51
|
Murray M, Dyari HRE, Allison SE, Rawling T. Lipid analogues as potential drugs for the regulation of mitochondrial cell death. Br J Pharmacol 2014; 171:2051-66. [PMID: 24111728 DOI: 10.1111/bph.12417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Abstract
The mitochondrion plays an important role in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production, reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well-recognized component of the pathogenesis of diseases such as cancer. Understanding mitochondrial function, and how this is dysregulated in disease, offers the opportunity for the development of drug molecules to specifically target such defects. Altered energy metabolism in cancer, in which ATP production occurs largely by glycolysis, rather than by oxidative phosphorylation, is attributable in part to the up-regulation of cell survival signalling cascades. These pathways also regulate the balance between pro- and anti-apoptotic factors that may determine the rate of cell death and proliferation. A number of anti-cancer drugs have been developed that target these factors and one of the most promising groups of agents in this regard are the lipid-based molecules that act directly or indirectly at the mitochondrion. These molecules have emerged in part from an understanding of the mitochondrial actions of naturally occurring fatty acids. Some of these agents have already entered clinical trials because they specifically target known mitochondrial defects in the cancer cell.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
52
|
Wellberg EA, Rudolph MC, Lewis AS, Padilla-Just N, Jedlicka P, Anderson SM. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis. Breast Cancer Res 2014; 16:481. [PMID: 25472762 PMCID: PMC4303195 DOI: 10.1186/s13058-014-0481-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Introduction Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Methods Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. Results S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. Conclusions This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Wellberg
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Michael C Rudolph
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Current Address: Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Andrew S Lewis
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Nuria Padilla-Just
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA. .,Current Address: Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Steven M Anderson
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
53
|
Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Discov Oncol 2014; 5:374-89. [PMID: 25213330 DOI: 10.1007/s12672-014-0188-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC.
Collapse
|
54
|
Wellberg EA, Anderson SM. FASNating targets of metformin in breast cancer stem-like cells. Discov Oncol 2014; 5:358-62. [PMID: 25172609 DOI: 10.1007/s12672-014-0198-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elizabeth A Wellberg
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8104, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | | |
Collapse
|
55
|
Roy D, Mondal S, Wang C, He X, Khurana A, Giri S, Hoffmann R, Jung DB, Kim SH, Chini EN, Periera JC, Folmes CD, Mariani A, Dowdy SC, Bakkum-Gamez JN, Riska SM, Oberg AL, Karoly ED, Bell LN, Chien J, Shridhar V. Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer Metab 2014; 2:13. [PMID: 25225614 PMCID: PMC4164348 DOI: 10.1186/2049-3002-2-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell metabolism. Results Ingenuity pathway analysis of gene expression in HSulf-1 shRNA-silenced cells (Sh1 and Sh2 cells) compared to non-targeted control shRNA cells (NTC cells) and subsequent Kyoto Encyclopedia of Genes and Genomics (KEGG) database analysis showed altered metabolic pathways with changes in the lipid metabolism as one of the major pathways altered inSh1 and 2 cells. Untargeted global metabolomic profiling in these isogenic cell lines identified approximately 338 metabolites using GC/MS and LC/MS/MS platforms. Knockdown of HSulf-1 in OV202 cells induced significant changes in 156 metabolites associated with several metabolic pathways including amino acid, lipids, and nucleotides. Loss of HSulf-1 promoted overall fatty acid synthesis leading to enhance the metabolite levels of long chain, branched, and essential fatty acids along with sphingolipids. Furthermore, HSulf-1 loss induced the expression of lipogenic genes including FASN, SREBF1, PPARγ, and PLA2G3 stimulated lipid droplet accumulation. Conversely, re-expression of HSulf-1 in Sh1 cells reduced the lipid droplet formation. Additionally, HSulf-1 also enhanced CPT1A and fatty acid oxidation and augmented the protein expression of key lipolytic enzymes such as MAGL, DAGLA, HSL, and ASCL1. Overall, these findings suggest that loss of HSulf-1 by concomitantly enhancing fatty acid synthesis and oxidation confers a lipogenic phenotype leading to the metabolic alterations associated with the progression of ovarian cancer. Conclusions Taken together, these findings demonstrate that loss of HSulf-1 potentially contributes to the metabolic alterations associated with the progression of ovarian pathogenesis, specifically impacting the lipogenic phenotype of ovarian cancer cells that can be therapeutically targeted.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Robert Hoffmann
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Sung H Kim
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Eduardo N Chini
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Clifford D Folmes
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jamie N Bakkum-Gamez
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shaun M Riska
