanical stimulation of thin fiber muscle afferents is discussed. The role ATP and lactic acid play in stimulating and sensitizing these afferents is examined. The role played by purinergic receptors subdivision 2, subtype X, vanilloid receptor subtype 1, and acid-sensing ion channels in mediating the effects of ATP and H+ are discussed. Muscle reflex activation in heart failure is then examined. Data supporting the concept that the metaboreflex is attenuated and that the mechanoreflex is accentuated are presented. The role the muscle mechanoreflex plays in evoking renal vasoconstriction is also described.
Collapse
Affiliation(s)
- Lawrence I Sinoway
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
74
|
Schrage WG, Wilkins BW, Dean VL, Scott JP, Henry NK, Wylam ME, Joyner MJ. Exercise hyperemia and vasoconstrictor responses in humans with cystic fibrosis. J Appl Physiol (1985) 2005; 99:1866-71. [PMID: 16037400 PMCID: PMC1995406 DOI: 10.1152/japplphysiol.00616.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP released from circulating erythrocytes is a potential signal regulating muscle blood flow during exercise (exercise hyperemia), and intravascular ATP appears to blunt sympathetic vasoconstriction during exercise. Erythrocytes from patients with cystic fibrosis (CF) do not release ATP. The goal of the present study was to determine whether increases in forearm blood flow during exercise are blunted in CF patients and whether CF patients exhibit greater vasoconstrictor responsiveness during exercise. Nine control subjects and 10 CF patients who were free of other disease complications (approximately 96% O2 saturation) performed incremental rhythmic forearm exercise at 5, 10, and 15% of maximum handgrip strength for 21 min (7 min at each workload). We used a cold pressor test to evoke sympathetic vasoconstriction under resting conditions and at each exercise workload. As a control, subjects performed a second exercise bout without the cold pressor test. Continuous brachial artery blood velocity was monitored beat-to-beat, and vessel diameter was assessed by Doppler ultrasound. Artery diameter, as well as blood pressure, heart rate, and O2 saturation, was measured at steady-state exercise and at 1 min into the cold pressor stimulus. Blood pressure and heart rate responses to the forearm exercise and each cold pressor test were similar in both groups (P > 0.05). Contrary to our hypothesis, forearm blood flow (P = 0.91) and forearm vascular conductance (P = 0.82) were similar at rest and at each level of exercise between CF patients and controls. Additionally, there was no difference in the degree of sympathetic vasoconstriction between groups at rest and at each level of exercise (P = 0.22). Our results suggest that ATP released from the deformation of erythrocytes is not an obligatory signal for exercise hyperemia in human skeletal muscle.
Collapse
Affiliation(s)
- William G Schrage
- Department of Anesthesiology and General Clinical Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
We investigated the effect of disuse atrophy on the magnitude of the muscle mechanoreflex. The left leg of eight rats (6-7 wk, male) was put in a plaster cast for 1 wk. The rats were decerebrated at the midcollicular level. We recorded the pressor and cardioaccelerator responses to 30-s stretch of the calcaneal tendon, which selectively stimulated the muscle mechanosensitive receptors in the left atrophied and right control triceps surae muscles. Atrophied muscles showed significantly lower mass control muscles (1.0 +/- 0.1 vs. 1.4 +/- 0.1 g; P < 0.05). At the same stretch tension (229 +/- 20 g), the pressor response to stretch was significantly greater in the atrophied muscles than in the control muscles (13 +/- 3 vs. 4 +/- 2 mmHg, P < 0.05). The cardioaccelerator response was not significantly different (8 +/- 4 vs. 4 +/- 2 beats/min). Comparing responses at the same relative tension (57 +/- 6 vs. 51 +/- 8% of maximal tension), the pressor response was still significantly greater in the atrophied triceps surae than in the control (14 +/- 4 vs. 4 +/- 2 mmHg; P < 0.05). These results suggest that disuse atrophy increases the magnitude of muscle mechanoreflex.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Institute of Health Science, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
