51
|
Abstract
For >50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, deoxycorticosterone acetate-salt, and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including interleukin-17, interferon-γ, tumor necrosis factorα, and interleukin-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption, and increased renal fibrosis. Recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension, including myocardial infarction, heart failure, renal failure, and stroke.
Collapse
Affiliation(s)
- William G McMaster
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - Annet Kirabo
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - Meena S Madhur
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN
| | - David G Harrison
- From the Department of Surgery, Division of Clinical Pharmacology (W.G.M.) and the Department of Medicine (W.G.M., A.K., M.S.M., D.G.H.), Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
52
|
Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep 2014; 16:431. [PMID: 24760441 DOI: 10.1007/s11906-014-0431-2] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
53
|
Abstract
A large number of investigations have demonstrated the participation of the immune system in the pathogenesis of hypertension. Studies focusing on macrophages and Toll-like receptors have documented involvement of the innate immunity. The requirements of antigen presentation and co-stimulation, the critical importance of T cell-driven inflammation, and the demonstration, in specific conditions, of agonistic antibodies directed to angiotensin II type 1 receptors and adrenergic receptors support the role of acquired immunity. Experimental findings support the concept that the balance between T cell-induced inflammation and T cell suppressor responses is critical for the regulation of blood pressure levels. Expression of neoantigens in response to inflammation, as well as surfacing of intracellular immunogenic proteins, such as heat shock proteins, could be responsible for autoimmune reactivity in the kidney, arteries, and central nervous system. Persisting, low-grade inflammation in these target organs may lead to impaired pressure natriuresis, an increase in sympathetic activity, and vascular endothelial dysfunction that may be the cause of chronic elevation of blood pressure in essential hypertension.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Iturbe
- Hospital Universitario y Universidad del Zulia, Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas-Zulia, Maracaibo, Venezuela;
| | - Héctor Pons
- Hospital Universitario y Universidad del Zulia, Maracaibo, Venezuela
| | - Yasmir Quiroz
- Instituto Venezolano de Investigaciones Científicas-Zulia, Maracaibo, Venezuela
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Denver, Colorado
| |
Collapse
|
54
|
|
55
|
Abstract
Despite intensive research, the exact cause of hypertension remains unknown. Low-grade inflammation has been proposed to play a key role in the pathogenesis of hypertension. Both innate and adaptive immune responses may participate in this process. Several studies have addressed the contribution of adaptive immunity to the pathophysiology of high blood pressure; however, the role of innate immunity is less clear. Innate immunity may be an important mediator of chronic inflammation in hypertension. Slight elevation of blood pressure due to increased sympathetic and/or decreased parasympathetic outflow, or low-grade infections may generate neoantigens and damage-activated molecular patterns (DAMPs) or pathogen-activated molecular patterns (PAMPs), which can trigger Toll-like receptors on innate effector cells. Innate responses, mediated by monocytes, macrophages, dendritic cells and natural killer cells, may contribute to inflammation either directly or by activating adaptive immune responses mediated by T lymphocytes. In this review, we discuss the recent evidence regarding the contribution of different innate effector cells, their response and their mechanisms of activation in hypertension.
Collapse
|
56
|
Tipton AJ, Sullivan JC. Sex differences in T cells in hypertension. Clin Ther 2014; 36:1882-1900. [PMID: 25134971 DOI: 10.1016/j.clinthera.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE Hypertension is a major risk factor for cardiovascular disease, stroke, and end-organ damage. There is a sex difference in blood pressure (BP) that begins in adolescence and continues into adulthood, in which men have a higher prevalence of hypertension compared with women until the sixth decade of life. Less than 50% of hypertensive adults in the United States manage to control their BP to recommended levels using current therapeutic options, and women are more likely than are men to have uncontrolled high BP. This, is despite the facts that more women compared with men are aware that they have hypertension and that women are more likely to seek treatment for the disease. Novel therapeutic targets need to be identified in both sexes to increase the percentage of hypertensive individuals with controlled BP. The purpose of this article was to review the available literature on the role of T cells in BP control in both sexes, and the potential therapeutic application/implications of targeting immune cells in hypertension. METHODS A search of PubMed was conducted to determine the impact of sex on T cell-mediated control of BP. The search terms included sex, gender, estrogen, testosterone, inflammation, T cells, T regulatory cells, Th17 cells, hypertension, and blood pressure. Additional data were included from our laboratory examinations of cytokine expression in the kidneys of male and female spontaneously hypertensive rats (SHRs) and differential gene expression in both the renal cortex and mesenteric arterial bed of male and female SHRs. FINDINGS There is a growing scientific literature base regarding the role of T cells in the pathogenesis of hypertension and BP control; however, the majority of these studies have been performed exclusively in males, despite the fact that both men and women develop hypertension. There is increasing evidence that although T cells also mediate BP in females, there are distinct differences in both the T-cell profile and the functional impact of sex differences in T cells on cardiovascular health, although more work is needed to better define the relative impact of different T-cell subtypes on BP in both sexes. IMPLICATIONS The challenge now is to fully understand the molecular mechanisms by which the immune system regulates BP and how the different components of the immune system interact so that specific mechanisms can be targeted therapeutically without compromising natural immune defenses.