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KN 66160, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
56
|
Li P, Tian W, Ma X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer 2014; 13:138. [PMID: 24894151 PMCID: PMC4060095 DOI: 10.1186/1476-4598-13-138] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/28/2014] [Indexed: 01/11/2023] Open
Abstract
Background Fatty acid synthase (FAS) has been proven over-expressed in human breast cancer cells and consequently, has been recognized as a target for breast cancer treatment. Alpha-mangostin, a natural xanthone found in mangosteen pericarp, has a variety of biological activities, including anti-cancer effect. In our previous study, alpha-mangostin had been found both fast-binding and slow-binding inhibitions to FAS in vitro. This study was designed to investigate the activity of alpha-mangostin on intracellular FAS activity in FAS over-expressed human breast cancer cells, and to testify whether the anti-cancer activity of alpha-mangostin may be related to its inhibitory effect on FAS. Methods We evaluated the cytotoxicity of alpha-mangostin in human breast cancer MCF-7 and MDA-MB-231 cells. Intracellular FAS activity was measured by a spectrophotometer at 340 nm of NADPH absorption. Cell Counting Kit assay was used to test the cell viability. Immunoblot analysis was performed to detect FAS expression level, intracellular fatty acid accumulation and cell signaling (FAK, ERK1/2 and AKT). Apoptotic effects were detected by flow cytometry and immunoblot analysis of PARP, Bax and Bcl-2. Small interfering RNA was used to down-regulate FAS expression and/or activity. Results Alpha-mangostin could effectively suppress FAS expression and inhibit intracellular FAS activity, and result in decrease of intracellular fatty acid accumulation. It could also reduce cell viability, induce apoptosis in human breast cancer cells, increase in the levels of the PARP cleavage product, and attenuate the balance between anti-apoptotic and pro-apoptotic proteins of the Bcl-2 family. Moreover, alpha-mangostin inhibited the phosphorylation of FAK. However, the active forms of AKT, and ERK1/2 proteins were not involved in the changes of FAS expression induced by alpha-mangostin. Conclusions Alpha-mangostin induced breast cancer cell apoptosis by inhibiting FAS, which provide a basis for the development of xanthone as an agent for breast cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiaofeng Ma
- College of Life Sciences, University of Chinese Academy of Sciences, No, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
57
|
Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J Physiol Biochem 2014; 70:569-81. [PMID: 24604252 DOI: 10.1007/s13105-014-0328-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/20/2014] [Indexed: 01/18/2023]
Abstract
Recent studies have given us a clue as to how modulations of both metabolic pathways and cyclins by the ubiquitin system influence cell cycle progression. Among these metabolic modulations, an aerobic glycolysis and glutaminolysis represent an initial step for metabolic machinery adaptation. The enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and glutaminase-1 (GLS1) maintain a high abundance in glycolytic intermediates (for synthesis of non-essential amino acids, the use of ribose for the synthesis of nucleotides and hexosamine biosynthesis), as well as tricarboxylic acid cycle intermediates (replenishing the loss of mitochondrial citrate), respectively. On the one hand, regulation of these key metabolic enzymes by ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/cullin/F-box (SCF) has revealed the importance of anaplerosis by both glycolysis and glutaminolysis to overcome the restriction point of the G1 phase by maintaining high levels of glycolytic and glutaminolytic intermediates. On the other hand, only glutaminolytic intermediates are necessary to drive cell growth through the S and G2 phases of the cell cycle. It is interesting to appreciate how this reorganization of the metabolic machinery, which has been observed beyond cellular proliferation, is a crucial determinant of a cell's decision to proliferate. Here, we explore a unifying view of interactions between the ubiquitin system, metabolic activity, and cyclin-dependent kinase complexes activity during the cell cycle.
Collapse
|
58
|
Deford-Watts LM, Mintz A, Kridel SJ. The potential of ¹¹C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors. Curr Pharm Biotechnol 2013; 14:300-12. [PMID: 23597406 DOI: 10.2174/1389201011314030006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022]
Abstract
Positron emission tomography (PET) is a molecular imaging modality that provides the opportunity to rapidly and non-invasively visualize tumors derived from multiple organs. In order to do so, PET utilizes radiotracers, such as ¹⁸F-FDG and ¹¹C-acetate, whose uptake coincides with altered metabolic pathways within tumors. Increased expression and activity of enzymes in the fatty acid synthesis pathway is a frequent hallmark of cancer cells. As a result, this pathway has become a prime target for therapeutic intervention. Although multiple drugs have been developed that both directly and indirectly interfere with fatty acid synthesis, an optimal means to assess their efficacy is lacking. Given that ¹¹Cacetate is directly linked to the fatty acid synthesis pathway, this probe provides a unique opportunity to monitor lipogenic tumors by PET. Herein, we review the relevance of the fatty acid synthesis pathway in cancer. Furthermore, we address the potential utility of ¹¹C-acetate PET in imaging tumors, especially those that are not FDG-avid. Last, we discuss several therapeutic interventions that could benefit from ¹¹C-acetate PET to monitor therapeutic response in patients with certain types of cancers.
