51
|
McMillan NJ, Soares RN, Harper JL, Shariffi B, Moreno-Cabañas A, Curry TB, Manrique-Acevedo C, Padilla J, Limberg JK. Role of the arterial baroreflex in the sympathetic response to hyperinsulinemia in adult humans. Am J Physiol Endocrinol Metab 2022; 322:E355-E365. [PMID: 35187960 PMCID: PMC8993537 DOI: 10.1152/ajpendo.00391.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) increases during hyperinsulinemia, primarily attributed to central nervous system effects. Whether peripheral vasodilation induced by insulin further contributes to increased MSNA via arterial baroreflex-mediated mechanisms requires further investigation. Accordingly, we examined baroreflex modulation of the MSNA response to hyperinsulinemia. We hypothesized that rescuing peripheral resistance with coinfusion of the vasoconstrictor phenylephrine would attenuate the MSNA response to hyperinsulinemia. We further hypothesized that the insulin-mediated increase in MSNA would be recapitulated with another vasodilator (sodium nitroprusside, SNP). In 33 young healthy adults (28 M/5F), MSNA (microneurography) and arterial blood pressure (BP, Finometer/brachial catheter) were measured, and total peripheral resistance (TPR, ModelFlow) and baroreflex sensitivity were calculated at rest and during intravenous infusion of insulin (n = 20) or SNP (n = 13). A subset of participants receiving insulin (n = 7) was coinfused with phenylephrine. Insulin infusion decreased TPR (P = 0.01) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity or BP (P > 0.05). Coinfusion with phenylephrine returned TPR and MSNA to baseline, with no effect on arterial baroreflex sensitivity (P > 0.05). Similar to insulin, SNP decreased TPR (P < 0.02) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity (P > 0.12). Acute hyperinsulinemia shifts the baroreflex stimulus-response curve to higher MSNA without changing sensitivity, likely due to insulin's peripheral vasodilatory effects. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.NEW & NOTEWORTHY We hypothesized that elevation in muscle sympathetic nervous system activity (MSNA) during hyperinsulinemia is mediated by its peripheral vasodilator effect on the arterial baroreflex. Using three separate protocols in humans, we observed increases in both MSNA and cardiac output during hyperinsulinemia, which we attributed to the baroreflex response to peripheral vasodilation induced by insulin. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Alfonso Moreno-Cabañas
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Timothy B Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
52
|
Affiliation(s)
- Jo G R De Mey
- Department of Pharmacology and Personalised Medicine, Maastricht University, Maastricht, The Netherlands
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Aalkjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Cristina-Oliveira M, Meireles K, Gil S, Cavalcante de Assis F, Geber-Júnior JC, Shinjo SK, Souza HPD, Santana ANDC, Swinton PA, Drager LF, Gualano B, Roschel H, Peçanha T. Carotid intima-media thickness and flow-mediated dilation do not predict acute in-hospital outcomes in hospitalized patients with COVID-19. Am J Physiol Heart Circ Physiol 2022; 322:H906-H913. [PMID: 35333112 PMCID: PMC9037392 DOI: 10.1152/ajpheart.00026.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Studies have suggested a potential role of endothelial dysfunction and atherosclerosis in the pathophysiology of COVID-19. Herein we tested whether brachial flow-mediated dilation (FMD) and carotid intima-media thickness (cIMT) measured upon hospital admission are associated with acute in-hospital outcomes in hospitalized COVID-19 patients. A total of 211 hospitalized patients with COVID-19 were submitted to assessments of FMD and mean and maximum cIMT (cIMTmean and cIMTmax) within the first 72 hours of hospital admission. Study primary outcome was a composite of intensive care unit admission, mechanical ventilation, or death during the hospitalization. These outcomes were also considered independently. Thrombotic events were included as a secondary outcome. Odds ratios (OR) and confidence intervals (CI) were calculated using unadjusted and adjusted multivariable logistic regression models. Eighty-eight (42%) participants demonstrated at least one of the composite outcomes. cIMTmean and cIMTmax were predictors of mortality and thrombotic events in the univariate analysis (cIMTmean and mortality: unadjusted OR 13.0[95%CI 1.7-105], P=0.015; cIMTmean and thrombotic events: unadjusted OR 13.0[95%CI 1.7-93]; P=0.013; cIMTmax and mortality: unadjusted OR 8.3[95%CI 1.3-53]; P=0.026; cIMTmax and thrombotic events: unadjusted OR 12.0[95%CI 2.0-74]; P=0.007). However, these associations were no longer present after adjustment for potential confounders (P=0.06-0.79). Additionally, FMD% was not associated with any outcome. In conclusion, cIMT and FMD are not independent predictors of clinical outcomes in hospitalized patients with COVID-19. These results suggest that subclinical atherosclerosis and endothelial dysfunction may not be the main drivers of COVID-19 complications in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fábio Cavalcante de Assis
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Departament of Emergency Medicine, Faculdade de Medicina, Universidade de Brasília, DF, Brazil.,Unidade de Hipertensão, Disciplina de Nefrologia e Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - João Carlos Geber-Júnior
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Samuel Katsuyuki Shinjo
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Heraldo Possolo de Souza
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Luciano F Drager
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Escola Superior de Ciências da Saúde do Distrito Federal - ESCS, DF, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.,Institute of Sport, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, grid.25627.34Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
54
|
Young BE, Padilla J, Finsen SH, Fadel PJ, Mortensen SP. Role of Endothelin-1 Receptors in Limiting Leg Blood Flow and Glucose Uptake During Hyperinsulinemia in Type 2 Diabetes. Endocrinology 2022; 163:6515918. [PMID: 35084435 PMCID: PMC8852254 DOI: 10.1210/endocr/bqac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/29/2023]
Abstract
Skeletal muscle insulin resistance is a hallmark of individuals with type 2 diabetes mellitus (T2D). In healthy individuals insulin stimulates vasodilation, which is markedly blunted in T2D; however, the mechanism(s) remain incompletely understood. Investigations in rodents indicate augmented endothelin-1 (ET-1) action as a major contributor. Human studies have been limited to young obese participants and focused exclusively on the ET-1 A (ETA) receptor. Herein, we have hypothesized that ETA receptor antagonism would improve insulin-stimulated vasodilation and glucose uptake in T2D, with further improvements observed during concurrent ETA + ET-1 B (ETB) antagonism. Arterial pressure (arterial line), leg blood flow (LBF; Doppler), and leg glucose uptake (LGU) were measured at rest, during hyperinsulinemia alone, and hyperinsulinemia with (1) femoral artery infusion of BQ-123, the selective ETA receptor antagonist (n = 10 control, n = 9 T2D) and then (2) addition of BQ-788 (selective ETB antagonist) for blockade of ETA and ETB receptors (n = 7 each). The LBF responses to hyperinsulinemia alone tended to be lower in T2D (controls: ∆161 ± 160 mL/minute; T2D: ∆58 ± 43 mL/minute, P = .08). BQ-123 during hyperinsulinemia augmented LBF to a greater extent in T2D (% change: controls: 14 ± 23%; T2D: 38 ± 21%, P = .029). LGU following BQ-123 increased similarly between groups (P = .85). Concurrent ETA + ETB antagonism did not further increase LBF or LGU in either group. Collectively, these findings suggest that during hyperinsulinemia ETA receptor activation restrains vasodilation more in T2D than controls while limiting glucose uptake similarly in both groups, with no further effect of ETB receptors (NCT04907838).
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: Benjamin E. Young, PhD, Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr., Pickard Hall, room 504, Arlington, TX 76019, USA.
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Stine H Finsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
55
|
Richey RE, Hemingway HW, Moore AM, Olivencia-Yurvati AH, Romero SA. Acute heat exposure improves microvascular function in skeletal muscle of aged adults. Am J Physiol Heart Circ Physiol 2022; 322:H386-H393. [PMID: 35060753 PMCID: PMC8858667 DOI: 10.1152/ajpheart.00645.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute heat exposure improves microvascular function in aged adults as assessed using reactive hyperemia. The cutaneous and skeletal muscle microcirculations are thought to contribute to this response, but this has never been confirmed due to the methodological challenges associated with differentiating blood flow between these vascular beds. We hypothesized that acute hot water immersion would improve endothelial-dependent, but not endothelial-independent vasodilation in the microcirculation of the vastus lateralis muscle in healthy aged adults. Participants (70 ± 5 yr) were immersed for 60 min in thermoneutral (36°C) or hot (40°C) water. Ninety minutes following immersion, skeletal muscle microdialysis was used to bypass the cutaneous circulation and directly assess endothelial-dependent and endothelial-independent vasodilation by measuring the local hyperemic response to graded infusions of acetylcholine (ACh, 27.5 and 55.0 mM) and sodium nitroprusside (SNP, 21 and 42 mM), respectively. The hyperemic response to 27.5 mM ACh did not differ between thermal conditions (P = 0.9). However, the hyperemic response to 55.0 mM ACh was increased with prior hot water immersion (thermoneutral immersion, 43.9 ± 23.2 mL/min/100 g vs. hot water immersion, 66.5 ± 25.5 mL/min/100 g; P < 0.01). Similarly, the hyperemic response to 21 mM SNP did not differ between thermal conditions (P = 0.3) but was increased following hot water immersion with the infusion of 42 mM SNP (thermoneutral immersion, 48.8 ± 25.6 mL/min/100 g vs. hot water immersion, 90.7 ± 53.5 mL/min/100 g; P < 0.01). These data suggest that acute heat exposure improves microvascular function in skeletal muscle of aged humans.NEW & NOTEWORTHY Acute heat exposure improves microvascular function in aged adults as assessed using reactive hyperemia. The cutaneous and skeletal muscle microcirculations are thought to contribute to this response, but this has never been confirmed due to the methodological challenges associated with differentiating blood flow between these vascular beds. Using the microdialysis technique to bypass the cutaneous circulation, we demonstrated that heat exposure improves endothelial-dependent and endothelial-independent vasodilation in the microcirculation of skeletal muscle in aged humans.