Collapse
Affiliation(s)
- Ashlee J Tipton
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
57
|
Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have a compensatory increase in renal regulatory T cells in response to elevations in blood pressure. Hypertension 2014; 64:557-64. [PMID: 24914200 DOI: 10.1161/hypertensionaha.114.03512] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Female spontaneously hypertensive rats (SHR) have more regulatory T cells (Tregs) in their kidneys than males. The goal of this study was to determine the impact of blood pressure (BP) on the renal immune profile. We hypothesize that increases in BP promote a proinflammatory renal T cell and cytokine profile in SHR, although females will have greater hormone-dependent increases in Tregs and males will have greater increases in Th17 cells. Renal T cell and cytokine profiles were assessed in male and female Wistar-Kyoto rats and male and female SHR treated with vehicle or hydrochlorothiazide and reserpine (HCTZ) from 6 to 12 (6-HCTZ) or 11 to 13 weeks of age (2-HCTZ). Regardless of sex, SHR had a more proinflammatory renal immune profile than Wistar-Kyoto rats. 6-HCTZ attenuated age-related increases in BP and 2-HCTZ reversed hypertension compared with vehicle-treated SHR. Neither 6-HCTZ nor 2-HCTZ altered CD3(+), CD4(+), or CD8(+) T cells in either sex. Both treatments decreased Tregs only in female SHR abolishing sex differences in Tregs. 6-HCTZ has no impact on Th17 cells in either sex and 2-HCTZ had a minimal impact on renal Th17 cells. To further assess mechanisms mediating sex differences in the renal immune profile, male and female SHR were gonadectomized to determine the impact of sex hormones. Gonadectomy increased proinflammatory markers in both sexes, suggesting that both male and female sex hormones are anti-inflammatory. In conclusion, BP contributes to sex differences in the renal T-cell profile of SHR; female SHR increase renal Tregs in response to increases in BP.
Collapse
Affiliation(s)
- Ashlee J Tipton
- From the Department of Physiology (A.J.T., J.C.S.) and Department of Oral Biology (B.B.), Georgia Regents University, Augusta
| | - Babak Baban
- From the Department of Physiology (A.J.T., J.C.S.) and Department of Oral Biology (B.B.), Georgia Regents University, Augusta
| | - Jennifer C Sullivan
- From the Department of Physiology (A.J.T., J.C.S.) and Department of Oral Biology (B.B.), Georgia Regents University, Augusta.
| |
Collapse
|
58
|
|
59
|
Abstract
Endothelial dysfunction plays a key role in the development and progression of cardiovascular disease. In patients with hypertension, endothelial dysfunction is characterized by a decrease of vasodilator factors release. Recent evidence highlights the involvement of regulatory T cell in the cardiovascular physiology and pathology. An increasing body of data suggest that an imbalance in the immune system triggers inflammation and compromises the cardiovascular homeostasis. In this mini-review, we will highlight the role of immune regulatory T cells in hypertension-induced vascular dysfunction.
Collapse
|
60
|
Idris-Khodja N, Mian MOR, Paradis P, Schiffrin EL. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J 2014; 35:1238-44. [PMID: 24685711 PMCID: PMC4019914 DOI: 10.1093/eurheartj/ehu119] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/21/2022] Open
Abstract
Hypertension involves remodelling and inflammation of the arterial wall. Interactions between vascular and inflammatory cells play a critical role in disease initiation and progression. T effector and regulatory lymphocytes, members of the adaptive immune system, play contrasting roles in hypertension. Signals from the central nervous system and the innate immune system antigen-presenting cells activate T effector lymphocytes and promote their differentiation towards pro-inflammatory T helper (Th) 1 and Th17 phenotypes. Th1 and Th17 effector cells, via production of pro-inflammatory mediators, participate in the low-grade inflammation that leads to blood pressure elevation and end-organ damage. T regulatory lymphocytes, on the other hand, counteract hypertensive effects by suppressing innate and adaptive immune responses. The present review summarizes and discusses the adaptive immune mechanisms that participate in the pathophysiology in hypertension.
Collapse
Affiliation(s)
| | | | - Pierre Paradis
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Montreal, QC, Canada Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal,QC, Canada H3T 1E2
| |
Collapse
|
61
|
Virdis A, Dell'Agnello U, Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas 2014; 78:179-83. [PMID: 24846805 DOI: 10.1016/j.maturitas.2014.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 02/07/2023]
Abstract
Low grade inflammation exerts a crucial pathogenic role in hypertension and cardiovascular disease. A large body of evidence indicates that innate and adaptive immune systems, and in particular T cells, are involved. A balance between T-effector lymphocytes and Treg lymphocytes represents a crucial regulatory mechanism that, when altered, favours blood pressure elevation and organ damage development. Of note, Treg lymphocytes exert important anti-inflammatory properties, whose activities guarantees vascular homeostasis and protects the vessel wall from the development of atherosclerosis. In humans, most of evidence ascertaining essential hypertension as a condition of chronic low-grade inflammatory status revealed a strict and independent association between CRP, TNF-α, IL-6 or adhesion molecules and vascular changes in essential hypertensive patients. Evidence of involvement of the immune system in vasculature from patients with hypertension or cardiovascular disease starts to appear in literature. Further investigation on immunity, including the role of T-lymphocytes, will help develop of new therapeutic targets that may improve outcomes in hypertension and cardiovascular disease and discover novel approaches in the treatment of hypertension and vascular disease.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Umberto Dell'Agnello
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
62
|
Abstract
While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely contribute to end-organ damage. We and others have shown that mice lacking adaptive immune cells, including recombinase-activating gene-deficient mice and rats and mice with severe combined immunodeficiency have blunted hypertension to stimuli such as ANG II, high salt, and norepinephrine. Adoptive transfer of T cells restores the blood pressure response to these stimuli. Agonistic antibodies to the ANG II receptor, produced by B cells, contribute to hypertension in experimental models of preeclampsia. The central nervous system seems important in immune cell activation, because lesions in the anteroventral third ventricle block hypertension and T cell activation in response to ANG II. Likewise, genetic manipulation of reactive oxygen species in the subfornical organ modulates both hypertension and immune cell activation. Current evidence indicates that the production of cytokines, including tumor necrosis factor-α, interleukin-17, and interleukin-6, contribute to hypertension, likely via effects on both the kidney and vasculature. In addition, the innate immune system also appears to contribute to hypertension. We propose a working hypothesis linking the sympathetic nervous system, immune cells, production of cytokines, and, ultimately, vascular and renal dysfunction, leading to the augmentation of hypertension. Studies of immune cell activation will clearly be useful in understanding this common yet complex disease.