Collapse
Affiliation(s)
- Laura M Deford-Watts
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
59
|
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 2013; 51:506-518. [PMID: 23932781 DOI: 10.1016/j.molcel.2013.07.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 06/06/2013] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
Abstract
Increased fatty acid synthesis is required to meet the demand for membrane expansion of rapidly growing cells. ATP-citrate lyase (ACLY) is upregulated or activated in several types of cancer, and inhibition of ACLY arrests proliferation of cancer cells. Here we show that ACLY is acetylated at lysine residues 540, 546, and 554 (3K). Acetylation at these three lysine residues is stimulated by P300/calcium-binding protein (CBP)-associated factor (PCAF) acetyltransferase under high glucose and increases ACLY stability by blocking its ubiquitylation and degradation. Conversely, the protein deacetylase sirtuin 2 (SIRT2) deacetylates and destabilizes ACLY. Substitution of 3K abolishes ACLY ubiquitylation and promotes de novo lipid synthesis, cell proliferation, and tumor growth. Importantly, 3K acetylation of ACLY is increased in human lung cancers. Our study reveals a crosstalk between acetylation and ubiquitylation by competing for the same lysine residues in the regulation of fatty acid synthesis and cell growth in response to glucose.
Collapse
Affiliation(s)
- Ruiting Lin
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Ren Tao
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Xue Gao
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Tingting Li
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037-0695, USA
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China.,School of Life Science Fudan University, Shanghai 200032, China.,Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qun-Ying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Shanghai 200032, China.,Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
60
|
Abstract
Cancer cells often have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation.
Collapse
Affiliation(s)
- Erin Currie
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Almut Schulze
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Robert V. Farese
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, USA
| |
Collapse
|
61
|
Louie SM, Roberts LS, Mulvihill MM, Luo K, Nomura DK. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1566-72. [PMID: 23872477 DOI: 10.1016/j.bbalip.2013.07.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Sharon M Louie
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Lindsay S Roberts
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Melinda M Mulvihill
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
62
|
Natter K, Kohlwein SD. Yeast and cancer cells - common principles in lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:314-26. [PMID: 22989772 PMCID: PMC3549488 DOI: 10.1016/j.bbalip.2012.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
One of the paradigms in cancer pathogenesis is the requirement of a cell to undergo transformation from respiration to aerobic glycolysis - the Warburg effect - to become malignant. The demands of a rapidly proliferating cell for carbon metabolites for the synthesis of biomass, energy and redox equivalents, are fundamentally different from the requirements of a differentiated, quiescent cell, but it remains open whether this metabolic switch is a cause or a consequence of malignant transformation. One of the major requirements is the synthesis of lipids for membrane formation to allow for cell proliferation, cell cycle progression and cytokinesis. Enzymes involved in lipid metabolism were indeed found to play a major role in cancer cell proliferation, and most of these enzymes are conserved in the yeast, Saccharomyces cerevisiae. Most notably, cancer cell physiology and metabolic fluxes are very similar to those in the fermenting and rapidly proliferating yeast. Both types of cells display highly active pathways for the synthesis of fatty acids and their incorporation into complex lipids, and imbalances in synthesis or turnover of lipids affect growth and viability of both yeast and cancer cells. Thus, understanding lipid metabolism in S. cerevisiae during cell cycle progression and cell proliferation may complement recent efforts to understand the importance and fundamental regulatory mechanisms of these pathways in cancer.
Collapse
Affiliation(s)
- Klaus Natter
- University of Graz, Institute of Molecular Biosciences, Lipidomics Research Center Graz, Humboldtstrasse 50/II, 8010 Graz,
| | | |
Collapse
|
63
|
Zu X, Zhong J, Luo D, Tan J, Zhang Q, Wu Y, Liu J, Cao R, Wen G, Cao D. Chemical genetics of acetyl-CoA carboxylases. Molecules 2013; 18:1704-19. [PMID: 23358327 PMCID: PMC6269866 DOI: 10.3390/molecules18021704] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 12/16/2022] Open
Abstract
Chemical genetic studies on acetyl-CoA carboxylases (ACCs), rate-limiting enzymes in long chain fatty acid biosynthesis, have greatly advanced the understanding of their biochemistry and molecular biology and promoted the use of ACCs as targets for herbicides in agriculture and for development of drugs for diabetes, obesity and cancers. In mammals, ACCs have both biotin carboxylase (BC) and carboxyltransferase (CT) activity, catalyzing carboxylation of acetyl-CoA to malonyl-CoA. Several classes of small chemicals modulate ACC activity, including cellular metabolites, natural compounds, and chemically synthesized products. This article reviews chemical genetic studies of ACCs and the use of ACCs for targeted therapy of cancers.