Collapse
Affiliation(s)
- Rauchelle E. Richey
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Holden W. Hemingway
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M. Moore
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H. Olivencia-Yurvati
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas,2Department of Surgery, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A. Romero
- 1Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
56
|
Hemingway HW, Richey RE, Moore AM, Shokraeifard AM, Thomas GC, Olivencia-Yurvati AH, Romero SA. Shear stress induced by acute heat exposure is not obligatory to protect against endothelial ischemia-reperfusion injury in humans. J Appl Physiol (1985) 2022; 132:199-208. [PMID: 34941435 PMCID: PMC8759960 DOI: 10.1152/japplphysiol.00748.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute heat exposure protects against endothelial ischemia-reperfusion (I/R) injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We tested the hypothesis that inhibiting the increase in shear stress induced by acute heat exposure would attenuate the protection of endothelial function following I/R injury. Nine (3 women) young healthy participants were studied under three experimental conditions: 1) thermoneutral control; 2) whole body heat exposure to increase body core temperature by 1.2°C; and 3) heat exposure + brachial artery compression to inhibit the temperature-dependent increase in shear stress. Endothelial function was assessed via brachial artery flow-mediated dilatation before (pre-I/R) and after (post-I/R) 20 min of arm ischemia followed by 20 min of reperfusion. Brachial artery shear rate was increased during heat exposure (681 ± 359 s-1), but not for thermoneutral control (140 ± 63 s-1; P < 0.01 vs. heat exposure) nor for heat + brachial artery compression (139 ± 60 s-1; P < 0.01 vs. heat exposure). Ischemia-reperfusion injury reduced flow-mediated dilatation following thermoneutral control (pre-I/R, 5.5 ± 2.9% vs. post-I/R, 3.8 ± 2.9%; P = 0.06), but was protected following heat exposure (pre-I/R, 5.8 ± 2.9% vs. post-I/R, 6.1 ± 2.9%; P = 0.5) and heat + arterial compression (pre-I/R, 4.4 ± 2.8% vs. post-I/R, 5.8 ± 2.8%; P = 0.1). Contrary to our hypothesis, our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury in humans.NEW & NOTEWORTHY Acute heat exposure protects against endothelial ischemia-reperfusion injury in humans. However, the mechanism/s mediating this protective effect remain unclear. We utilized arterial compression to inhibit the temperature-dependent increase in brachial artery blood velocity that occurs during acute heat exposure to isolate the contribution of shear stress to the protection of endothelial function following ischemia-reperfusion injury. Our findings demonstrate that shear stress induced by acute heat exposure is not obligatory to protect against endothelial I/R injury.
Collapse
Affiliation(s)
- Holden W. Hemingway
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E. Richey
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M. Moore
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Austin M. Shokraeifard
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Gabriel C. Thomas
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H. Olivencia-Yurvati
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas,2Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A. Romero
- 1Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
57
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
58
|
Molbo L, Hansen RK, Østergaard LR, Frøkjær JB, Larsen RG. Sex differences in microvascular function across lower leg muscles in humans. Microvasc Res 2021; 139:104278. [PMID: 34774583 DOI: 10.1016/j.mvr.2021.104278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
Collapse
Affiliation(s)
- Lars Molbo
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
59
|
Lindsey ML, LeBlanc AJ, Ripplinger CM, Carter JR, Kirk JA, Hansell Keehan K, Brunt KR, Kleinbongard P, Kassiri Z. Reinforcing rigor and reproducibility expectations for use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2021; 321:H819-H824. [PMID: 34524922 DOI: 10.1152/ajpheart.00418.2021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Amanda J LeBlanc
- Department of Physiology and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | | | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Kara Hansell Keehan
- Strategic Journal Development, American Physiological Society, Rockville, Maryland.,AJP-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
60
|
Amin SB, Mugele H, Dobler FE, Marume K, Moore JP, Lawley JS. Intra-rater reliability of leg blood flow during dynamic exercise using Doppler ultrasound. Physiol Rep 2021; 9:e15051. [PMID: 34617675 PMCID: PMC8496156 DOI: 10.14814/phy2.15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Developing an exercise model that resembles a traditional form of aerobic exercise and facilitates a complete simultaneous assessment of multiple parameters within the oxygen cascade is critically for understanding exercise intolerances in diseased populations. Measurement of muscle blood flow is a crucial component of such a model and previous studies have used invasive procedures to determine blood flow kinetics; however, this may not be appropriate in certain populations. Furthermore, current models utilizing Doppler ultrasound use isolated limb exercise and while these studies have provided useful data, the exercise model does not mimic the whole-body physiological response to continuous dynamic exercise. Therefore, we aimed to measure common femoral artery blood flow using Doppler ultrasound during continuous dynamic stepping exercise performed at three independent workloads to assess the within day and between-day reliability for such an exercise modality. We report a within-session coefficient of variation of 5.8% from three combined workloads and a between-day coefficient of variation of 12.7%. These values demonstrate acceptable measurement accuracy and support our intention of utilizing this noninvasive exercise model for an integrative assessment of the whole-body physiological response to exercise in a range of populations.
Collapse
Affiliation(s)
- Sachin B. Amin
- Department Sport ScienceDivision of Performance Physiology and PreventionUniversity InnsbruckInnsbruckAustria
| | - Hendrik Mugele
- Department Sport ScienceDivision of Performance Physiology and PreventionUniversity InnsbruckInnsbruckAustria
| | - Florian E. Dobler
- Department Sport ScienceDivision of Performance Physiology and PreventionUniversity InnsbruckInnsbruckAustria
| | | | | | - Justin S. Lawley
- Department Sport ScienceDivision of Performance Physiology and PreventionUniversity InnsbruckInnsbruckAustria
| |
Collapse
|
61
|
Hyldahl RD, Hafen PS, Nelson WB, Ahmadi M, Pfeifer B, Mehling J, Gifford JR. Passive muscle heating attenuates the decline in vascular function caused by limb disuse. J Physiol 2021; 599:4581-4596. [PMID: 34487346 DOI: 10.1113/jp281900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Limb disuse has profound negative consequences on both vascular and skeletal muscle health. The purpose of this investigation was to determine whether repeated application of passive heat, applied to the knee extensor muscles, could mitigate the detrimental effects of limb disuse on vascular function. This was a randomized, single-blinded placebo controlled trial. Twenty-one healthy volunteers (10 women, 11 men) underwent 10 days of unilateral lower limb immobilization and were randomized to receive either a daily 2 h sham (Imm) or heat treatment (Imm+H) using pulsed shortwave diathermy. Vascular function was assessed with Doppler ultrasound of the femoral artery and the passive leg movement technique. Biopsies of the vastus lateralis were also collected before and after the intervention. In Imm, femoral artery diameter (FAD) and PLM-induced hyperaemia (HYP) were reduced by 7.3% and 34.3%, respectively. Changes in both FAD (4% decrease; P = 0.0006) and HYP (7.8% increase; P = 0.003) were significantly attenuated in Imm+H. Vastus lateralis capillary density was not altered in either group. Immobilization significantly decreased expression of vascular endothelial growth factor (P = 0.006) and Akt (P = 0.001), and increased expression of angiopoietin 2 (P = 0.0004) over time, with no differences found between groups. Immobilization also upregulated elements associated with remodelling of the extracellular matrix, including matrix metalloproteinase 2 (P = 0.0046) and fibronectin (P = 0.0163), with no differences found between groups. In conclusion, limb immobilization impairs vascular endothelial function, but daily muscle heating via diathermy is sufficient to counteract this adverse effect. These are the first data to indicate that passive muscle heating mitigates disuse-induced vascular dysfunction. KEY POINTS: Limb disuse can be unavoidable for many of reasons (i.e. injury, bed rest, post-surgery), and can have significant adverse consequences for muscular and vascular health. We tested the hypothesis that declines in vascular function that result from lower limb immobilization could be mitigated by application of passive heat therapy. This report shows that 10 days of limb immobilization significantly decreases resistance artery diameter and vascular function, and that application of passive heat to the knee extensor muscle group each day for 2 h per day is sufficient to attenuate these declines. Additionally, muscle biopsy analyses showed that 10 days of heat therapy does not alter capillary density of the muscle, but upregulates multiple factors indicative of a vascular remodelling response. Our data demonstrate the utility of passive heat as a therapeutic tool to mitigate losses in lower limb vascular function that occur from disuse.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Paul S Hafen
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - W Bradley Nelson
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Brandon Pfeifer
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Jack Mehling
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
62
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
63
|
Hansen AB, Moralez G, Amin SB, Simspon LL, Hofstaetter F, Anholm JD, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte F, Romero SA, Hearon CM, Lawley JS. Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia. J Physiol 2021; 599:4021-4044. [PMID: 34245004 DOI: 10.1113/jp281730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.e. polycythaemia, several adaptations can occur to maintain exercise capacity, therefore making early identification of the disease difficult without overt symptomology. Pharmacological treatment of the background heightened sympathetic activity may impair the adaptive sympathetic response needed to match local oxygen delivery to active skeletal muscle oxygen demand and therefore inadvertently impair exercise capacity. ABSTRACT Excessive haematocrit and blood viscosity can increase blood pressure, cardiac work and reduce aerobic capacity. However, past clinical investigations have demonstrated that certain human high-altitude populations suffering from excessive erythrocytosis, Andeans with chronic mountain sickness, appear to have phenotypically adapted to life with polycythaemia, as their exercise capacity is comparable to healthy Andeans and even with sea-level inhabitants residing at high altitude. By studying this unique population, which has adapted through natural selection, this study aimed to describe how humans can adapt to life with polycythaemia. Experimental studies included Andeans with (n = 19) and without (n = 17) chronic mountain sickness, documenting exercise capacity and characterizing the transport of oxygen through blood rheology, including haemoglobin mass, blood and plasma volume and blood viscosity, cardiac output, blood pressure and changes in total and local vascular resistances through pharmacological dissection of α-adrenergic signalling pathways within non-active and active skeletal muscle. At rest, Andeans with chronic mountain sickness had a substantial plasma volume contraction, which alongside a higher red blood cell volume, caused an increase in blood viscosity yet similar total blood volume. Moreover, both morphological and functional alterations in the periphery normalized vascular shear stress and blood pressure despite high sympathetic nerve activity. During exercise, blood pressure, cardiac work and global oxygen delivery increased similar to healthy Andeans but were sustained by modifications in both non-active and active skeletal muscle vascular function. These findings highlight widespread physiological adaptations that can occur in response to polycythaemia, which allow the maintenance of exercise capacity.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simspon
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
64
|