Collapse
Affiliation(s)
- Daniel W Trott
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
63
|
Zhou MS, Wang A, Yu H. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol Metab Syndr 2014; 6:12. [PMID: 24485020 PMCID: PMC3996172 DOI: 10.1186/1758-5996-6-12] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/28/2014] [Indexed: 12/28/2022] Open
Abstract
Insulin resistance and hypertension are considered as prototypical "diseases of civilization" that are manifested in the modern environment as plentiful food and sedentary life. The human propensity for insulin resistance and hypertension is a product, at least in part, of our evolutionary history. Adaptation to ancient lifestyle characterized by a low sodium, low-calorie food supply and physical stress to injury response has driven our evolution to shape and preserve a thrifty genotype, which is favorite with energy-saving and sodium conservation. As our civilization evolved, a sedentary lifestyle and sodium- and energy-rich diet, the thrifty genotype is no longer advantageous, and may be maladaptive to disease phenotype, such as hypertension, obesity and insulin resistance syndrome. This article reviews human evolution and the impact of the modern environment on hypertension and insulin resistance.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning, China
| | - Aimei Wang
- Department of Physiology, Liaoning Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning, China
| | - Hong Yu
- Department of Cardiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
64
|
Fang H, Chen W, Gao Y, Shen Y, Luo M. Molecular mechanisms associated with Angiotensin-converting enzyme-inhibitory peptide activity on vascular extracellular matrix remodeling. Cardiology 2014; 127:247-55. [PMID: 24480854 DOI: 10.1159/000356951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This paper aimed to investigate the molecular mechanisms associated with angiotensin-converting enzyme (ACE)-inhibitory peptide activity involved in vascular extracellular matrix (ECM) remodeling. Therefore, changes in collagen fibers, elastic fibers and laminin were assessed in the left common carotid artery (LCCA). METHODS We selected 10-week-old male spontaneously hypertensive rats to study the expression levels of matrix metalloproteinases (MMPs), transforming growth factor, angiotensin (Ang) II and nuclear factor (NF)-p65 in the wall of carotid arteries. RESULTS Compared to the control group, laminin expression was significantly increased (p < 0.05) in the vascular endothelium of the LAP (a homemade ACE-inhibitory peptide, named by ourselves) group, whereas the percentage of elastic/collagen fibers in the LCCA vascular area was significantly decreased (p < 0.0001) in the LAP group. Immune blots of MMP-2, MMP-9, NF-p65 and AngII were significantly reduced in the LCCA wall in the LAP group. CONCLUSION Vascular ECM remodeling may be related to the inhibitory action of LAP on ECM deposition.
Collapse
Affiliation(s)
- Hong Fang
- Departments of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
65
|
De Ciuceis C, Rossini C, La Boria E, Porteri E, Petroboni B, Gavazzi A, Sarkar A, Rosei EA, Rizzoni D. Immune mechanisms in hypertension. High Blood Press Cardiovasc Prev 2014; 21:227-34. [PMID: 24446309 DOI: 10.1007/s40292-014-0040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/09/2014] [Indexed: 01/11/2023] Open
Abstract
Low grade inflammation may have a key role in the pathogenesis of hypertension and cardiovascular disease. Several studies showed that both innate and adaptive immune systems may be involved, being T cells the most important players. Particularly, the balance between Th1 effector lymphocytes and Treg lymphocytes may be crucial for blood pressure elevation and related organ damage development. In the presence of a mild elevation of blood pressure, neo-antigens are produced. Activated Th1 cells may then contribute to the persistent elevation of blood pressure by affecting vasculature, kidney and perivascular fat. On the other hand, Tregs represent a lymphocyte subpopulation with an anti-inflammatory role, being their activity crucial for the maintenance of cardiovascular homeostasis. Indeed, Tregs were demonstrated to be able to protect from blood pressure elevation and from the development of organ damage, including micro and macrovascular alterations, in different animal models of genetic or experimental hypertension. In the vasculature, inflammation leads to vascular remodeling through cytokine activity, smooth muscle cell proliferation and oxidative stress. It is also known that a consistent part of ischemia-reperfusion-induced acute kidney injury is mediated by inflammatory infiltration and that Treg cell infusion have a protective role. Also the central nervous system has an important role in the maintenance of cardiovascular homeostasis. In conclusion, hypertension development involves chronic inflammatory process. Knowledge of cellular and molecular players in the progression of hypertension has dramatically improved in the last decade, by assessing the central role of innate and adaptive immunity cells and proinflammatory cytokines driving the development of target organ damage. The new concept of role of immunity, especially implicating T lymphocytes, will eventually allow discovery of new therapeutic targets that may improve outcomes in hypertension and cardiovascular or renal disease in humans and uncover an entirely novel approach in the treatment of hypertension and vascular disease.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, c/o 2a Medicina Spedali Civili di Brescia, University of Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Downregulation of CD4+LAP+ and CD4+CD25+ regulatory T cells in acute coronary syndromes. Mediators Inflamm 2013; 2013:764082. [PMID: 24385687 PMCID: PMC3872438 DOI: 10.1155/2013/764082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022] Open
Abstract
Background. Regulatory T (Treg) cells play a protective role in atherosclerosis prone models and are related to the onset of acute coronary syndromes (ACS, including non-ST-elevation ACS (NSTEACS) and ST-elevation acute myocardial infarction (STEAMI)). CD4+LAP+ Treg cells are a novel subset of Tregs that have been found to ameliorate atherosclerosis in ApoE−/− mice, and these cells also exist in humans. The present study was designed to investigate whether CD4+LAP+ Treg cells are involved in the onset of ACS. Methods. The frequencies of CD4+LAP+ and CD4+CD25+ Treg cells were detected using flow cytometric analysis, and the plasma IL-10 and TGF-β1 levels were measured using an ELISA in 29 stable angina (SA) patients, 30 NSTEACS patients, 27 STEAMI patients, and a control group (30 cases).