Collapse
Affiliation(s)
- Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Dixian Luo
- Institute of Translational Medicine & Department of Laboratory Medicine, the First People’s Hospital of Chenzhou, 102 Luojiajing Road, Chenzhou 423000, Hunan, China
| | - Jingjing Tan
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Qinghai Zhang
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Ying Wu
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jianghua Liu
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
- Authors to whom correspondence should be addressed; E-Mails: (R.C.); (D.C.); Tel.: +86-217-545-9703 (D.C.); Fax: +86-217-545-9718 (D.C.)
| | - Gebo Wen
- Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Deliang Cao
- Department of Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794, USA
- Authors to whom correspondence should be addressed; E-Mails: (R.C.); (D.C.); Tel.: +86-217-545-9703 (D.C.); Fax: +86-217-545-9718 (D.C.)
| |
Collapse
|
64
|
Macintyre AN, Rathmell JC. Activated lymphocytes as a metabolic model for carcinogenesis. Cancer Metab 2013; 1:5. [PMID: 24280044 PMCID: PMC3834493 DOI: 10.1186/2049-3002-1-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a key event in tumorigenesis to support cell growth, and cancer cells frequently become both highly glycolytic and glutamine dependent. Similarly, T lymphocytes (T cells) modify their metabolism after activation by foreign antigens to shift from an energetically efficient oxidative metabolism to a highly glycolytic and glutamine-dependent metabolic program. This metabolic transition enables T cell growth, proliferation, and differentiation. In both activated T cells and cancer cells metabolic reprogramming is achieved by similar mechanisms and offers similar survival and cell growth advantages. Activated T cells thus present a useful model with which to study the development of tumor metabolism. Here, we review the metabolic similarities and distinctions between activated T cells and cancer cells, and discuss both the common signaling pathways and master metabolic regulators that lead to metabolic rewiring. Ultimately, understanding how and why T cells adopt a cancer cell-like metabolic profile may identify new therapeutic strategies to selectively target tumor metabolism or inflammatory immune responses.
Collapse
Affiliation(s)
- Andrew N Macintyre
- Department of Pharmacology and Cancer Biology, Department of Immunology, Sarah W, Stedman Nutrition and Metabolism Center, Duke University, Durham, NC, 27710, USA.
| | | |
Collapse
|
65
|
Caro P, Kishan AU, Norberg E, Stanley I, Chapuy B, Ficarro SB, Polak K, Tondera D, Gounarides J, Yin H, Zhou F, Green MR, Chen L, Monti S, Marto JA, Shipp MA, Danial NN. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012; 22:547-60. [PMID: 23079663 PMCID: PMC3479446 DOI: 10.1016/j.ccr.2012.08.014] [Citation(s) in RCA: 409] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 06/07/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
Molecular signatures have identified several subsets of diffuse large B cell lymphoma (DLBCL) and rational targets within the B cell receptor (BCR) signaling axis. The OxPhos-DLBCL subset, which harbors the signature of genes involved in mitochondrial metabolism, is insensitive to inhibition of BCR survival signaling but is functionally undefined. We show that, compared with BCR-DLBCLs, OxPhos-DLBCLs display enhanced mitochondrial energy transduction, greater incorporation of nutrient-derived carbons into the tricarboxylic acid cycle, and increased glutathione levels. Moreover, perturbation of the fatty acid oxidation program and glutathione synthesis proved selectively toxic to this tumor subset. Our analysis provides evidence for distinct metabolic fingerprints and associated survival mechanisms in DLBCL and may have therapeutic implications.