Jacob DW, Harper JL, Ivie CL, Ott EP, Limberg JK. Sex differences in the vascular response to sympathetic activation during acute hypoxaemia. Exp Physiol 2021; 106:1689-1698. [PMID: 34187092 DOI: 10.1113/ep089461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sympathetically mediated vasoconstriction is preserved during hypoxaemia in humans, but our understanding of vascular control comes from predominantly male cohorts. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not? What is the main finding and its importance? Sympathetically mediated vasoconstriction is preserved or even enhanced during steady-state hypoxia in young men, and the peripheral vascular response to sympathetic activation during hypoxaemia is attenuated in young women. These data advance our understanding of sex-related differences in hypoxic vascular control. ABSTRACT Activation of the sympathetic nervous system causes vasoconstriction and a reduction in peripheral blood flow. Sympathetically mediated vasoconstriction may be attenuated during systemic hypoxia to maintain oxygen delivery; however, in predominantly male participants sympathetically mediated vasoconstriction is preserved or even enhanced during hypoxaemia. Given the potential for sex-specific differences in hypoxic vascular control, prior results are limited in application. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not. Healthy young men (n = 13, 25 ± 4 years) and women (n = 11, 24 ± 4 years) completed two trials consisting of a 2-min cold pressor test (CPT, a well-established sympathoexcitatory stimulus) during baseline normoxia and steady-state hypoxaemia. Beat-to-beat blood pressure (finger photoplethysmography) and forearm blood flow (venous occlusion plethysmography) were measured continuously. Total and forearm vascular conductance (TVC and FVC, respectfully) were calculated. A change (Δ) in TVC and FVC from steady-state during the last 1 min of CPT was calculated and differences between normoxia and systemic hypoxia were assessed. In men, the reduction in TVC during CPT was greater during hypoxia compared to normoxia (ΔTVC, P = 0.02), whereas ΔTVC did not differ between conditions in women (P = 0.49). In men, ΔFVC did not differ between normoxia and hypoxia (P = 0.92). In women, the reduction in FVC during CPT was attenuated during hypoxia (ΔFVC, P < 0.01). We confirm sympathetically mediated vasoconstriction is preserved or enhanced during hypoxaemia in young men, whereas peripheral vascular responsiveness to sympathetic activation during hypoxaemia is attenuated in young women. The results advance our understanding of sex-related differences in hypoxic vascular control.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Clayton L Ivie
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
65
|
Pekas EJ, Wooden TK, Yadav SK, Park SY. Body mass-normalized moderate dose of dietary nitrate intake improves endothelial function and walking capacity in patients with peripheral artery disease. Am J Physiol Regul Integr Comp Physiol 2021; 321:R162-R173. [PMID: 34161745 DOI: 10.1152/ajpregu.00121.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is characterized by the accumulation of atherosclerotic plaques in the lower extremity conduit arteries, which impairs blood flow and walking capacity. Dietary nitrate has been used to reduce blood pressure (BP) and improve walking capacity in PAD. However, a standardized dose for PAD has not been determined. Therefore, we sought to determine the effects of a body mass-normalized moderate dose of nitrate (0.11 mmol nitrate/kg) as beetroot juice on serum nitrate/nitrite, vascular function, walking capacity, and tissue oxygen utilization capacity in patients with PAD. A total of 11 patients with PAD received either nitrate supplement or placebo in a randomized crossover design. Total serum nitrate/nitrite, resting BP, brachial and popliteal artery endothelial function (flow-mediated dilation, FMD), arterial stiffness (pulse-wave velocity, PWV), augmentation index (AIx), maximal walking distance and time, claudication onset time, and skeletal muscle oxygen utilization were measured pre- and postnitrate and placebo intake. There were significant group × time interactions (P < 0.05) for serum nitrate/nitrite, FMD, BP, walking distance and time, and skeletal muscle oxygen utilization. The nitrate group showed significantly increased serum nitrate/nitrite (Δ1.32 μM), increased brachial and popliteal FMD (Δ1.3% and Δ1.7%, respectively), reduced peripheral and central systolic BP (Δ-4.7 mmHg and Δ-8.2 mmHg, respectively), increased maximal walking distance (Δ92.7 m) and time (Δ56.3 s), and reduced deoxygenated hemoglobin during walking. There were no changes in PWV, AIx, or claudication (P > 0.05). These results indicate that a body-mass normalized moderate dose of nitrate may be effective and safe for reducing BP, improving endothelial function, and improving walking capacity in patients with PAD.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Santosh K Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
66
|
Boparai RS, Skow RJ, Farooq S, Steinback CD, Davenport MH. Prenatal exercise and cardiovascular health (PEACH) study: The remote effect of aerobic exercise training on conduit artery and resistance vessel function. Appl Physiol Nutr Metab 2021; 46:1459-1468. [PMID: 34161737 DOI: 10.1139/apnm-2020-0902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed the impact of a structured lower-limb aerobic exercise training intervention during pregnancy on brachial artery endothelial function, shear rate and patterns, and forearm blood flow and reactive hyperemia. Twenty-seven pregnant women were recruited and randomized into either a control group (n=11; 31.0 ± 0.7 years), or an exercise intervention group (n=16; 32.6 ± 0.9 years; NCT02948439). The exercise group completed 40 minutes of aerobic exercise (50-70% heart rate reserve) 3-4 times per week, between the second and third trimester of pregnancy. Endothelial function was assessed using flow-mediated dilation (FMD, normalized for shear stress) pre- (16-20 weeks) and post-intervention (34-36 weeks). The exercise training group experienced an attenuated increase in mean arterial pressure (MAP) relative to the control group (∆MAP exercise: +2± 2 mmHg vs. control: +7±3 mmHg; p=0.044) from pre- to post-intervention. % FMD change corrected for shear stress was not different between groups (p=0.460); however, the post occlusion mean flow rate (exercise: 437±32 mL/min vs. control: 364±35 mL/min; p=0.001) and post occlusion anterograde flow rate (exercise: 438±32 mL/min vs. control: 364±46 mL/min;p=0.001) were larger for the exercise training group compared to controls, post-intervention. Although endothelial function was not different between groups, we observed an increase in microcirculatory dilatory capacity, as suggested by the augmented reactive hyperemia in the exercise training group. Novelty: • Endothelial function was not altered with exercise training during pregnancy. • Exercise training did contribute to improved cardiovascular outcomes, which may have been associated with augmented reactive hyperaemia, indicative of increased microcirculatory dilatory capacity.
Collapse
Affiliation(s)
- Rakhbeer Singh Boparai
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada;
| | - Rachel J Skow
- University of Alberta, Faculty of Physical Education and Recreation, 8602 112St NW, 1-052 Li Ka Shing Center, Edmonton, Alberta, Canada, T6G 2E3;
| | - Sauleha Farooq
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada;
| | - Craig D Steinback
- University of Alberta, Faculty of Physical Education and Recreation, -1059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St., Edmonton, Alberta, Canada, T6G2E1;
| | - Margie H Davenport
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Program for Pregnancy and Postpartum Health, 1-059A Li Ka Shing Center for Health Research Innovation, Edmonton, Alberta, Canada, T6G 2E1;
| |
Collapse
|
67
|
Trinity JD, Craig JC, Fermoyle CC, McKenzie AI, Lewis MT, Park SH, Rondina MT, Richardson RS. Impact of presymptomatic COVID-19 on vascular and skeletal muscle function: a case study. J Appl Physiol (1985) 2021; 130:1961-1970. [PMID: 34002634 PMCID: PMC8213510 DOI: 10.1152/japplphysiol.00236.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The impact of COVID-19 has been largely described after symptom development. Although the SARS-CoV-2 virus elevates heart rate (HR) prior to symptom onset, whether this virus evokes other presymptomatic alterations is unknown. This case study details the presymptomatic impact of COVID-19 on vascular and skeletal muscle function in a young woman [24 yr, 173.5 cm, 89 kg, body mass index (BMI): 29.6 kg·m-2]. Vascular and skeletal muscle function were assessed as part of a separate study with the first and second visits separated by 2 wk. On the evening following the second visit, the participant developed a fever and a rapid antigen test confirmed a positive COVID-19 diagnosis. Compared with the first visit, the participant presented with a markedly elevated HR (∼30 beats/min) and a lower mean blood pressure (∼8 mmHg) at the second visit. Vascular function measured by brachial artery flow-mediated dilation, reactive hyperemia, and passive leg movement were all noticeably attenuated (25%-65%) as was leg blood flow during knee extension exercise. Muscle strength was diminished as was ADP-stimulated respiration (30%), assessed in vitro, whereas there was a 25% increase in the apparent Km. Lastly, an elevation in IL-10 was observed prior to symptom onset. Notably, 2.5 mo after diagnosis symptoms of fatigue and cough were still present. Together, these findings provide unique insight into the physiological responses immediately prior to onset of COVID-19 symptoms; they suggest that SARS-CoV-2 negatively impacts vascular and skeletal muscle function prior to the onset of common symptoms and may set the stage for the widespread sequelae observed following COVID-19 diagnosis.NEW & NOTEWORTHY This unique case study details the impact of SARS-CoV-2 infection on vascular and skeletal muscle function in a young predominantly presymptomatic woman. Prior to COVID-19 diagnosis, substantial reductions in vascular, skeletal muscle, and mitochondrial function were observed along with an elevation in IL-10. This integrative case study indicates that the presymptomatic impact of COVID-19 is widespread and may help elucidate the acute and long-term sequelae of this disease.
Collapse
Affiliation(s)
- Joel D. Trinity
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah,3Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jesse C. Craig
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah
| | - Caitlin C. Fermoyle
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah
| | - Alec I. McKenzie
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah
| | - Matthew T. Lewis
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,3Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Matthew T. Rondina
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah,4Molecular Medicine Program, Division of General Internal Medicine, Departments of Internal Medicine and Pathology, University of Utah, Salt Lake City, Utah
| | - Russell S. Richardson
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah,2Division of Geriatrics, Department of Internal Medicine, grid.223827.eUniversity of Utah, Salt Lake City, Utah,3Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
68
|
Hoopes EK, Berube FR, D'Agata MN, Patterson F, Farquhar WB, Edwards DG, Witman MAH. Sleep duration regularity, but not sleep duration, is associated with microvascular function in college students. Sleep 2021; 44:5903410. [PMID: 32905591 DOI: 10.1093/sleep/zsaa175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES Vascular dysfunction is a hypothesized mechanism linking poor sleep habits to an increased incidence of cardiovascular diseases (CVDs). However, the vascular profile associated with free-living sleep duration and sleep regularity has not been well elucidated, particularly in young adults. Thus, this study aimed to evaluate the associations between mean sleep duration, regularity in sleep duration, and peripheral vascular function in young adult college students. METHODS Fifty-one healthy undergraduate students (20 ± 1 years) completed 14 days of 24-hour wrist actigraphy and subsequent vascular assessments. Macrovascular function was measured using brachial artery flow-mediated dilation (FMD) while microvascular function was measured via passive leg movement (PLM). RESULTS Mean sleep duration was unrelated to FMD and PLM. Conversely, more irregular sleep duration (14-day sleep duration standard deviation [SD]) was unfavorably associated with all three measures of PLM-induced hyperemia (peak leg blood flow [LBF], p = 0.01; change in LBF from baseline to peak, p < 0.01; LBF area under the curve, p < 0.01), and remained significant in regression models which adjusted for sex, body mass index, blood pressure, physical activity, alcohol and caffeine consumption, and sleep duration (all p < 0.05). When using a median split to dichotomize "low" and "high" sleep duration SD groups, those demonstrating high variability in sleep duration exhibited ~45% lower PLM responses compared with those demonstrating low variability. CONCLUSIONS Irregular sleep duration is associated with poorer microvascular function as early as young adulthood. These findings support the growing body of evidence that irregular sleep patterns may be an independent and modifiable risk factor for CVD.