Results. The results revealed a significant decrease in the frequencies of CD4+LAP+ and CD4+CD25+ Treg cells and in the levels of IL-10 and TGF-β1 in patients with ACS compared with those in the SA and control groups. Conclusions. The decrease in the frequencies of CD4+LAP+ and CD4+CD25+ Treg cells may play a role in the onset of ACS.
Collapse
|
67
|
|
68
|
Ryan MJ. An update on immune system activation in the pathogenesis of hypertension. Hypertension 2013; 62:226-30. [PMID: 23734005 PMCID: PMC4365420 DOI: 10.1161/hypertensionaha.113.00603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Michael J Ryan
- University of Mississippi Medical Center, Department of Physiology and Biophysics, 2500 N State St, Jackson, MS 39216-4505.
| |
Collapse
|
69
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Carmine Savoia
- Carmine Savoia is Associate Professor of Cardiology, Cardiology Unit and Chair, Clinical and Molecular Medicine Department, Sapienza University of Rome, Italy. After a fellowship in Ernesto Schiffrin’s laboratory, he has continued his research on pathophysiology of hypertension, vascular remodeling and cardiovascular damage, the renin–angiotensin–aldosterone system, and clinical studies in diabetic and/or hypertensive patients
| | - Ernesto L Schiffrin
- Ernesto L Schiffrin is Physician-in-Chief, Jewish General Hospital, Canada Research Chair in Hypertension and Vascular Research, Lady Davis Institute for Medical Research, and Professor and Vice-Chair (Research), Department of Medicine, McGill University (Montreal, Canada). His research deals with vascular remodeling in hypertension, renal and cardiometabolic diseases, from mice to humans, and the influence of the renin–angiotensin–aldosterone and endothelin systems, nuclear receptors and immunity on
| |
Collapse
|
71
|
Abstract
Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have anti-inflammatory or immunosuppressive effects in the treatment of renal disease.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
72
|
Leibowitz A, Rehman A, Paradis P, Schiffrin EL. Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension 2013; 61:1316-21. [PMID: 23529169 DOI: 10.1161/hypertensionaha.111.203521] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently showed that T regulatory lymphocytes (Treg), which are immune suppressors of inflammatory responses, play a role blunting the development of hypertension-induced injury. Treg are unchanged or decreased in children with metabolic syndrome, and therefore, their role in metabolic syndrome remains unclear. We hypothesized that Treg number or function would be depressed in a high-fructose diet-induced metabolic syndrome-like model in rats. Sprague-Dawley rats were fed normal chow or a high-fructose diet for 5 weeks. The high-fructose diet-induced a 3.8-fold increase in plasma triglycerides and a 14% reduction in high-density lipoprotein cholesterol (P<0.001). The high-fructose diet increased reactive oxygen species in aorta and periaortic adipose tissue 2.8-fold (P<0.05), and reduced nicotinamide adenine dinucleotide phosphate oxidase activity 1.9-fold in aorta, and 2.5-fold in the heart (P<0.05). It also increased plasma nitric oxide metabolite levels 6.4-fold (P<0.001). Western blots showed that the high-fructose diet increased ≥2.3-fold vascular and in platelet endothelial cell adhesion molecule 1 in aorta (P<0.01). It did not affect monocyte/macrophage aortic infiltration but caused a 2.4-fold increase in collagen deposition in the aortic media (P<0.01). No change in plasma interleukin-10 was detected. The percentage of spleen CD4+ CD25- and Treg (CD4+ CD25(high)) cells was unaltered by the high-fructose diet. However, cultured Treg from high-fructose diet-fed rats secreted 62% less interleukin-10 than control cells (P<0.05), suggesting a decreased Treg function, which could play a role in the development of cardiovascular complications of the metabolic syndrome.
Collapse
Affiliation(s)
- Avshalom Leibowitz
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, #B-127, 3755 Côte-Ste-Catherine Road, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
73
|
Heijnen BFJ, Nelissen J, van Essen H, Fazzi GE, Cohen Tervaert JW, Peutz-Kootstra CJ, Mullins JJ, Schalkwijk CG, Janssen BJA, Struijker-Boudier HAJ. Irreversible renal damage after transient renin-angiotensin system stimulation: involvement of an AT1-receptor mediated immune response. PLoS One 2013; 8:e57815. [PMID: 23469072 PMCID: PMC3585138 DOI: 10.1371/journal.pone.0057815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/26/2013] [Indexed: 01/10/2023] Open
Abstract
Transient activation of the renin-angiotensin system (RAS) induces irreversible renal damage causing sustained elevation in blood pressure (BP) in Cyp1a1-Ren2 transgenic rats. In our current study we hypothesized that activation of the AT1-receptor (AT1R) leads to a T-cell response causing irreversible impairment of renal function and hypertension. Cyp1a1-Ren2 rats harbor a construct for activation of the RAS by indole-3-carbinol (I3C). Rats were fed a I3C diet between 4–8 weeks of age to induce hypertension. Next, I3C was withdrawn and rats were followed-up for another 12 weeks. Additional groups received losartan (20 mg/kg/day) or hydralazine (100 mg/kg/day) treatment between 4–8 weeks. Rats were placed for 24h in metabolic cages before determining BP at week 8, 12 and 20. At these ages, subsets of animals were sacrificed and the presence of kidney T-cell subpopulations was investigated by immunohistochemistry and molecular marker analysis. The development of sustained hypertension was completely prevented by losartan, whereas hydralazine only caused a partial decrease in BP. Markers of renal damage: KIM-1 and osteopontin were highly expressed in urine and kidney samples of I3C-treated rats, even until 20 weeks of age. Additionally, renal expression of regulatory-T cells (Tregs) was highly increased in I3C-treated rats, whereas the expression of T-helper 1 (Th1) cells demonstrated a strong decrease. Losartan prevented these effects completely, whereas hydralazine was unable to affect these changes. In young Cyp1a1-Ren2 rats AT1R activation leads to induction of an immune response, causing a shift from Th1-cells to Tregs, contributing to the development of irreversible renal damage and hypertension.