Collapse
Affiliation(s)
- Pilar Caro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Amar U. Kishan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Erik Norberg
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Illana Stanley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Scott B. Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Klaudia Polak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Daniel Tondera
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - John Gounarides
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Hong Yin
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Feng Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Michael R. Green
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Linfeng Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Stefano Monti
- The Broad Institute, Cambridge, MA, 02142, USA
- Section of Computational Biomedicine, Boston University School of Medicine, MA, 02218, USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Corresponding author , Phone: 617-632-6436
| |
Collapse
|
66
|
Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, Chudzinski-Tavassi AM, Coletta RD, Graner E. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer 2012; 107:977-87. [PMID: 22892389 PMCID: PMC3464771 DOI: 10.1038/bjc.2012.355] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fatty acid synthase (FASN) is overexpressed and associated with poor prognosis in several human cancers. Here, we investigate the effect of FASN inhibitors on the metastatic spread and angiogenesis in experimental melanomas and cultured melanoma cells. METHODS The lung colonisation assay and cutaneous melanomas were performed by the inoculation of mouse melanoma B16-F10 cells in C57BL6 mice. Blood vessel endothelial cells (RAEC and HUVEC) were applied to determine cell proliferation, apoptosis, and the formation of capillary-like structures. Vascular endothelial growth factor A (VEGFA) expression was evaluated by quantitative RT-PCR and ELISA in B16-F10, human melanoma (SK-MEL-25), and human oral squamous carcinoma (SCC-9) cells. Conditioned media from these cancer cell lines were used to study the effects of FASN inhibitors on endothelial cells. RESULTS B16-F10 melanoma-induced metastases and angiogenesis were significantly reduced in orlistat-treated mice. Fatty acid synthase inhibitors reduced the viability, proliferation, and the formation of capillary-like structures by RAEC cells, as well as the tumour cell-mediated formation of HUVEC capillary-like structures. Cerulenin and orlistat stimulated the production of total VEGFA in B16-F10, SK-MEL-25, and SCC-9 cells. Both drugs also enhanced VEGFA(121), (165), (189,) and (165b) in SK-MEL-25 and SCC-9 cells. CONCLUSION FASN inhibitors reduce metastasis and tumour-induced angiogenesis in experimental melanomas, and differentially modulate VEGFA expression in B16-F10 cells.
Collapse
Affiliation(s)
- F Seguin
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - M A Carvalho
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - D C Bastos
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - M Agostini
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - K G Zecchin
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - M P Alvarez-Flores
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brasil 1500, Butantã, São Paulo, CEP 05503-900, SP, Brazil
| | - A M Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brasil 1500, Butantã, São Paulo, CEP 05503-900, SP, Brazil
| | - R D Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| | - E Graner
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, CEP 13414-018, SP, Brazil
| |
Collapse
|
67
|
Blair RH, Trichler DL, Gaille DP. Mathematical and statistical modeling in cancer systems biology. Front Physiol 2012; 3:227. [PMID: 22754537 PMCID: PMC3385354 DOI: 10.3389/fphys.2012.00227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/05/2012] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major health problem with high mortality rates. In the post-genome era, investigators have access to massive amounts of rapidly accumulating high-throughput data in publicly available databases, some of which are exclusively devoted to housing Cancer data. However, data interpretation efforts have not kept pace with data collection, and gained knowledge is not necessarily translating into better diagnoses and treatments. A fundamental problem is to integrate and interpret data to further our understanding in Cancer Systems Biology. Viewing cancer as a network provides insights into the complex mechanisms underlying the disease. Mathematical and statistical models provide an avenue for cancer network modeling. In this article, we review two widely used modeling paradigms: deterministic metabolic models and statistical graphical models. The strength of these approaches lies in their flexibility and predictive power. Once a model has been validated, it can be used to make predictions and generate hypotheses. We describe a number of diverse applications to Cancer Biology, including, the system-wide effects of drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes, and survival predictions.
Collapse
Affiliation(s)
- Rachael Hageman Blair
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
| | - David L. Trichler
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
- Department of Biostatistics, University of TorontoToronto, ON, Canada
| | - Daniel P. Gaille
- Department of Biostatistics, State University of New York at BuffaloBuffalo, NY, USA
| |
Collapse
|
68
|
Mukherjee A, Wu J, Barbour S, Fang X. Lysophosphatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells. J Biol Chem 2012; 287:24990-5000. [PMID: 22665482 DOI: 10.1074/jbc.m112.340083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most common molecular changes in cancer is the increased endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype. Previous efforts to control oncogenic lipogenesis have been focused on pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in culture and in mouse models, these inhibitors are nonselective blockers of lipid synthesis in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is important to identify the mechanism governing hyperactive lipogenesis in malignant cells. In this study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-like mediator present at high levels in ascites of ovarian cancer patients, regulates the sterol regulatory element binding protein-FAS and AMP-activated protein kinase-ACC pathways in ovarian cancer cells but not in normal or immortalized ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA(2), an LPA receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of LPA(2), the G(12/13) and G(q) signaling cascades mediate LPA-dependent sterol regulatory element-binding protein activation and AMP-activated protein kinase inhibition, respectively. Moreover, inhibition of de novo lipid synthesis dramatically attenuated LPA-induced cell proliferation. These results demonstrate that LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, which can be exploited for development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Abir Mukherjee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