Collapse
Affiliation(s)
- Elissa K Hoopes
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| | - Felicia R Berube
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| | - Michele N D'Agata
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| | - Freda Patterson
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| | - Melissa A H Witman
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE
| |
Collapse
|
69
|
Limberg JK, Soares RN, Power G, Harper JL, Smith JA, Shariffi B, Jacob DW, Manrique-Acevedo C, Padilla J. Hyperinsulinemia blunts sympathetic vasoconstriction: a possible role of β-adrenergic activation. Am J Physiol Regul Integr Comp Physiol 2021; 320:R771-R779. [PMID: 33851554 DOI: 10.1152/ajpregu.00018.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
70
|
Craig JC, Broxterman RM, Cerbie JF, La Salle DT, Roundy CS, Jarrett CL, Richardson RS, Trinity JD. The dynamic adjustment of mean arterial pressure during exercise: a potential tool for discerning cardiovascular health status. J Appl Physiol (1985) 2021; 130:1544-1554. [PMID: 33830814 DOI: 10.1152/japplphysiol.00057.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulation of mean arterial pressure (MAP) during exercise has important physiological and clinical implications. Kinetics analysis on numerous physiological variables following the transition from unloaded-to-loaded exercise has revealed important information regarding their control. Surprisingly, the dynamic response of MAP during this transition remains to be quantified. Therefore, ten healthy participants (5/5 M/F, 24 ± 3 yr) completed repeated transitions from unloaded to moderate- and heavy-intensity dynamic single-leg knee-extensor exercise to investigate the on-kinetics of MAP. Following the transition to loaded exercise, MAP increased in a first-order dynamic manner, subsequent to a time delay (moderate: 23 ± 10; heavy: 19 ± 9 s, P > 0.05) at a speed (τ, moderate: 59 ± 30; heavy: 66 ± 19 s, P > 0.05), which did not differ between intensities, but the MAP amplitude was doubled during heavy-intensity exercise (moderate: 12 ± 5; heavy: 24 ± 8 mmHg, P < 0.001). The reproducibility [coefficient of variation (CV)] during heavy intensity for unloaded baseline, amplitude, and mean response time, when assessed as individual transitions, was 7 ± 1%, 18 ± 2%, and 25 ± 4%, respectively. Averaging two transitions improved the CVs to 4 ± 1%, 8 ± 2%, and 13 ± 3%, respectively. Preliminary findings supporting the clinical relevance of evaluating MAP kinetics in middle-aged hypertensive (n = 5) and, age-matched, normotensive (n = 5) participants revealed an exaggerated MAP response in both older groups (P < 0.05), but the MAP response was slowed only for the patients with hypertension (P < 0.05). It is concluded that kinetics modeling of MAP is practical for heavy-intensity knee-extensor exercise and may provide insight into cardiovascular health and the effect of aging.NEW & NOTEWORTHY Kinetics analysis of physiological variables following workload transitions provides important information, but this has not been performed on mean arterial pressure (MAP), despite the clear clinical importance of this variable. This investigation reveals that kinetic modeling of MAP following unloaded-to-loaded knee-extensor exercise is practical and repeatable. Additional preliminary findings in hypertensive and, age-matched, normotensive subjects suggest that MAP kinetics may provide insight into cardiovascular health and the effect of aging.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - James F Cerbie
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Caleb S Roundy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
71
|
Lindsey ML, Kassiri Z, Hansell Keehan K, Brunt KR, Carter JR, Kirk JA, Kleinbongard P, LeBlanc AJ, Ripplinger CM. We are the change we seek. Am J Physiol Heart Circ Physiol 2021; 320:H1411-H1414. [PMID: 33710925 PMCID: PMC8260391 DOI: 10.1152/ajpheart.00090.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Merry L. Lindsey
- 1Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska,2Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Zamaneh Kassiri
- 3Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Kara Hansell Keehan
- 4American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland
| | - Keith R. Brunt
- 5Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jason R. Carter
- 6Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Jonathan A. Kirk
- 7Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Petra Kleinbongard
- 8Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Amanda J. LeBlanc
- 9Department of Physiology and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Crystal M. Ripplinger
- 10Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
72
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Casey DP. Glycemic management is inversely related to skeletal muscle microvascular endothelial function in patients with type 2 diabetes. Physiol Rep 2021; 9:e14764. [PMID: 33660935 PMCID: PMC7931618 DOI: 10.14814/phy2.14764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Microvascular endothelial dysfunction precipitates cardiovascular disease mortality in patients with type 2 diabetes mellitus (T2DM). However, the relationship between glycemic management and microvascular endothelial function of these patients remains ill defined. We investigated the association between skeletal muscle microvascular endothelial function with glycemic management (HbA1c) and responses to an oral glucose challenge (OGTT) in 30 patients with T2DM (59 ± 9 years, 31.2 ± 5.1 kg/m2 , HbA1c = 7.3 ± 1.3%). On study day 1, microvascular endothelial function was quantified as the increase (Δ from rest) in forearm vascular conductance (FVC, ml/min/100 mmHg) during intra-arterial acetylcholine infusion at 4.0 and 8.0 μg/dl forearm volume/min (ACh4 and ACh8, respectively). [Glucose] and [insulin] were measured in a fasted state as well as following a 75 g OGTT on a second day with an additional fasting blood sample collected to measure HbA1c. FVC increased (Δ) 221 ± 118 and 251 ± 144 ml/min/100 mm Hg during ACh4 and ACh8 trials, respectively (p < 0.05 between doses). [Glucose] and [insulin] increased at the 1-h time point, relative to fasting levels, and remained elevated 2 h post-consumption (p < 0.05 for both variables and time points). [Glucose] nor [insulin], fasting or during the OGTT, were associated with ΔFVC during ACh4 or ACh8, respectively (p = 0.11-0.86), although HbA1c was inversely related (r = -0.47 and -0.46, respectively, p < 0.01 for both). Patients whose HbA1c met the ADA's therapeutic target of ≤7.0% had greater ΔFVC to ACh4 (272 ± 147 vs. 182 ± 74 ml/100 mm Hg/min) and ACh8 (324 ± 171 vs. 196 ± 90 ml/100 mm Hg/min, p < 0.05 for both trials) compared to those with >7.0%, respectively. Our data show glycemic management is related to acetylcholine-mediated vasodilation (e.g., microvascular endothelial function) in skeletal muscle of patients with T2DM.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William E Hughes
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
73
|
King TJ, Coates AM, Tremblay JC, Slysz JT, Petrick HL, Pignanelli C, Millar PJ, Burr JF. Vascular Function Is Differentially Altered by Distance after Prolonged Running. Med Sci Sports Exerc 2021; 53:597-605. [PMID: 32804900 DOI: 10.1249/mss.0000000000002493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Ultraendurance exercise is steadily growing in popularity; however, the effect of increasingly prolonged durations of exercise on the vascular endothelium is unknown. The aim of this study was to characterize the effect of various ultramarathon running distances on vascular form and function. METHODS We evaluated vascular endothelial function via flow-mediated dilation (FMD) in the superficial femoral artery, as well as microvascular function, inflammatory factors, and central artery stiffness, before and after participants completed 25-km (7M:2F), 50-km (11M:10F), 80-km (9M:4F), or 160-km (9M:2F) trail races all run on the same day and course. RESULTS Completion required 149 ± 20, 386 ± 111, 704 ± 130, and 1470 ± 235 min, with corresponding average paces of 6.0 ± 0.8, 7.7 ± 2.2, 8.6 ± 1.3, and 9.6 ± 1.3 min·km-1, respectively. At baseline, there were no differences in participant characteristics across race distance groups. Shear rate stimulus trended toward an increase after the race (P = 0.07), but resting postrace artery diameter (P < 0.001) was elevated to a similar extent in all conditions. There was a reduction in FMD after the 50-km race (Δ -1.9% ± 2.2%, P < 0.01), but not the 25-km (Δ +0.3% ± 2.9%, P = 0.8), the 80-km (Δ -1.5% ± 3.2%, P = 0.1), or the 160-km (Δ +0.5% ± 2.5%, P = 0.5) race. Inflammatory markers increased most after 160 km, but arterial stiffness and microvascular function were not differently affected by race distance. CONCLUSIONS Although the superficial femoral artery baseline diameter was larger postexercise regardless of race distance, only the 50-km race reduced FMD, whereas a short-duration higher-intensity race (25 km) and longer-duration lower-intensity races (160 km) did not. Therefore, a 50-km ultramarathon may represent the intersection between higher-intensity exercise over a prolonged duration, causing reduced endothelial function not seen in shorter or longer distances.