Collapse
Affiliation(s)
- Bart F J Heijnen
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Loria AS, Yamamoto T, Pollock DM, Pollock JS. Early life stress induces renal dysfunction in adult male rats but not female rats. Am J Physiol Regul Integr Comp Physiol 2012; 304:R121-9. [PMID: 23174859 DOI: 10.1152/ajpregu.00364.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal separation (MatSep) is a model of behavioral stress during early life. We reported that MatSep exacerbates ANG II-induced hypertension in adult male rats. The aims of this study were to determine whether exposure to MatSep in female rats sensitizes blood pressure to ANG II infusion similar to male MatSep rats and to elucidate renal mechanisms involved in the response in MatSep rats. Wistar Kyoto (WKY) pups were exposed to MatSep 3 h/day from days 2 to 14, while control rats remained with their mothers. ANG II-induced mean arterial pressure (MAP; telemetry) was enhanced in female MatSep rats compared with control female rats but delayed compared with male MatSep rats. Creatinine clearance (Ccr) was reduced in male MatSep rats compared with control rats at baseline and after ANG II infusion. ANG II infusion significantly increased T cells in the renal cortex and greater histological damage in the interstitial arteries of male MatSep rats compared with control male rats. Plasma testosterone was greater and estradiol was lower in male MatSep rats compared with control rats with ANG II infusion. ANG II infusion failed to increase blood pressure in orchidectomized male MatSep and control rats. Female MatSep and control rats had similar Ccr, histological renal analysis, and sex hormones at baseline and after ANG II infusion. These data indicate that during ANG II-induced hypertension, MatSep sensitizes the renal phenotype in male but not female rats.
Collapse
Affiliation(s)
- Analia S Loria
- Section of Experimental Medicine, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
75
|
Waki H, Hendy EB, Hindmarch CCT, Gouraud S, Toward M, Kasparov S, Murphy D, Paton JFR. Excessive leukotriene B4 in nucleus tractus solitarii is prohypertensive in spontaneously hypertensive rats. Hypertension 2012; 61:194-201. [PMID: 23172924 DOI: 10.1161/hypertensionaha.112.192252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammation within the brain stem microvasculature has been associated with chronic cardiovascular diseases. We found that the expression of several enzymes involved in arachidonic acid-leukotriene B4 (LTB4) production was altered in nucleus tractus solitarii (NTS) of spontaneously hypertensive rat (SHR). LTB4 produced from arachidonic acid by 5-lipoxygenase is a potent chemoattractant of leukocytes. Leukotriene B4-12-hydroxydehydrogenase (LTB4-12-HD), which degrades LTB4, was downregulated in SHR rats compared with that in Wistar-Kyoto rats. Quantitative real-time PCR revealed that LTB4-12-HD was reduced by 63% and 58% in the NTS of adult SHR and prehypertensive SHR, respectively, compared with that in age-matched Wistar-Kyoto rats (n=6). 5-lipoxygenase gene expression was upregulated in the NTS of SHR (≈50%; n=6). LTB4 levels were increased in the NTS of the SHR, (17%; n=10, P<0.05). LTB4 receptors BLT1 (but not BLT2) were expressed on astroglia in the NTS but not neurons or vessels. Microinjection of LTB4 into the NTS of Wistar-Kyoto rats increased both leukocyte adherence and arterial pressure for over 4 days (peak: +15 mm Hg; P<0.01). In contrast, blockade of NTS BLT1 receptors lowered blood pressure in the SHR (peak: -13 mm Hg; P<0.05) but not in Wistar-Kyoto rats. Thus, excessive amounts of LTB4 in NTS of SHR, possibly as a result of upregulation of 5-lipoxygenase and downregulation of LTB4-12-HD, can induce inflammation. Because blockade of NTS BLT1 receptors lowered arterial pressure in the SHR, their endogenous activity may contribute to the hypertensive state of this rodent model. Thus, inflammatory reactions in the brain stem are causally associated with neurogenic hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Schiffrin EL. The immune system: role in hypertension. Can J Cardiol 2012; 29:543-8. [PMID: 22902155 DOI: 10.1016/j.cjca.2012.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/30/2012] [Accepted: 06/12/2012] [Indexed: 11/26/2022] Open
Abstract
Over the past 20 years it has become recognized that low-grade inflammation plays a role in cardiovascular disease. More recently, participation of the innate and the adaptive immune response in mechanisms that contribute to inflammation in cardiovascular disease has been reported in atherosclerosis and hypertension. Different subsets of lymphocytes and their cytokines are involved in vascular remodelling and hypertensive renal disease as well as heart disease. Effector T cells including T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (interleukin-4 producing), as well as Th17 (which produce interleukin-17), and T suppressor lymphocytes such as T regulatory cells, which express the transcription factor forkhead box P3, participate respectively as pro- and anti-inflammatory cells, and mediate effects of angiotensin II and mineralocorticoids. Involvement of immune mechanisms in cardiac, vascular, and renal changes in hypertension has been demonstrated in many experimental models, an example being the Dahl-salt sensitive rat and the spontaneously hypertensive rat. How activation of immunity is triggered remains unknown, but neoantigens could be generated by elevated blood pressure through damage-associated molecular pattern receptors or other mechanisms. When activated, Th1 may contribute to blood pressure elevation by affecting the kidney, vascular remodelling of blood vessels directly via effects of the cytokines produced, or through their effects on perivascular fat. T regulatory cells protect from blood pressure elevation acting on similar targets. These novel findings may open the way for new therapeutic approaches to improve outcomes in hypertension and cardiovascular disease in humans.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