69
|
Schug ZT, Frezza C, Galbraith LCA, Gottlieb E. The music of lipids: how lipid composition orchestrates cellular behaviour. Acta Oncol 2012; 51:301-10. [PMID: 22283492 DOI: 10.3109/0284186x.2011.643823] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lipids are best known for their fundamental role in forming biological membranes and as intracellular signalling molecules. Interactions between proteins and lipids are central to nearly every cellular process yet these crucial relationships often go overlooked. Changes or switches in the lipid profile of a cell drastically affects cellular metabolism and signal transduction. In relationship to cancer, upregulation of lipid metabolism is often observed during the early stages of neoplasia and is a recognised hallmark of many types of cancer. METHODS We performed a comprehensive review of the literature using PubMed regarding lipid metabolism in cancer and the importance of protein-lipid interactions in the function of mitochondria. RESULTS An increase in the basal rate of de novo lipogenesis generates a substantial rise in the saturated fatty acid content of cellular membranes. The ensuing alteration in the acyl chain profile of phospholipids has severe consequences on the function of organelles and membrane-bound proteins, and result in a host of pathologies including the cardiac disorder Barth Syndrome. CONCLUSIONS Although increased lipogenesis is specifically selected for during cellular transformation it remains unclear if it confers an advantage for survival or is a byproduct of more global changes in cellular metabolism. We discuss the current data regarding the potential of targeting the lipogenic switch as a cancer therapy. In addition, we describe the importance of mitochondrial phospholipid composition during a number mitochondria-driven events observed to have roles in cancer. We specifically highlight the function of cardiolipin in maintaining mitochondrial structure, regulating mitochondrial dynamics and bioenergetics as well as its contributions to mitophagy/autophagy and apoptosis.
Collapse
Affiliation(s)
- Zachary T Schug
- Laboratory of Apoptosis and Tumour Metabolism, Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | | | | |
Collapse
|
70
|
Wang Y, Wang Y, Shen L, Pang Y, Qiao Z, Liu P. Prognostic and therapeutic implications of increased ATP citrate lyase expression in human epithelial ovarian cancer. Oncol Rep 2012; 27:1156-62. [PMID: 22266777 PMCID: PMC3583602 DOI: 10.3892/or.2012.1638] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Altered metabolism is one of the most significant features of cancer cells. ATP citrate lyase (ACL), a key enzyme in de novo lipid synthesis, has been reported to be overexpressed or activated in several cancer types. To determine the role of ACL in ovarian cancer progression, we detected ACL expression in human epithelial ovarian cancer tissues. qRT-PCR and western blotting showed higher ACL expression in malignant tissues compared to normal ovarian tissues. Immunohistochemical analysis showed that phosphorylated ACL was increased in ovarian cancer tissues and that its expression correlated well with tumor grade, FIGO stage and poorer prognosis. To explore the therapeutic potential of ACL, we assessed the effect of ACL-siRNA on cellular proliferation and cell cycle distribution. ACL knockdown inhibited cellular proliferation and induced cell cycle arrest in A2780 cells. Taken together, our findings suggest that ACL may contribute to the pathogenesis of human epithelial ovarian cancer, and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Dimitrios Anastasiou
- Beth Israel Deaconess Medical Center, Department of Medicine-Division of Signal Transduction, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
72
|
Abstract
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.
Collapse
|
73
|
Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13:81-97. [PMID: 21403835 DOI: 10.1593/neo.101102] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 12/13/2022] Open
Abstract
A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as (13)C or (15)N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism-poor sensitivity-while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care.
Collapse
|
74
|
Pei Z, Sun P, Huang P, Lal B, Laterra J, Watkins PA. Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Res 2010; 69:9175-82. [PMID: 19920185 DOI: 10.1158/0008-5472.can-08-4689] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The contribution of lipid metabolic pathways to malignancy is poorly understood. Expression of the fatty acyl-CoA synthetase ACSVL3 was found to be markedly elevated in clinical malignant glioma specimens but nearly undetectable in normal glia. ACSVL3 levels correlated with the malignant behavior of human glioma cell lines and glioma cells propagated as xenografts. ACSVL3 expression was induced by the activation of oncogenic receptor tyrosine kinases (RTK) c-Met and epidermal growth factor receptor. Inhibiting c-Met activation with neutralizing anti-hepatocyte growth factor monoclonal antibodies reduced ACSVL3 expression concurrent with tumor growth inhibition in vivo. ACSVL3 expression knockdown using RNA interference, which decreased long-chain fatty acid activation, inhibited anchorage-dependent and anchorage-independent glioma cell growth by approximately 70% and approximately 90%, respectively. ACSVL3-depleted cells were less tumorigenic than control cells, and subcutaneous xenografts grew approximately 60% slower than control tumors. Orthotopic xenografts produced by ACSVL3-depleted cells were 82% to 86% smaller than control xenografts. ACSVL3 knockdown disrupted Akt function as evidenced by RTK-induced transient decreases in total and phosphorylated Akt, as well as glycogen synthase kinase 3beta, via a caspase-dependent mechanism. Expressing constitutively active myr-Akt rescued cells from the anchorage-dependent and anchorage-independent growth inhibitory effects of ACSVL3 depletion. These studies show that ACSVL3 maintains oncogenic properties of malignant glioma cells via a mechanism that involves, in part, the regulation of Akt function.