Collapse
Affiliation(s)
- Trevor J King
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Alexandra M Coates
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, CANADA
| | - Joshua T Slysz
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | | | - Philip J Millar
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Jamie F Burr
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| |
Collapse
|
74
|
Effects of sleep deprivation on endothelial function in adult humans: a systematic review. GeroScience 2021; 43:137-158. [PMID: 33558966 DOI: 10.1007/s11357-020-00312-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/06/2020] [Indexed: 01/01/2023] Open
Abstract
Sleep deprivation is highly prevalent and is associated with increased cardiovascular disease (CVD) morbidity and mortality. Age-related alterations in sleep and chronobiology may exaggerate CVD susceptibility in older individuals. The mechanisms responsible for the association between sleep deprivation and CVD are not fully understood, but endothelial dysfunction may play a central role. Our objective was to conduct a systematic literature review to evaluate the evidence on the effects of sleep deprivation on endothelial function (EF). This review adhered to the PRISMA guidelines and was pre-registered with PROSPERO (#CRD42020192485, 07/24/2020). We searched PubMed, Web of Science, Embase, and Cochrane Library for articles published through May 1, 2020. Eligibility criteria included publication in English and use of well-established EF methodologies in adult humans. Two investigators independently performed the literature search, study selection, data extraction, risk-of-bias assessment, and qualitative data synthesis. Out of 3571 articles identified, 24 articles were included in the systematic review. Main findings include the following: (1) shorter sleep duration is associated with lower macrovascular EF; (2) not sleeping 7-9 h/night is linked with impaired microvascular EF; (3) sleep restriction impairs micro- and macrovascular EF; (4) acute total sleep deprivation impairs micro- and macrovascular EF but data on macrovascular EF are less consistent; and (5) shift work impairs macrovascular EF. In conclusion, sleep deprivation impairs EF, which may explain the link between insufficient sleep and CVD. Future investigations should fully elucidate the underlying mechanisms and develop strategies to combat the adverse endothelial effects of sleep deprivation across the lifespan.
Collapse
|
75
|
Rotarius TR, Lauver JD, Thistlethwaite JR, Scheuermann BW. Muscle blood flow is independent of conduit artery diameter following prior vasodilation in males. Physiol Rep 2021; 9:e14698. [PMID: 33427413 PMCID: PMC7798049 DOI: 10.14814/phy2.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Abstract
At the onset of exercise in humans, muscle blood flow (MBF) increases to a new steady‐state that closely matches the metabolic demand of exercise. This increase has been attributed to “contraction‐induced vasodilation,” comprised of the skeletal muscle pump and rapid vasodilatory mechanisms. While most research in this area has focused on forearm blood flow (FBF) and vascular conductance, it is possible that separating FBF into diameter and blood velocity can provide more useful information on MBF regulation downstream of the conduit artery. Therefore, we attempted to dissociate the matching of oxygen delivery and oxygen demand by administering glyceryl tri‐nitrate (GTN) prior to handgrip exercise. Eight healthy males (29 ± 9 years) performed two trials consisting of two bouts of rhythmic handgrip exercise (30 contractions·min−1 at 5% of maximum) for 6 min, one for each control and GTN (0.4 mg sublingual) condition. Administration of GTN resulted in a 12% increase in resting brachial artery diameter that persisted throughout the duration of exercise (CON: 0.50 ± 0.01 cm; GTN: 0.56 ± 0.01 cm, p < 0.05). Resting FBF was greater following GTN administration compared to control (p < 0.05); however, differences in FBF disappeared following the onset of muscle contractions. Our results indicate that the matching of FBF to oxygen demand during exercise is not affected by prior vasodilation, so that any over‐perfusion is corrected at the onset of exercise. Additionally, our findings provide further evidence that the regulation of vascular tone within the microvasculature is independent of the conduit artery diameter.
Collapse
Affiliation(s)
- Timothy R Rotarius
- Department of Exercise Science and Athletic Training, Adrian College, Adrian, MI, USA
| | - Jakob D Lauver
- Department of Kinesiology, Coastal Carolina University, Conway, SC, USA
| | | | - Barry W Scheuermann
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
76
|
Young BE, Greaney JL, Keller DM, Fadel PJ. Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol Heart Circ Physiol 2021; 320:H942-H953. [PMID: 33416453 DOI: 10.1152/ajpheart.00926.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ever since their origin more than one half-century ago, microneurographic recordings of sympathetic nerve activity have significantly advanced our understanding of the generation and regulation of central sympathetic outflow in human health and disease. For example, it is now appreciated that a myriad of disease states exhibit chronic sympathetic overactivity, a significant predictor of cardiovascular morbidity and mortality. Although microneurographic recordings allow for the direct quantification of sympathetic outflow, they alone do not provide information with respect to the ensuing sympathetically mediated vasoconstriction and blood pressure (BP) response. Therefore, the study of vascular and/or BP responses to sympathetic outflow (i.e., sympathetic transduction) has now emerged as an area of growing interest within the field of neural cardiovascular control in human health and disease. To date, studies have primarily examined sympathetic transduction under two distinct paradigms: when reflexively evoking sympatho-excitation through the induction of a laboratory stressor (i.e., sympathetic transduction during stress) and/or following spontaneous bursts of sympathetic outflow occurring under resting conditions (i.e., sympathetic transduction at rest). The purpose of this brief review is to highlight how our physiological understanding of sympathetic transduction has been advanced by these studies and to evaluate the primary analytical techniques developed to study sympathetic transduction in humans. We also discuss the framework by which the assessment of sympathetic transduction during stress reflects a fundamentally different process relative to sympathetic transduction at rest and why findings from investigations using these different techniques should be interpreted as such and not necessarily be considered one and the same.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
77
|
Petterson JL, O'Brien MW, Johns JA, Chiasson J, Kimmerly DS. Influence of prostaglandins and endothelial-derived hyperpolarizing factors on brachial and popliteal endothelial-dependent function in young adults. J Appl Physiol (1985) 2021; 130:17-25. [PMID: 33119467 DOI: 10.1152/japplphysiol.00698.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous flow-mediated dilation (FMD) and low-flow-mediated constriction (L-FMC) responses have been reported between upper- and lower-limb arteries. Radial artery L-FMC, but not FMD, responses are blunted when endothelial-derived hyperpolarizing factors (EDHFs) or prostaglandin production is inhibited in young adults. However, it is unknown if these mechanisms similarly impact endothelial-dependent responses in the brachial (BA) and popliteal (POP) arteries. We tested whether BA- and POP-L-FMC and FMD would be influenced by independent EDHF and prostaglandin inhibition. Eighteen participants (23 ± 3 yr; 6♀) completed three randomized and double-blinded ultrasound assessments following ingestion of an opaque capsule containing maltodextrin (control), 150 mg of fluconazole (EDHF inhibition), or 500 mg of aspirin (prostaglandin inhibition). POP resting diameter was reduced following fluconazole administration (6.13 ± 0.63 mm vs. 6.19 ± 0.65 mm in control, P = 0.03). Compared with control, fluconazole also blunted the relative L-FMC responses in both the BA (-2.1 ± 0.8% vs. -0.8 ± 1.0%, P = 0.001) and POP (-1.7 ± 1.1% vs. -0.8 ± 0.9%, P = 0.009). In contrast, aspirin did not impact either the BA (-1.9 ± 0.7%) or POP-L-FMC (-1.3 ± 0.6%) responses (both, P > 0.35). The FMD response was unchanged following fluconazole or aspirin administration in either artery (both, P > 0.36). Our findings demonstrate that EDHF mediates L-FMC responses in both the brachial and popliteal arteries. Complementary to the nitric oxide-mediated FMD response, L-FMC appears to provide information regarding the EDHF pathway. Future research should uncover if these mechanisms impact older adults and/or patient populations characterized by vascular endothelial dysfunction associated with low aerobic fitness and habitual physical activity levels.NEW & NOTEWORTHY We compared changes in upper- and lower-limb artery endothelial-dependent vasodilatory and vasoconstrictor responses between control, prostaglandin inhibition, and endothelial-derived hyperpolarizing factor inhibition conditions. Neither prostaglandins nor endothelial-derived hyperpolarizing factor influenced flow-mediated dilation responses in either the brachial or popliteal artery. In contrast, endothelial-derived hyperpolarizing factor, but not prostaglandins, reduced resting brachial artery blood flow and shear rate and resting popliteal artery diameter, as well as low-flow-mediated constriction responses in both the popliteal and brachial arteries.