77
|
Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Physiol Regul Integr Comp Physiol 2012; 303:R359-67. [PMID: 22761180 DOI: 10.1152/ajpregu.00246.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T cells contribute to hypertension in male experimental models; data in females is lacking even though women are more likely to develop immune disorders. The goal of this study was to determine whether immune cells contribute to hypertension in female spontaneously hypertensive rats (SHR) and define the T cell profile in whole blood and kidneys of male and female SHR. We hypothesized that inflammatory cells contribute to hypertension in female SHR; however, male SHR have a higher blood pressure so we hypothesize they will have a heightened inflammatory profile. The lymphocyte inhibitor mycophenolate mofetil (MMF) was administered in a dose-dependent manner to SHR. At the highest dose (50 mg·kg(-1)·day(-1)), blood pressure was significantly decreased in both sexes, yet the percent decrease in blood pressure was greater in females (female: 12 ± 1%; males: 7 ± 1%, P = 0.01). Circulating and renal T cell profiles were defined using analytical flow cytometry. Female SHR had more circulating CD3(+), CD4(+), and pro-inflammatory CD3(+)CD4(+)RORγ(+) Th17 cells, whereas males had more immune-suppressive CD3(+)CD4(+)Foxp3(+) T regulatory cells. In the kidney, females had greater numbers of CD8(+) and T regulatory cells than males, whereas males had greater CD4(+) and Th17 cell infiltration. MMF decreased circulating and renal T cells in both sexes (P < 0.0001), although the effect of MMF on T cell subtypes was sex specific with females having greater sensitivity to MMF-induced decreases in lymphocytes. In conclusion, there is a lymphocyte contribution to the maintenance of hypertension in the female SHR and sex of the animal impacts the T cell profile.
Collapse
Affiliation(s)
- Ashlee J Tipton
- Department of Medicine, Georgia Health Sciences University, Augusta, USA
| | | | | |
Collapse
|
78
|
Harrison DG, Marvar PJ, Titze JM. Vascular inflammatory cells in hypertension. Front Physiol 2012; 3:128. [PMID: 22586409 PMCID: PMC3345946 DOI: 10.3389/fphys.2012.00128] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/16/2012] [Indexed: 12/11/2022] Open
Abstract
Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients, and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.
Collapse
Affiliation(s)
- David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Nashville, TN, USA
| | | | | |
Collapse
|
79
|
Abstract
Inflammation plays an important role in the pathogenesis of hypertension. Innate and adaptive immune response may contribute to this process. The mechanisms implicating immune response in hypertension are still elusive. To date, the evidence originates in three major areas of data: cytokine production, central nervous system (CNS) stimulation, and kidney damage. The cytokine microenvironment can become proinflammatory and propagate low-grade inflammation, which may contribute to vascular injury and end-organ damage in hypertension. In addition, stimulation of the CNS by some stimuli (e.g., angiotensin II) causes mild hypertension that may modulate peripheral immune responses leading to aggravation of blood pressure elevation. The immune response can induce kidney injury and also interfere with sodium excretion, further contributing to elevation of blood pressure. The purpose of this review is to discuss recent data regarding the contribution of the different immune cell subsets and their response and mechanism of action in promoting hypertension and target-organ damage.
Collapse
Affiliation(s)
- Avshalom Leibowitz
- Lady Davis Institute for Medical Research, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
80
|
Affiliation(s)
- Ernesto L. Schiffrin
- From the Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital and Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montreal, Québec, Canada
| |
Collapse
|
81
|
Rodríguez-Iturbe B, Franco M, Tapia E, Quiroz Y, Johnson RJ. Renal inflammation, autoimmunity and salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2012; 39:96-103. [PMID: 21251049 PMCID: PMC3137657 DOI: 10.1111/j.1440-1681.2011.05482.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. The present article reviews the role of immune-competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension. 2. We discuss changes in the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment. 3. The potential role of T-cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Iturbe
- Renal Service, University Hospital, University of Zulia and Venezuelan Institute of Scientific Research-Zulia, Maracaibo, Estado Zulia, Venezuela.
| | | | | | | | | |
Collapse
|
82
|
Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 2011; 32:2141-50. [PMID: 21945916 DOI: 10.1016/j.peptides.2011.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
83
|
Savoia C, Sada L, Zezza L, Pucci L, Lauri FM, Befani A, Alonzo A, Volpe M. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int J Hypertens 2011; 2011:281240. [PMID: 21915370 PMCID: PMC3170891 DOI: 10.4061/2011/281240] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 12/11/2022] Open
Abstract
Essential hypertension is characterized by increased peripheral vascular resistance to blood flow. The endothelium is a crucial regulator of vascular tone. Its function is impaired in patients with hypertension, with reduced vasodilation, increased vascular tone associated with a proinflammatory and prothrombotic state. Low-grade inflammation localized in vascular tissue is therefore recognized as an important contributor to the pathophysiology of hypertension, to the initiation and progression of atherosclerosis as well as to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Carmine Savoia
- Cardiology Unit, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1037/1039, 00189 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.