Collapse
Affiliation(s)
- Zhengtong Pei
- Hugo W. Moser Research Institute at Kennedy Krieger and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
75
|
Lartigue L, Kushnareva Y, Seong Y, Lin H, Faustin B, Newmeyer DD. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol Biol Cell 2009; 20:4871-84. [PMID: 19793916 PMCID: PMC2785731 DOI: 10.1091/mbc.e09-07-0649] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/17/2009] [Accepted: 09/23/2009] [Indexed: 01/29/2023] Open
Abstract
In apoptosis, mitochondrial outer membrane permeabilization (MOMP) triggers caspase-dependent death. However, cells undergo clonogenic death even if caspases are blocked. One proposed mechanism involved the release of cytotoxic proteins (e.g., AIF and endoG) from mitochondria. To initiate MOMP directly without side effects, we created a tamoxifen-switchable BimS fusion protein. Surprisingly, even after MOMP, caspase-inhibited cells replicated DNA and divided for approximately 48 h before undergoing proliferation arrest. AIF and endoG remained in mitochondria. However, cells gradually lost mitochondrial membrane potential and ATP content, and DNA synthesis slowed to a halt by 72 h. These defects resulted from a partial loss of respiratory function, occurring 4-8 h after MOMP, that was not merely due to dispersion of cytochrome c. In particular, Complex I activity was completely lost, and Complex IV activity was reduced by approximately 70%, whereas Complex II was unaffected. Later, cells exhibited a more profound loss of mitochondrial protein constituents. Thus, under caspase inhibition, MOMP-induced clonogenic death results from a progressive loss of mitochondrial function, rather than the release of cytotoxic proteins from mitochondria.
Collapse
Affiliation(s)
- Lydia Lartigue
- *La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Yulia Kushnareva
- *La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Youngmo Seong
- *La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Helen Lin
- *La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | | | | |
Collapse
|
76
|
Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 2009; 10:767-77. [PMID: 18941420 DOI: 10.1097/gim.0b013e31818b0d9b] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the 1920s, Otto Warburg observed that tumor cells consumed a large amount of glucose, much more than normal cells, and converted most of it to lactic acid. This phenomenon, now known as the "Warburg effect," is the foundation of one of the earliest general concepts of cancer: that a fundamental disturbance of cellular metabolic activity is at the root of tumor formation and growth. In the ensuing decades, as it became apparent that abnormalities in chromosomes and eventually individual genes caused cancer, the "metabolic" model of cancer lost a good deal of its appeal, even as emerging technologies were exploiting the Warburg effect clinically to detect tumors in vivo. We now know that tumor suppressors and proto-oncogenes influence metabolism, and that mutations in these genes can promote a metabolic phenotype supporting cell growth and proliferation. Thus, these advances have unified aspects of the metabolic and genetic models of cancer, and have stimulated a renewed interest in the role of cellular metabolism in tumorigenesis. This review reappraises the notion that dysregulated cellular metabolism is a key feature of cancer, and discusses some metabolic issues that have escaped scrutiny over the years and now deserve closer attention.
Collapse
|
77
|
Zhan Y, Ginanni N, Tota MR, Wu M, Bays NW, Richon VM, Kohl NE, Bachman ES, Strack PR, Krauss S. Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin Cancer Res 2008; 14:5735-42. [PMID: 18794082 DOI: 10.1158/1078-0432.ccr-07-5074] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE For many tumor cells, de novo lipogenesis is a requirement for growth and survival. A considerable body of work suggests that inhibition of this pathway may be a powerful approach to antineoplastic therapy. It has recently been shown that inhibition of various steps in the lipogenic pathway individually can induce apoptosis or loss of viability in tumor cells. However, it is not clear whether quantitative differences exist in the ability of lipogenic enzymes to control tumor cell survival. We present a systematic approach that allows for a direct comparison of the control of lipogenic pathway enzymes over tumor cell growth and apoptosis using different cancer cells. EXPERIMENTAL DESIGN RNA interference-mediated, graded down-regulation of fatty acid synthase (FAS) pathway enzymes was employed in combination with measurements of lipogenesis, apoptosis, and cell growth. RESULTS In applying RNA interference titrations to two lipogenic enzymes, acetyl-CoA carboxylase 1 (ACC1) and FAS, we show that ACC1 and FAS both significantly control cell growth and apoptosis in HCT-116 cells. These results also extend to PC-3 and A2780 cancer cells. CONCLUSIONS Control of tumor cell survival by different steps in de novo lipogenesis can be quantified. Because ACC1 and FAS both significantly control tumor cell growth and apoptosis, we propose that pharmacologic inhibitors of either enzyme might be useful agents in targeting cancer cells that critically rely on fatty acid synthesis. The experimental approach described here may be extended to other targets or disease-relevant pathways to identify steps suitable for therapeutic intervention.