76
|
Abstract
BACKGROUND Sympathetic nervous system activity increases with exercise in normal subjects. Heightened peripheral sympathetic nervous activity and the resultant increased neurovascular levels of norepinephrine (NE) evoke vasoconstriction and serve to maintain blood pressure and perfusion to vital organs. Previous work demonstrated that the interstitial ATP concentrations ([ATP]i) rise in contracting skeletal muscle, and it is known that sympathetic nerves have purinergic P2X receptors. Thus, in this report we tested the hypothesis that elevated ATP would stimulate these receptors and increase interstitial NE concentrations ([NE]i). METHODS AND RESULTS Muscle interstitial samples were collected from microdialysis probes inserted in the skeletal muscle of rats, and dialysate concentrations of ATP and NE were determined by the high-performance liquid chromatography method. Stretch (0.5 kg of tension) increased [ATP]i by 68% (P<0.05) and [NE]i by 45% (P<0.05) in active muscle. The rise in NEi was linearly linked to the elevated ATPi (r=0.878, P<0.001). [NE]i was also elevated by 76% (P<0.05) after ATP (3 micromol/L) was injected into the arterial blood supply of the hindlimb muscles. The [NE]i response to muscle stretch was blunted after the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) was given. Finally, this response was potentiated by the nucleotidase inhibitor 6-N,N-diethyl-beta-gamma-dibromomethylene-D-adenosine-5'-triphosphate (ARL67156). CONCLUSIONS ATPi released by skeletal muscle during stretch stimulates P2X receptors on the sympathetic nerves and increases the concentration of NEi in the muscle interstitium.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
77
|
Gao Z, Kehoe V, Sinoway LI, Li J. Spinal P2X receptor modulates reflex pressor response to activation of muscle afferents. Am J Physiol Heart Circ Physiol 2004; 288:H2238-43. [PMID: 15615840 DOI: 10.1152/ajpheart.01095.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.
Collapse
Affiliation(s)
- Zhaohui Gao
- Division of Cardiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
78
|
Momen A, Bower D, Boehmer J, Kunselman AR, Leuenberger UA, Sinoway LI. Renal blood flow in heart failure patients during exercise. Am J Physiol Heart Circ Physiol 2004; 287:H2834-9. [PMID: 15319206 DOI: 10.1152/ajpheart.00394.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, reflex renal vasoconstriction maintains blood pressure and helps in redistributing blood flow to the contracting muscle. Exercise intolerance in heart failure (HF) is thought to involve diminished perfusion in active muscle. We studied the temporal relationship between static handgrip (HG) and renal blood flow velocity (RBV; duplex ultrasound) in 10 HF and in 9 matched controls during 3 muscle contraction paradigms. Fatiguing HG ( protocol 1) at 40% of maximum voluntary contraction led to a greater reduction in RBV in HF compared with controls (group main effect: P < 0.05). The reduction in RBV early in HG tended to be more prominent during the early phases of protocol 1. Similar RBV was observed in the two groups during post-HG circulatory arrest (isolating muscle metaboreflex). Short bouts (15 s) of HG at graded intensities ( protocol 2; engages muscle mechanoreflex and/or central command) led to greater reductions in RBV in HF than controls ( P < 0.03). Protocol 3, voluntary and involuntary biceps contraction (eliminates central command), led to similar increases in renal vasoconstriction in HF ( n = 4). Greater reductions in RBV were found in HF than in controls during the early phases of exercise. This effect was not likely due to a metaboreflex or central command. Thus our data suggest that muscle mechanoreflex activity is enhanced in HF and serves to vigorously vasoconstrict the kidney. We believe this compensatory mechanism helps preserve blood flow to exercising muscle in HF.