Collapse
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, PQ, Canada.
| |
Collapse
|
85
|
Abstract
Hypertension is associated with vascular changes characterised by remodelling, endothelial dysfunction and hyperreactivity. Cellular processes underlying these perturbations include altered vascular smooth muscle cell growth and apoptosis, fibrosis, hypercontractility and calcification. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Many of these features occur with ageing, and the vascular phenotype in hypertension is considered a phenomenon of ‘premature vascular ageing’. Among the many factors involved in the hypertensive vascular phenotype, angiotensin II (Ang II) is especially important. Ang II, previously thought to be the sole effector of the renin–angiotensin system (RAS), is converted to smaller peptides [Ang III, Ang IV, Ang-(1-7)] that are biologically active in the vascular system. Another new component of the RAS is the (pro)renin receptor, which signals through Ang-II-independent mechanisms and might influence vascular function. Ang II mediates effects through complex signalling pathways on binding to its G-protein-coupled receptors (GPCRs) AT1R and AT2R. These receptors are regulated by the GPCR-interacting proteins ATRAP, ARAP1 and ATIP. AT1R activation induces effects through the phospholipase C pathway, mitogen-activated protein kinases, tyrosine kinases/phosphatases, RhoA/Rhokinase and NAD(P)H-oxidase-derived reactive oxygen species. Here we focus on recent developments and new research trends related to Ang II and the RAS and involvement in the hypertensive vascular phenotype.
Collapse
|
86
|
Yogi A, Callera GE, Aranha AB, Antunes TT, Graham D, McBride M, Dominiczak A, Touyz RM. Sphingosine-1-phosphate-induced inflammation involves receptor tyrosine kinase transactivation in vascular cells: upregulation in hypertension. Hypertension 2011; 57:809-18. [PMID: 21383307 DOI: 10.1161/hypertensionaha.110.162719] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P), a multifunctional phospholipid, regulates vascular cell function. Whether S1P influences vascular inflammatory responses, particularly in hypertension, is unclear. We tested the hypothesis that S1P is a proinflammatory mediator signaling through receptor tyrosine kinase transactivation and that responses are amplified in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats (SHRSPs), a model in which we demonstrated Edg1 (S1P1 receptor) to be a candidate gene for salt-sensitive hypertension. Vascular smooth muscle cell from Wistar-Kyoto rats and SHRSPs were studied. S1P receptor subtypes, S1P1 and S1P2, were similarly expressed in Wistar-Kyoto rats and SHRSPs. S1P induced phosphorylation of epidermal growth factor receptor and platelet-derived growth factor and activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, with amplified effects in SHRSPs versus Wistar-Kyoto rats. Inhibition of epidermal growth factor receptor and platelet-derived growth factor (with AG1478 and AG1296, respectively) abolished S1P-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase in Wistar-Kyoto rats with variable effects in SHRSPs. Vascular smooth muscle cell inflammation was evaluated by expression of adhesion molecules and functional responses assessed by monocyte adhesion. S1P stimulated expression of intercellular adhesion molecule 1 and vascular cell adhesion protein 1 and promoted monocyte adhesion, particularly in SHRSP cells. S1P-mediated inflammation was blunted by AG1478 and AG1296 in SHRSP cells. VPC23019, a S1P1 receptor antagonist, inhibited S1P-induced mitogen-activated protein kinase phosphorylation, intercellular adhesion molecule 1 and vascular cell adhesion protein 1 expression, and monocyte adhesion. Our data indicate that molecular processes underlying vascular inflammation and cell adhesion in SHRSPs involve S1P/S1P1 receptors and phosphorylation of receptor tyrosine kinases. We identify a novel pathway linking S1P/S1P1 receptors to specific proinflammatory signaling pathways through epidermal growth factor receptor and platelet-derived growth factor transactivation, a process that is upregulated in SHRSPs. Such molecular events may contribute to vascular inflammation in hypertension.
Collapse
Affiliation(s)
- Alvaro Yogi
- Kidney Research Centre, University of Ottawa/Ottawa Hospital Research Institute, 451 Smyth Rd, Ottawa, Ontario KIH 8M5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, Paradis P, Schiffrin EL. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 2011; 57:469-76. [PMID: 21263125 DOI: 10.1161/hypertensionaha.110.162941] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Angiotensin (Ang) II induces hypertension by mechanisms mediated in part by adaptive immunity and T effector lymphocytes. T regulatory lymphocytes (Tregs) suppress T effector lymphocytes. We questioned whether Treg adoptive transfer would blunt Ang II-induced hypertension and vascular injury. Ten- to 12-week-old male C57BL/6 mice were injected IV with 3 ×10(5) Treg (CD4(+)CD25(+)) or T effector (CD4(+)CD25(-)) cells, 3 times at 2-week intervals, and then infused or not with Ang II (1 μg/kg per minute, SC) for 14 days. Ang II increased systolic blood pressure by 43 mm Hg (P<0.05), NADPH oxidase activity 1.5-fold in aorta and 1.8-fold in the heart (P<0.05), impaired acetylcholine vasodilatory responses by 70% compared with control (P<0.05), and increased vascular stiffness (P<0.001), mesenteric artery vascular cell adhesion molecule expression (2-fold; P<0.05), and aortic macrophage and T-cell infiltration (P<0.001). All of the above were prevented by Treg but not T effector adoptive transfer. Ang II caused a 43% decrease in Foxp3(+) cells in the renal cortex, whereas Treg adoptive transfer increased Foxp3(+) cells 2-fold compared with control. Thus, Tregs suppress Ang II-mediated vascular injury in part through anti-inflammatory actions. Immune mechanisms modulate Ang II-induced blood pressure elevation, vascular oxidative stress, inflammation, and endothelial dysfunction.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kanbay M, Chen Y, Solak Y, Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr Opin Nephrol Hypertens 2011; 20:37-43. [PMID: 21088577 PMCID: PMC3089903 DOI: 10.1097/mnh.0b013e32834122f1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Investigation into the underlying mechanisms of salt sensitivity has made important advances in recent years. This review examines in particular the effects of sodium and potassium on vascular function. RECENT FINDINGS Sodium chloride (salt) intake promotes cutaneous lymphangiogenesis mediated through tissue macrophages and directly alters endothelial cell function, promoting increased production of transforming growth factor-β (TGF-β) and nitric oxide. In the setting of endothelial dysfunction, such as occurs with aging, diminished nitric oxide production exacerbates the vascular effects of TGF-β, promoting decreased arterial compliance and hypertension. Dietary potassium intake may serve as an important countervailing influence on the effects of salt in the vasculature. SUMMARY There is growing appreciation that, independently of alterations in blood pressure, dietary intake of sodium and potassium promotes functional changes in the vasculature and lymphatic system. These changes may protect against development of salt-sensitive hypertension. While salt sensitivity cannot be ascribed exclusively to these factors, perturbation of these processes promotes hypertension during high-salt intake. These studies add to the list of genetic and environmental factors that are associated with salt sensitivity, but in particular provide insight into adaptive mechanisms during high salt intake.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Fatih University School of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
90
|
The central nervous system and inflammation in hypertension. Curr Opin Pharmacol 2010; 11:156-61. [PMID: 21196131 DOI: 10.1016/j.coph.2010.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 02/07/2023]
Abstract
In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system. Recent work suggests that the central actions of angiotensin II via the circumventricular organs lead to activation of circulating T-cells and vascular inflammation. The neuro-immune system plays an essential role in the pathogenesis of hypertension and further understanding of this relationship could lead to the development of new treatment strategies.