Collapse
Affiliation(s)
- Jennifer L Petterson
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Myles W O'Brien
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jarrett A Johns
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jack Chiasson
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
78
|
Bunsawat K, Ratchford SM, Alpenglow JK, Park SH, Jarrett CL, Stehlik J, Smith AS, Richardson RS, Wray DW. Sacubitril-valsartan improves conduit vessel function and functional capacity and reduces inflammation in heart failure with reduced ejection fraction. J Appl Physiol (1985) 2021; 130:256-268. [PMID: 33211601 PMCID: PMC7944927 DOI: 10.1152/japplphysiol.00454.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The Prospective comparison of ARNI with angiotensin-converting enzyme inhibitor to Determine Impact on Global Mortality and morbidity in Heart Failure trial identified a marked reduction in the risk of death and hospitalization for heart failure in patients with heart failure with reduced ejection fraction (HFrEF) treated with sacubitril-valsartan (trade name Entresto), but the physiological processes underpinning these improvements are unclear. We tested the hypothesis that treatment with sacubitril-valsartan improves peripheral vascular function, functional capacity, and inflammation in patients with HFrEF. We prospectively studied patients with HFrEF (n = 11, 10 M/1 F, left ventricular ejection fraction = 27 ± 8%) on optimal, guideline-directed medical treatment who were subsequently prescribed sacubitril-valsartan (open-label, uncontrolled, and unblinded). Peripheral vascular function [brachial artery flow-mediated dilation (FMD, conduit vessel function) and reactive hyperemia (RH, microvascular function)], functional capacity [six-minute walk test (6MWT) distance], and the proinflammatory biomarkers tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were obtained at baseline and at 1, 2, and 3 mo of treatment. %FMD improved after 1 mo of treatment, and this favorable response persisted for months 2 and 3 (baseline: 3.25 ± 1.75%; 1 mo: 5.23 ± 2.36%; 2 mo: 5.81 ± 1.79%; 3 mo: 6.35 ± 2.77%), whereas RH remained unchanged. 6MWT distance increased at months 2 and 3 (baseline: 420 ± 92 m; 1 mo: 436 ± 98 m; 2 mo: 465 ± 115 m; 3 mo: 460 ± 110 m), and there was a sustained reduction in TNF-α (baseline: 2.38 ± 1.35 pg/mL; 1 mo: 2.06 ± 1.52 pg/mL; 2 mo: 1.95 ± 1.34 pg/mL; 3 mo: 1.92 ± 1.37 pg/mL) and a reduction in IL-18 at month 3 (baseline: 654 ± 150 pg/mL; 1 mo: 595 ± 140 pg/mL; 2 mo: 601 ± 176 pg/mL; 3 mo: 571 ± 127 pg/mL). This study provides new evidence for the potential of this new drug class to improve conduit vessel function, functional capacity, and inflammation in patients with HFrEF.NEW & NOTEWORTHY We observed an approximately twofold improvement in conduit vessel function (brachial artery FMD), increased functional capacity (6MWT distance), and a reduction in inflammation (TNF-α and IL-18) following 3 mo of sacubitril-valsartan therapy. These findings provide important new information concerning the physiological mechanisms by which this new drug class provokes favorable changes in HFrEF pathophysiology.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Stephen M Ratchford
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Health & Exercise Science, Appalachian State University, Boone, North Carolina
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Josef Stehlik
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Adam S Smith
- Department of Pharmacy Services, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
79
|
Trinity JD, Kwon OS, Broxterman RM, Gifford JR, Kithas AC, Hydren JR, Jarrett CL, Shields KL, Bisconti AV, Park SH, Craig JC, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Am J Physiol Heart Circ Physiol 2020; 320:H668-H678. [PMID: 33306447 DOI: 10.1152/ajpheart.00784.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh Sung Kwon
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise Science, Brigham Young University, Provo, Utah
| | - Andrew C Kithas
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jay R Hydren
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Angela V Bisconti
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
80
|
Tremblay JC, Ainslie PN, Turner R, Gatterer H, Schlittler M, Woyke S, Regli IB, Strapazzon G, Rauch S, Siebenmann C. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. Am J Physiol Heart Circ Physiol 2020; 319:H980-H994. [PMID: 32886005 DOI: 10.1152/ajpheart.00597.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-altitude exposure typically reduces endothelial function, and this is modulated by hemoconcentration resulting from plasma volume contraction. However, the specific impact of hypobaric hypoxia independent of external factors (e.g., cold, varying altitudes, exercise, diet, and dehydration) on endothelial function is unknown. We examined the temporal changes in blood viscosity, shear stress, and endothelial function and the impact of plasma volume expansion (PVX) during exposure to hypobaric hypoxia while controlling for external factors. Eleven healthy men (25 ± 4 yr, mean ± SD) completed two 4-day chamber visits [normoxia (NX) and hypobaric hypoxia (HH; equivalent altitude, 3,500 m)] in a crossover design. Endothelial function was assessed via flow-mediated dilation in response to transient (reactive hyperemia; RH-FMD) and sustained (progressive handgrip exercise; SS-FMD) increases in shear stress before entering and after 1, 6, 12, 48, and 96 h in the chamber. During HH, endothelial function was also measured on the last day after PVX to preexposure levels (1,140 ± 320 mL balanced crystalloid solution). Blood viscosity and arterial shear stress increased on the first day during HH compared with NX and remained elevated at 48 and 96 h (P < 0.005). RH-FMD did not differ during HH compared with NX and was unaffected by PVX despite reductions in blood viscosity (P < 0.05). The stimulus-response slope of increases in shear stress to vasodilation during SS-FMD was preserved in HH and increased by 44 ± 73% following PVX (P = 0.023). These findings suggest that endothelial function is maintained in HH when other stressors are absent and that PVX improves endothelial function in a shear-stress stimulus-specific manner.NEW & NOTEWORTHY Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | | |
Collapse
|
81
|
Amin SB, Hansen AB, Mugele H, Willmer F, Gross F, Reimeir B, Cornwell WK, Simpson LL, Moore JP, Romero SA, Lawley JS. Whole body passive heating versus dynamic lower body exercise: a comparison of peripheral hemodynamic profiles. J Appl Physiol (1985) 2020; 130:160-171. [PMID: 33090910 DOI: 10.1152/japplphysiol.00291.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive heating has emerged as a therapeutic intervention for the treatment and prevention of cardiovascular disease. Like exercise, heating increases peripheral artery blood flow and shear rate, which is thought to be a primary mechanism underpinning endothelium-mediated vascular adaptation. However, few studies have compared the increase in arterial blood flow and shear rate between dynamic exercise and passive heating. In a fixed crossover design study, 15 moderately trained healthy participants (25.6 ± 3.4 yr) (5 female) underwent 30 min of whole body passive heating (42°C bath), followed on a separate day by 30 min of semi-recumbent stepping exercise performed at two workloads corresponding to the increase in cardiac output (Qc) (Δ3.72 L·min-1) and heart rate (HR) (Δ40 beats/min) recorded at the end of passive heating. At the same Qc (Δ3.72 L·min-1 vs. 3.78 L·min-1), femoral artery blood flow (1,599 mL/min vs. 1,947 mL/min) (P = 0.596) and shear rate (162 s-1 vs. 192 s-1) (P = 0.471) measured by ultrasonography were similar between passive heating and stepping exercise. However, for the same HRMATCHED intensity, femoral blood flow (1,599 mL·min-1 vs. 2,588 mL·min-1) and shear rate (161 s-1 vs. 271 s-1) were significantly greater during exercise, compared with heating (both P = <0.001). The results indicate that, for moderately trained individuals, passive heating increases common femoral artery blood flow and shear rate similar to low-intensity continuous dynamic exercise (29% V̇o2max); however, exercise performed at a higher intensity (53% V̇o2max) results in significantly larger shear rates toward the active skeletal muscle.NEW & NOTEWORTHY Passive heating and exercise increase blood flow through arteries, generating a frictional force, termed shear rate, which is associated with positive vascular health. Few studies have compared the increase in arterial blood flow and shear rate elicited by passive heating with that elicited by dynamic continuous exercise. We found that 30 min of whole body passive hot-water immersion (42°C bath) increased femoral artery blood flow and shear rate equivalent to exercising at a moderate intensity (∼57% HRmax).
Collapse
Affiliation(s)
- Sachin B Amin
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Alexander B Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hendrik Mugele
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Felix Willmer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Gross
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin Reimeir
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lydia L Simpson
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
82
|
Hansen RK, Samani A, Laessoe U, Handberg A, Larsen RG. Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users: protocol for a randomised controlled trial. BMJ Open 2020; 10:e040727. [PMID: 33067301 PMCID: PMC7569950 DOI: 10.1136/bmjopen-2020-040727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12 weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (eg, vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI. METHODS AND ANALYSIS A randomised controlled trial will compare 12 weeks of upper-body rowing exercise, 30 min three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post) and 6 months after the termination of the intervention period (follow-up). Outcomes will include inflammatory (eg, C reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function and autonomic nervous system function. ETHICS AND DISSEMINATION This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (J.nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. TRIAL REGISTRATION NUMBER NCT04390087.
Collapse
Affiliation(s)
- Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Uffe Laessoe
- Department of Research and Development, University College of Northern Jutland (UCN), Aalborg, Denmark
- Physical Therapy Department, University College of Northern Jutland (UCN), Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
83
|
Hemingway HW, Moore AM, Olivencia-Yurvati AH, Romero SA. Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans. Am J Physiol Regul Integr Comp Physiol 2020; 319:R666-R672. [PMID: 33074709 DOI: 10.1152/ajpregu.00257.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endoplasmic reticulum stress contributes to ischemia-reperfusion (I/R) injury in rodent and cell models. However, the contribution of endoplasmic reticulum stress in the pathogenesis of endothelial I/R injury in humans is unknown. We tested the hypothesis that compared with placebo, inhibition of endoplasmic reticulum stress via ingestion of tauroursodeoxycholic acid would prevent the attenuation of endothelium-dependent vasodilation following I/R injury. Twelve young adults (6 women) were studied following ingestion of a placebo or 1,500 mg tauroursodeoxycholic acid (TUDCA). Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasonography) before and after I/R injury, which was induced by 20 min of arm ischemia followed by 20 min of reperfusion. Endothelium-independent vasodilation (glyceryl trinitrate-mediated vasodilation) was also assessed after I/R injury. Compared with placebo, TUDCA ingestion increased circulating plasma concentrations by 145 ± 90 ng/ml and increased concentrations of the taurine unconjugated form, ursodeoxycholic acid, by 560 ± 156 ng/ml (both P < 0.01). Ischemia-reperfusion injury attenuated endothelium-dependent vasodilation, an effect that did not differ between placebo (pre-I/R, 5.0 ± 2.1% vs. post-I/R, 3.5 ± 2.2%) and TUDCA (pre-I/R, 5.6 ± 2.1% vs. post-I/R, 3.9 ± 2.1%; P = 0.8) conditions. Similarly, endothelium-independent vasodilation did not differ between conditions (placebo, 19.6 ± 4.8% vs. TUDCA, 19.7 ± 6.1%; P = 0.9). Taken together, endoplasmic reticulum stress does not appear to contribute to endothelial I/R injury in healthy young adults.