Collapse
Affiliation(s)
- Afsana Momen
- Cardiology, H047, Pennsylvania State College of Medicine, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Li J, Sinoway AN, Gao Z, Maile MD, Pu M, Sinoway LI. Muscle mechanoreflex and metaboreflex responses after myocardial infarction in rats. Circulation 2004; 110:3049-54. [PMID: 15520319 DOI: 10.1161/01.cir.0000147188.46287.1b] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND During exercise, the sympathetic nervous system is activated and blood pressure and heart rate increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that (1) capsaicin stimulates muscle metabosensitive vanilloid receptor subtype 1 (VR1), inducing a neurally mediated pressor response, and (2) activation of ATP-sensitive P2X receptors enhances the pressor response seen when muscle mechanoreceptors are engaged by muscle stretch. Thus, we hypothesized that the pressor response to VR1 stimulation would be smaller and the sensitizing effects of P2X stimulation greater in rats with HF due to chronic myocardial infarction (MI) than in controls. METHODS AND RESULTS Eight to 14 weeks after coronary ligation, rats with infarcts >35% had an increased left ventricular end-diastolic pressure and a marked increase in heart weight. Capsaicin injected into the arterial supply of the hindlimb increased blood pressure by 39% (baseline, 93.9+/-9.5 mm Hg) in control animals but only by 8% (baseline, 94.8+/-10.1 mm Hg) in rats with large MIs (P<0.05). P2X receptor stimulation by alpha,beta-methylene ATP enhanced the pressor response to muscle stretch by 42% in control animals and by 72% in rats with large MIs (P<0.05). CONCLUSIONS Compared with control animals, cardiovascular responses to VR1 stimulation are blunted and P2X-mediated responses are augmented in rats with HF owing to large MIs.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, H047, Penn State College of Medicine, 500 University Dr, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The responses of group III and IV triceps surae muscle afferents to intra-arterial injection of alpha,beta-methylene ATP (50 microg/kg) was examined in decerebrate cats. We found that this P2X(3) agonist stimulated only three of 18 group III afferents but 7 of 9 group IV afferents (P < 0.004). The three group III afferents stimulated by alpha,beta-methylene ATP conducted impulses below 4 m/s. Pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2-receptor antagonist, prevented the stimulation of these afferents by alpha,beta-methylene ATP. We conclude that P2X(3) agonists stimulate only the slowest conducting group III muscle afferents as well as group IV afferents.
Collapse
Affiliation(s)
- Ramy L Hanna
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis 95616, USA
| | | |
Collapse
|
82
|
Rosenmeier JB, Hansen J, González-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 2004; 558:351-65. [PMID: 15155791 PMCID: PMC1664919 DOI: 10.1113/jphysiol.2004.063107] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and O2 delivery regulation by both inducing vasodilatation and blunting the augmented sympathetic vasoconstrictor activity. In eight healthy subjects, we first measured leg blood flow (LBF) and mean arterial pressure (MAP) during three hyperaemic conditions: (1) intrafemoral artery adenosine infusion (vasodilator control), (2) intrafemoral artery ATP infusion (vasodilator), and (3) mild knee-extensor exercise (approximately 20 W), and then compared the responses with the combined infusion of the vasoconstrictor drug tyramine, which evokes endogenous release of noradrenaline from sympathetic nerve endings. In all three hyperaemic conditions, LBF equally increased from approximately 0.5 +/- 0.1 l min(-1) at rest to approximately 3.6 +/- 0.3 l min(-1), with no change in MAP. Tyramine caused significant leg vasoconstriction during adenosine infusion (53 +/- 5 and 56 +/- 5% lower LBF and leg vascular conductance, respectively, P < 0.05), which was completely abolished by both ATP infusion and exercise. In six additional subjects resting in the sitting position, intrafemoral artery infusion of ATP increased LBF and leg vascular conductance 27 +/- 3-fold, despite concomitant increases in venous noradrenaline and muscle sympathetic nerve activity of 2.5 +/- 0.2- and 2.4 +/- 0.1-fold, respectively. Maximal ATP-induced vasodilatation at rest accounted for 78% of the peak LBF during maximal bicycling exercise. Our findings in humans demonstrate that circulating ATP is capable of regulating local skeletal muscle blood flow and O2 delivery by causing substantial vasodilatation and negating the effects of increased sympathetic vasoconstrictor activity.
Collapse
Affiliation(s)
- Jaya B Rosenmeier
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
83
|
Lott MEJ, Sinoway LI. What Has Microdialysis Shown Us About the Metabolic Milieu Within Exercising Skeletal Muscle? Exerc Sport Sci Rev 2004; 32:69-74. [PMID: 15064651 DOI: 10.1097/00003677-200404000-00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microdialysis provides insight to the metabolic changes in the interstitial space during muscle contractions. This review examines the contribution that interstitial muscle-derived compounds may play in exercise-induced hyperemia and the exercise pressor reflex.