Collapse
|
91
|
Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2010; 57:132-40. [PMID: 21149826 DOI: 10.1161/hypertensionaha.110.163576] [Citation(s) in RCA: 611] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David G Harrison
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Tian N, Penman AD, Mawson AR, Manning RD, Flessner MF. Association between circulating specific leukocyte types and blood pressure: the atherosclerosis risk in communities (ARIC) study. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2010; 4:272-83. [PMID: 20980213 PMCID: PMC3014578 DOI: 10.1016/j.jash.2010.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/23/2022]
Abstract
Although total white blood cell (WBC) count has been associated with hypertension, the association between specific WBC types and blood pressure (BP) levels has not been studied. In a cohort of 5746 middle-age African-American and white adults free of clinical cardiovascular disease and cancer and not taking hypertension or anti-inflammatory medications, BP was measured at baseline and 3, 6, and 9 years later. Levels of circulating neutrophils, lymphocytes, and monocytes were measured at baseline. In African-Americans, but much less so in whites, increased neutrophil levels and decreased lymphocyte levels were significantly associated with elevation of BP but did not influence the rate of change of BP over time. The mean BP difference between the highest and lowest quartiles of neutrophils was approximately 8 mm Hg for systolic BP (SBP), 4 mm Hg for mean arterial pressure (MAP), and 5 mm Hg for pulse pressure (PP). The mean BP difference between the lowest and highest quartiles of lymphocytes was approximately 6 mm Hg for SBP, 2 mm Hg for diastolic BP (DBP), 3 mm Hg for MAP, and 4 mm Hg for PP. Increased neutrophils and decreased lymphocytes are significantly correlated with the regulation of BP and the development of hypertension, especially in African-Americans.
Collapse
Affiliation(s)
- Niu Tian
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | |
Collapse
|
93
|
Abstract
Increased vascular production of reactive oxygen species (ROS; termed oxidative stress) has been implicated in various chronic diseases, including hypertension. Oxidative stress is both a cause and a consequence of hypertension. Although oxidative injury may not be the sole etiology, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors. Oxidative stress is a multisystem phenomenon in hypertension and involves the heart, kidneys, nervous system, vessels and possibly the immune system. Compelling experimental and clinical evidence indicates the importance of the vasculature in the pathophysiology of hypertension and as such much emphasis has been placed on the (patho)biology of ROS in the vascular system. A major source for cardiovascular, renal and neural ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), including the prototypic Nox2 homolog-based NADPH oxidase, as well as other Noxes, such as Nox1 and Nox4. Nox-derived ROS is important in regulating endothelial function and vascular tone. Oxidative stress is implicated in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis and rarefaction, important processes involved in vascular remodeling in hypertension. Despite a plethora of data implicating oxidative stress as a causative factor in experimental hypertension, findings in human hypertension are less conclusive. This review highlights the importance of ROS in vascular biology and focuses on the potential role of oxidative stress in human hypertension.
Collapse
|
94
|
Schreiner H, Markowitz K, Miryalkar M, Moore D, Diehl S, Fine DH. Aggregatibacter actinomycetemcomitans-induced bone loss and antibody response in three rat strains. J Periodontol 2010; 82:142-50. [PMID: 20681810 DOI: 10.1902/jop.2010.100250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of this study is to compare the colonization, immunoglobulin (Ig) G response, and alveolar bone loss in Aggregatibacter actinomycetemcomitans (Aa)-inoculated Fawn Hooded Hypertensive (FHH), Dahl Salt-Sensitive (DSS), and Brown Norway (BN) rats. METHODS Each rat strain was divided into wild-type Aa-inoculated and non-inoculated control groups. Blood taken at 12 weeks after inoculation was assessed for Aa-specific IgG antibodies by an enzyme-linked immunosorbent assay. Colonization was assessed 12 weeks postinoculation. Bone loss was estimated by measuring the distance from the cemento-enamel junction (CEJ) to the alveolar bone crest (ABC) at 20 molar sites. Colonization and antibody levels were compared by using the Student t test. Diseased rats were defined as having two sites per quadrant with CEJ-ABC distances that were significantly greater than the control CEJ-ABC distances. RESULTS The Aa colonization of FHH rats was significantly higher than in other strains (P <0.05). The Aa-specific IgG levels in the DSS Aa-inoculated group were significantly higher than in its control group (P <0.05). Only FHH rats showed Aa disease-associated bone loss (P = 0.0021). CONCLUSIONS Aa colonized and caused more disease in FHH rats than in the other rat strains. The rat strains each responded differently to the same Aa strain.
Collapse
Affiliation(s)
- Helen Schreiner
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|