Collapse
Affiliation(s)
- Holden W Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Amy M Moore
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
84
|
Jacob DW, Ott EP, Baker SE, Scruggs ZM, Ivie CL, Harper JL, Manrique-Acevedo CM, Limberg JK. Sex differences in integrated neurocardiovascular control of blood pressure following acute intermittent hypercapnic hypoxia. Am J Physiol Regul Integr Comp Physiol 2020; 319:R626-R636. [PMID: 32966122 DOI: 10.1152/ajpregu.00191.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Repetitive hypoxic apneas, similar to those observed in sleep apnea, result in resetting of the sympathetic baroreflex to higher blood pressures (BP). This baroreflex resetting is associated with hypertension in preclinical models of sleep apnea (intermittent hypoxia, IH); however, the majority of understanding comes from males. There are data to suggest that female rats exposed to IH do not develop high BP. Clinical data further support sex differences in the development of hypertension in sleep apnea, but mechanistic data are lacking. Here we examined sex-related differences in the effect of IH on sympathetic control of BP in humans. We hypothesized that after acute IH we would observe a rise in muscle sympathetic nerve activity (MSNA) and arterial BP in young men (n = 30) that would be absent in young women (n = 19). BP and MSNA were measured during normoxic rest before and after 30 min of IH. Baroreflex sensitivity (modified Oxford) was evaluated before and after IH. A rise in mean BP following IH was observed in men (+2.0 ± 0.7 mmHg, P = 0.03), whereas no change was observed in women (-2.7 ± 1.2 mmHg, P = 0.11). The elevation in MSNA following IH was not different between groups (4.7 ± 1.1 vs. 3.8 ± 1.2 bursts/min, P = 0.65). Sympathetic baroreflex sensitivity did not change after IH in either group (P > 0.05). Our results support sex-related differences in the effect of IH on neurovascular control of BP and show that any BP-raising effects of IH are absent in young women. These data enhance our understanding of sex-specific mechanisms that may contribute to BP changes in sleep apnea.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Clayton L Ivie
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M Manrique-Acevedo
- Department of Medicine, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
85
|
Grunewald ZI, Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Mejia S, Manrique-Acevedo C, Siebenlist U, Martinez-Lemus LA, Chandrasekar B, Padilla J. TRAF3IP2 (TRAF3 Interacting Protein 2) Mediates Obesity-Associated Vascular Insulin Resistance and Dysfunction in Male Mice. Hypertension 2020; 76:1319-1329. [PMID: 32829657 DOI: 10.1161/hypertensionaha.120.15262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance in the vasculature is a characteristic feature of obesity and contributes to the pathogenesis of vascular dysfunction and disease. However, the molecular mechanisms underlying obesity-associated vascular insulin resistance and dysfunction remain poorly understood. We hypothesized that TRAF3IP2 (TRAF3 interacting protein 2), a proinflammatory adaptor molecule known to activate pathological stress pathways and implicated in cardiovascular diseases, plays a causal role in obesity-associated vascular insulin resistance and dysfunction. We tested this hypothesis by employing genetic-manipulation in endothelial cells in vitro, in isolated arteries ex vivo, and diet-induced obesity in a mouse model of TRAF3IP2 ablation in vivo. We show that ectopic expression of TRAF3IP2 blunts insulin signaling in endothelial cells and diminishes endothelium-dependent vasorelaxation in isolated aortic rings. Further, 16 weeks of high fat/high sucrose feeding impaired glucose tolerance, aortic insulin-induced vasorelaxation, and hindlimb postocclusive reactive hyperemia, while increasing blood pressure and arterial stiffness in wild-type male mice. Notably, TRAF3IP2 ablation protected mice from such high fat/high sucrose feeding-induced metabolic and vascular defects. Interestingly, wild-type female mice expressed markedly reduced levels of TRAF3IP2 mRNA independent of diet and were protected against high fat/high sucrose diet-induced vascular dysfunction. These data indicate that TRAF3IP2 plays a causal role in vascular insulin resistance and dysfunction. Specifically, the present findings highlight a sexual dimorphic role of TRAF3IP2 in vascular control and identify it as a promising therapeutic target in vasculometabolic derangements associated with obesity, particularly in males.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Salvador Mejia
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Endocrinology and Metabolism, Department of Medicine (C.M.-A.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | | | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Cardiovascular Medicine, Department of Medicine (B.C.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| |
Collapse
|
86
|
Gifford JR, Hanson BE, Proffit M, Wallace T, Kofoed J, Griffin G, Hanson M. Indices of leg resistance artery function are independently related to cycling V̇O 2 max. Physiol Rep 2020; 8:e14551. [PMID: 32812353 PMCID: PMC7435036 DOI: 10.14814/phy2.14551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE While maximum blood flow influences one's maximum rate of oxygen consumption (V̇O2 max), with so many indices of vascular function, it is still unclear if vascular function is related to V̇O2 max in healthy, young adults. The purpose of this study was to determine if several common vascular tests of conduit artery and resistance artery function provide similar information about vascular function and the relationship between vascular function and V̇O2 max. METHODS Twenty-two healthy adults completed multiple assessments of leg vascular function, including flow-mediated dilation (FMD), reactive hyperemia (RH), passive leg movement (PLM), and rapid onset vasodilation (ROV). V̇O2 max was assessed with a graded exercise test on a cycle ergometer. RESULTS Indices associated with resistance artery function (e.g., peak flow during RH, PLM, and ROV) were generally related to each other (r = 0.47-77, p < .05), while indices derived from FMD were unrelated to other tests (p < .05). Absolute V̇O2 max (r = 0.57-0.73, p < .05) and mass-specific V̇O2 max (r = 0.41-0.46, p < .05) were related to indices of resistance artery function, even when controlling for factors like body mass and sex. FMD was only related to mass-specific V̇O2 max after statistically controlling for baseline artery diameter (r = 0.44, p < .05). CONCLUSION Indices of leg resistance artery function (e.g., peak flow during RH, PLM, and ROV) relate well to each other and account for ~30% of the variance in V̇O2 max not accounted for by other factors, like body mass and sex. Vascular interventions should focus on improving indices of resistance artery function, not conduit artery function, when seeking to improve exercise capacity.
Collapse
Affiliation(s)
- Jayson R. Gifford
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
- Program of GerontologyBrigham Young UniversityProvoUTUSA
| | - Brady E. Hanson
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
| | - Meagan Proffit
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
- Program of GerontologyBrigham Young UniversityProvoUTUSA
| | - Taysom Wallace
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
| | - Jason Kofoed
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
| | - Garrett Griffin
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
| | - Melina Hanson
- Department of Exercise SciencesBrigham Young UniversityProvoUTUSA
| |
Collapse
|
87
|
Haptonstall KP, Choroomi Y, Moheimani R, Nguyen K, Tran E, Lakhani K, Ruedisueli I, Gornbein J, Middlekauff HR. Differential effects of tobacco cigarettes and electronic cigarettes on endothelial function in healthy young people. Am J Physiol Heart Circ Physiol 2020; 319:H547-H556. [PMID: 32734819 DOI: 10.1152/ajpheart.00307.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tobacco cigarette (TC) smoking has never been lower in the United States, but electronic cigarette (EC) vaping has reached epidemic proportions among our youth. Endothelial dysfunction, as measured by flow-mediated vasodilation (FMD) is a predictor of future atherosclerosis and adverse cardiovascular events and is impaired in young TC smokers, but whether FMD is also reduced in young EC vapers is uncertain. The aim of this study in otherwise healthy young people was to compare the effects of acute and chronic tobacco cigarette (TC) smoking and electronic cigarette (EC) vaping on FMD. FMD was compared in 47 nonsmokers (NS), 49 chronic EC vapers, and 40 chronic TC smokers at baseline and then after EC vapers (n = 31) and nonsmokers (n = 47) acutely used an EC with nicotine (ECN), EC without nicotine (EC0), and nicotine inhaler (NI) at ~4-wk intervals and after TC smokers (n = 33) acutely smoked a TC, compared with sham control. Mean age (NS, 26.3 ± 5.2 vs. EC, 27.4 ± 5.45 vs. TC, 27.1 ± 5.51 yr, P = 0.53) was similar among the groups, but there were more female nonsmokers. Baseline FMD was not different among the groups (NS, 7.7 ± 4.5 vs. EC:6.6 ± 3.6 vs. TC, 7.9 ± 3.7%∆, P = 0.35), even when compared by group and sex. Acute TC smoking versus control impaired FMD (FMD pre-/postsmoking, -2.52 ± 0.92 vs. 0.65 ± 0.93%∆, P = 0.02). Although the increase in plasma nicotine was similar after EC vapers used the ECN versus TC smokers smoked the TC (5.75 ± 0.74 vs. 5.88 ± 0.69 ng/mL, P = 0.47), acute EC vaping did not impair FMD. In otherwise healthy young people who regularly smoke TCs or ECs, impaired FMD compared with that in nonsmokers was not present at baseline. However, FMD was significantly impaired after smoking one TC, but not after vaping an equivalent "dose" (estimated by change in plasma nicotine) of an EC, consistent with the notion that non-nicotine constituents in TC smoke mediate the impairment. Although it is reassuring that acute EC vaping did not acutely impair FMD, it would be dangerous and premature to conclude that ECs do not lead to atherosclerosis.NEW & NOTEWORTHY In our study of otherwise healthy young people, baseline flow-mediated dilation (FMD), a predictor of atherosclerosis and increased cardiovascular risk, was not different among tobacco cigarette (TC) smokers or electronic cigarette (EC) vapers who had refrained from smoking, compared with nonsmokers. However, acutely smoking one TC impaired FMD in smokers, whereas vaping a similar EC "dose" (as estimated by change in plasma nicotine levels) did not. Finally, although it is reassuring that acute EC vaping did not acutely impair FMD, it would be premature and dangerous to conclude that ECs do not lead to atherosclerosis or increase cardiovascular risk.
Collapse
Affiliation(s)
- Kacey P Haptonstall
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Yasmine Choroomi
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Roya Moheimani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Kevin Nguyen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Elizabeth Tran
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Karishma Lakhani
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Isabella Ruedisueli
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Jeffrey Gornbein
- Departments of Medicine and Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Holly R Middlekauff
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| |
Collapse
|
88
|
Hoiland RL, Tremblay JC, Stacey BS, Coombs GB, Nowak‐Flück D, Tymko MM, Patrician A, Stembridge M, Howe CA, Bailey DM, Green DJ, MacLeod DB, Ainslie PN. Acute reductions in haematocrit increase flow‐mediated dilatation independent of resting nitric oxide bioavailability in humans. J Physiol 2020; 598:4225-4236. [DOI: 10.1113/jp280141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ryan L. Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics University of British Columbia Vancouver BC Canada
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Joshua C. Tremblay
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education University of South Wales Pontypridd UK
| | - Geoff B. Coombs
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Daniela Nowak‐Flück
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Michael M. Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation University of Alberta Edmonton AB Canada
| | - Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences Cardiff Metropolitan University Cardiff UK
| | - Connor A. Howe
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education University of South Wales Pontypridd UK
| | - Daniel J. Green
- School of Human Sciences (Exercise and Sport Sciences) The University of Western Australia Nedlands WA Australia
| | - David B. MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology Duke University Medical Center Durham NC USA
| | - Philip N. Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences University of British Columbia – Okanagan Kelowna BC Canada
| |
Collapse
|
89
|
Park LK, Parks EJ, Pettit-Mee RJ, Woodford ML, Ghiarone T, Smith JA, Sales ARK, Martinez-Lemus LA, Manrique-Acevedo C, Padilla J. Skeletal muscle microvascular insulin resistance in type 2 diabetes is not improved by eight weeks of regular walking. J Appl Physiol (1985) 2020; 129:283-296. [PMID: 32614687 DOI: 10.1152/japplphysiol.00174.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
90
|
Rytter N, Piil P, Carter H, Nyberg M, Hellsten Y, Gliemann L. Microvascular Function Is Impaired after Short-Term Immobilization in Healthy Men. Med Sci Sports Exerc 2020; 52:2107-2116. [PMID: 32496738 DOI: 10.1249/mss.0000000000002369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We examined whether 2 wk of one-leg immobilization would impair leg microvascular function and to what extent a subsequent period of intense aerobic cycle training could restore function. METHODS Study participants were healthy young men (n = 12; 20-24 yr of age). Leg microvascular function was determined before the intervention, after the immobilization period, and after a 4-wk exercise training period. Microvascular function was assessed as the vasodilator response to intra-arterial infusion of acetylcholine and sodium nitroprusside and as the vasoconstrictor response to endogenous noradrenaline release induced by tyramine infusion. Vasodilator enzymes as well as prooxidant and antioxidant enzymes were assessed by protein analysis in skeletal muscle samples: endothelial nitric oxide synthase, NADPH oxidase (NOX p67 and NOX gp91), and superoxide dismutase 2 (SOD2). RESULTS The acetylcholine-induced change in vascular conductance was reduced after the 2 wk of immobilization (P = 0.003), tended to increase (P = 0.061), and was back to baseline levels after the subsequent 4 wk of exercise training. Plasma prostacyclin levels in response to acetylcholine infusion were lower after immobilization than before (P = 0.041). The changes in vascular conductance with sodium nitroprusside and tyramine were similar during all conditions. Skeletal muscle protein levels of endothelial nitric oxide synthase in the experimental leg were unchanged with immobilization and subsequent training but increased 47% in the control leg with training (P = 0.002). NOX p67, NOX gp91, and SOD2 in the experimental leg remained unaltered with immobilization, and SOD2 was higher than preimmobilization after 4 wk of training (P < 0.001). CONCLUSIONS The study shows that 2 wk of immobilization impairs leg microvascular endothelial function and prostacyclin formation but that 4 wk of intense aerobic exercise training restores the function. The underlying mechanism may reside in the prostacyclin system.