Collapse
Affiliation(s)
- Mary E J Lott
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | |
Collapse
|
84
|
Momen A, Leuenberger UA, Handly B, Sinoway LI. Effect of aging on renal blood flow velocity during static exercise. Am J Physiol Heart Circ Physiol 2004; 287:H735-40. [PMID: 15016634 DOI: 10.1152/ajpheart.00959.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During exercise, activation of the sympathetic nervous system causes reflex renal vasoconstriction. The effects of aging on this reflex are poorly understood. This study evaluated the effects of age on renal vasoconstrictor responses to handgrip. Seven older (65 +/- 9 yr) and nine younger (25 +/- 2 yr) subjects were studied. Beat-by-beat analyses of changes in renal blood flow velocity (RBV; duplex ultrasound) were performed during two handgrip paradigms. Arterial blood pressure (BP) and heart rate were also measured, and an index of renal vascular resistance (RVR) was calculated (BP/RBV). In protocol 1, fatiguing handgrip [40% of maximal voluntary contraction (MVC)] caused a greater increase in RVR in the older subjects (old 90% +/- 15 increase, young 52% +/- 4 increase; P = 0.03). During posthandgrip circulatory arrest (isolates muscle metaboreflex), the increases in RVR were only approximately 1/2 of the increase seen at end grip. In protocol 2, 15-s bouts of handgrip at graded intensities led to increases in RVR in both subject groups. This effect was not seen until 50% MVC workload (P < 0.05). RVR responses occurred early and were greater in older than in younger subjects at 50% MVC (32 +/- 6% vs. 16 +/- 5%; P = 0.02) and 70% MVC (39 +/- 11% vs. 24 +/- 8%; P = 0.02). Static exercise-induced renal vasoconstriction is enhanced with aging. Because the characteristics of this response suggest a predominant role for mechanoreceptor engagement, we hypothesize that mechanoreceptor responses are augmented with aging.
Collapse
Affiliation(s)
- Afsana Momen
- Division of Cardiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
85
|
Li J, King NC, Sinoway LI. ATP concentrations and muscle tension increase linearly with muscle contraction. J Appl Physiol (1985) 2003; 95:577-83. [PMID: 12716867 DOI: 10.1152/japplphysiol.00185.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have suggested that activation of ATP-sensitive P2X receptors in skeletal muscle play a role in mediating the exercise pressor reflex (Li J and Sinoway LI. Am J Physiol Heart Circ Physiol 283: H2636-H2643, 2002). To determine the role ATP plays in this reflex, it is necessary to examine whether muscle interstitial ATP (ATPi) concentrations rise with muscle contraction. Accordingly, in this study, muscle contraction was evoked by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in 12 decerebrate cats. Muscle ATPi was collected from microdialysis probes inserted in the muscle. ATP concentrations were determined by the HPLC method. Electrical stimulation of the ventral roots at 3 and 5 Hz increased mean arterial pressure by 13 +/- 2 and 16 +/- 3 mmHg (P < 0.05), respectively, and it increased ATP concentration in contracting muscle by 150% (P < 0.05) and 200% (P < 0.05), respectively. ATP measured in the opposite control limb did not rise with ventral root stimulation. Section of the L7 and S1 dorsal roots did not affect the ATPi seen with 5-Hz ventral root stimulation. Finally, ventral roots stimulation sufficient to drive motor nerve fibers did not increase ATP in previously paralyzed cats. Thus ATPi is not largely released from sympathetic or motor nerves and does not require an intact afferent reflex pathway. We conclude that ATPi is due to the release of ATP from contracting skeletal muscle cells.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Penn State College of Medicine, Milton S Hershey Medical Center, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
86
|
Hanna RL, Kaufman MP. Role played by purinergic receptors on muscle afferents in evoking the exercise pressor reflex. J Appl Physiol (1985) 2003; 94:1437-45. [PMID: 12482762 DOI: 10.1152/japplphysiol.01011.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 +/- 3 mmHg, whereas afterward it averaged 14 +/- 3 mmHg (P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion (P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 micro g/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.
Collapse
Affiliation(s)
- Ramy L Hanna
- Division of Cardiovascular Medicine, Departments of Internal Medicine and Human Physiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|