Collapse
Affiliation(s)
- Nicolai Rytter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| | | | | | | | | | | |
Collapse
|
91
|
Limberg JK, Smith JA, Soares RN, Harper JL, Houghton KN, Jacob DW, Mozer MT, Grunewald ZI, Johnson BD, Curry TB, Baynard T, Manrique-Acevedo C, Padilla J. Sympathetically mediated increases in cardiac output, not restraint of peripheral vasodilation, contribute to blood pressure maintenance during hyperinsulinemia. Am J Physiol Heart Circ Physiol 2020; 319:H162-H170. [PMID: 32502373 DOI: 10.1152/ajpheart.00250.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vasodilatory effects of insulin support the delivery of insulin and glucose to skeletal muscle. Concurrently, insulin exerts central effects that increase sympathetic nervous system activity (SNA), which is required for the acute maintenance of blood pressure (BP). Indeed, in a cohort of young healthy adults, herein we show that intravenous infusion of insulin increases muscle SNA while BP is maintained. We next tested the hypothesis that sympathoexcitation evoked by hyperinsulinemia restrains insulin-stimulated peripheral vasodilation and contributes to sustaining BP. To address this, a separate cohort of participants were subjected to 5-s pulses of neck suction (NS) to simulate carotid hypertension and elicit a reflex-mediated reduction in SNA. NS was conducted before and 60 min following intravenous infusion of insulin. Insulin infusion caused an increase in leg vascular conductance and cardiac output (CO; P < 0.050), with maintenance of BP (P = 0.540). As expected, following NS, decreases in BP were greater in the presence of hyperinsulinemia compared with control (P = 0.045). However, the effect of NS on leg vascular conductance did not differ between insulin and control conditions (P = 0.898). Instead, the greater decreases in BP following NS in the setting of insulin infusion paralleled with greater decreases in CO (P = 0.009). These findings support the idea that during hyperinsulinemia, SNA-mediated increase in CO, rather than restraint of leg vascular conductance, is the principal contributor to the maintenance of BP. Demonstration in isolated arteries that insulin suppresses α-adrenergic vasoconstriction suggests that the observed lack of restraint of leg vascular conductance may be attributed to sympatholytic actions of insulin.NEW & NOTEWORTHY We examined the role of sympathetic activation in restraining vasodilatory responses to hyperinsulinemia and sustaining blood pressure in healthy adults. Data are reported from two separate experimental protocols in humans and one experimental protocol in isolated arteries from mice. Contrary to our hypothesis, the present findings support the idea that during hyperinsulinemia, a sympathetically mediated increase in cardiac output, rather than restraint of peripheral vasodilation, is the principal contributor to the maintenance of systemic blood pressure.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Keeley N Houghton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Michael T Mozer
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Blair D Johnson
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Timothy B Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tracy Baynard
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
92
|
Bock JM, Iwamoto E, Horak JG, Feider AJ, Hanada S, Casey DP. Aerobic exercise offsets endothelial dysfunction induced by repetitive consumption of sugar-sweetened beverages in young healthy men. Am J Physiol Regul Integr Comp Physiol 2020; 319:R11-R18. [PMID: 32401628 DOI: 10.1152/ajpregu.00055.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Consumption of a single, sugar-sweetened beverage (SSB) impairs vascular endothelial function. Regular aerobic exercise improves endothelium-dependent vasodilation; however, it is unknown whether these beneficial effects persist with frequent SSB consumption. Therefore, the purpose of this study was twofold; we studied the effects of repetitive SSB consumption (75 g d-glucose, 3 times/day) for 1 wk (Glu, n = 13, 23 ± 4 yr, 23.5 ± 3.4 kg/m2) on endothelium-dependent vasodilation (FMD). Then, in a separate cohort, we investigated whether 45 min of moderate-intensity aerobic exercise on five separate days offset the hypothesized decrease in FMD during the Glu protocol (Glu+Ex, n = 11, 21 ± 3 yr, 23.8 ± 2.4 kg/m2). Baseline, fasting [glucose] (P = 0.15), [insulin] (P = 0.25), %FMD (P = 0.48), absolute FMD (P = 0.66), and shear rate area under the curve (SRAUC; P = 0.82) were similar between groups. Following the interventions, fasting [glucose] (Glu: 94 ± 6 to 92 ± 6 mg/dL, Glu+Ex: 89 ± 8 to 87 ± 6 mg/dL, P = 0.74) and [insulin] (Glu: 11.3 ± 6.2 to 11.8 ± 8.9 μU/mL, Glu+Ex: 8.7 ± 2.9 to 9.4 ± 3.2 μU/mL, P = 0.89) were unchanged. %FMD was reduced in Glu (6.1 ± 2.2 to 5.1 ± 1.3%) and increased in Glu+Ex (6.6 ± 2.2 to 7.8 ± 2.4%, P < 0.05 for both). SRAUC increased similarly in both Glu [17,715 ± 8,275 to 22,922 ± 4,808 arbitrary units (A.U.)] and Glu+Ex (18,216 ± 4,516 to 21,666 ± 5,392 A.U., main effect of time P < 0.05). When %FMD was adjusted for SRAUC, attenuation was observed in Glu (0.41 ± 0.18 to 0.23 ± 0.08%/s × 103, P < 0.05) but not Glu+Ex (0.38 ± 0.14 to 0.38 ± 0.13%/s × 103, P = 0.88). Despite unchanged fasting [glucose] and [insulin], repeated consumption of SSBs impaired conduit artery vascular endothelial function. Additionally, subjects who engaged in regular moderate-intensity aerobic exercise did not demonstrate the same SSB-induced endothelial dysfunction. Collectively, these data suggest aerobic exercise may offset the deleterious effects of repetitive SSB consumption.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa.,School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Jeffrey G Horak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
93
|
Christiansen D, Eibye K, Hostrup M, Bangsbo J. Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. J Physiol 2020; 598:2337-2353. [PMID: 32246768 DOI: 10.1113/jp279554] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Endurance-type training with blood flow restriction (BFR) increases maximum oxygen uptake ( V ̇ O 2 max ) and exercise endurance of humans. However, the physiological mechanisms behind this phenomenon remain uncertain. In the present study, we show that BFR-interval training reduces the peripheral resistance to oxygen transport during dynamic, submaximal exercise in recreationally-trained men, mainly by increasing convective oxygen delivery to contracting muscles. Accordingly, BFR-training increased oxygen uptake by, and concomitantly reduced net lactate release from, the contracting muscles during relative-intensity-matched exercise, at the same time as invoking a similar increase in diffusional oxygen conductance compared to the training control. Only BFR-training increased resting femoral artery diameter, whereas increases in oxygen transport and uptake were dissociated from changes in the skeletal muscle content of mitochondrial electron-transport proteins. Thus, physically trained men benefit from BFR-interval training by increasing leg convective oxygen transport and reducing lactate release, thereby improving the potential for increasing the percentage of V ̇ O 2 max that can be sustained throughout exercise. ABSTRACT In the present study, we investigated the effect of training with blood flow restriction (BFR) on thigh oxygen transport and uptake, and lactate release, during exercise. Ten recreationally-trained men (50 ± 5 mL kg-1 min-1 ) completed 6 weeks of interval cycling with one leg under BFR (BFR-leg; pressure: ∼180 mmHg) and the other leg without BFR (CON-leg). Before and after the training intervention (INT), thigh oxygen delivery, extraction, uptake, diffusion capacity and lactate release were determined during knee-extensor exercise at 25% incremental peak power output (iPPO) (Ex1), followed by exercise to exhaustion at 90% pre-training iPPO (Ex2), by measurement of femoral-artery blood flow and femoral-arterial and -venous blood sampling. A muscle biopsy was obtained from legs before and after INT to determine mitochondrial electron-transport protein content. Femoral-artery diameter was also measured. In the BFR-leg, after INT, oxygen delivery and uptake were higher, and net lactate release was lower, during Ex1 (vs. CON-leg; P < 0.05), with an 11% larger increase in workload (vs. CON-leg; P < 0.05). During Ex2, after INT, oxygen delivery was higher, and oxygen extraction was lower, in the BFR-leg compared to the CON-leg (P < 0.05), resulting in an unaltered oxygen uptake (vs. CON-leg; P > 0.05). In the CON-leg, at both intensities, oxygen delivery, extraction, uptake and lactate release remained unchanged (P > 0.05). Resting femoral artery diameter increased with INT only in the BFR-leg (∼4%; P < 0.05). Oxygen diffusion capacity was similarly raised in legs (P < 0.05). Mitochondrial protein content remained unchanged in legs (P > 0.05). Thus, BFR-interval training enhances oxygen utilization by, and lowers lactate release from, submaximally-exercising muscles of recreationally-trained men mainly by increasing leg convective oxygen transport.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Kasper Eibye
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|