Collapse
Affiliation(s)
- Yanai Zhan
- Department of Cancer Biology and Therapeutics, Merck Research Laboratories, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.
Collapse
|
79
|
PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 2008; 35:942-9. [PMID: 18338167 DOI: 10.1007/s00259-007-0662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE In the present study, the potential clinical role of 11C-acetate PET mainly in the differential diagnosis, in the staging and in the follow-up of prostate cancer patients is reported. METHODS Each of the above points has been accurately investigated by studying the specific biochemical and radiobiochemical behaviour of this positron emitter compound. RESULTS AND CONCLUSION The imaging quality of 11C-acetate PET and its unique mechanisms of cellular uptake, make such radiotracer a powerful tool in evaluating all the steps of the prostatic cancer.
Collapse
|
80
|
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18:54-61. [PMID: 18387799 DOI: 10.1016/j.gde.2008.02.003] [Citation(s) in RCA: 779] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 01/11/2023]
Abstract
Tumor cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. Classical work in tumor cell metabolism focused on bioenergetics, particularly enhanced glycolysis and suppressed oxidative phosphorylation (the 'Warburg effect'). But the biosynthetic activities required to create daughter cells are equally important for tumor growth, and recent studies are now bringing these pathways into focus. In this review, we discuss how tumor cells achieve high rates of nucleotide and fatty acid synthesis, how oncogenes and tumor suppressors influence these activities, and how glutamine metabolism enables macromolecular synthesis in proliferating cells.
Collapse
Affiliation(s)
- Ralph J Deberardinis
- Department of Cancer Biology, Abramson Cancer Center and Abramson Family Cancer Research Institute, University of Pennsylvania, 1600 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
81
|
Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 2008; 41:59-85. [PMID: 18211286 DOI: 10.1111/j.1365-2184.2007.00498.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES More than 50 years ago, we learned that breast cancer cells (and those of many other types of tumour) endogenously synthesize 95% of fatty acids (FAs) de novo, despite having adequate nutritional lipid supply. Today, we know that breast cancer cells benefit from this phenomenon in terms of enhanced cell proliferation, survival, chemoresistance and metastasis. However, the exact role of the major lipogenic enzyme fatty acid synthase (FASN) as cause, correlate or facilitator of breast cancer remains unidentified. MATERIALS AND METHODS To evaluate a causal effect of FASN-catalysed endogenous FA biosynthesis in the natural history of breast cancer disease, HBL100 cells (an SV40-transformed in vitro model for near-normal gene expression in the breast epithelium), and MCF10A cells (a non-transformed, near diploid, spontaneously immortalized human mammary epithelial cell line) were acutely forced to overexpress the human FASN gene. RESULTS Following transient transfection with plasmid pCMV6-XL4 carrying full-length human FASN cDNA (gi: NM 004104), HBL100 cells enhanced their endogenous lipid synthesis while acquiring canonical oncogenic properties such as increased size and number of colonies in semisolid (i.e. soft-agar) anchorage-independent cultures. Anchorage-dependent cell proliferation assays in low serum (0.1% foetal bovine serum), MTT-based assessment of cell metabolic status and cell death ELISA-based detection of apoptosis-induced DNA-histone fragmentation, together revealed that sole activation of endogenous FA biosynthesis was sufficient to significantly enhance breast epithelial cell proliferation and survival. When analysing molecular mechanisms by which acute activation of de novo FA biosynthesis triggered a transformed phenotype, HBL100 cells, transiently transfected with pCMV6-XL4/FASN, were found to exhibit a dramatic increase in the number of phosphor-tyrosine (Tyr)-containing proteins, as detected by 4G10 antiphosphor-Tyr monoclonal antibody. Phosphor-Tyr-specific antibodies recognizing the phosphorylation status of either the 1173 Tyr residue of epidermal growth factor receptor (HER1) or the 1248 Tyr residue of HER2, further revealed that FASN-induced Tyr-phosphorylation at approximately 180 kDa region mainly represented that of these key members of the HER (erbB) network, which remained switched-off in mock-transfected HBL100 cells. ELISA and immunoblotting procedures demonstrated that FASN overactivation significantly increased (> 200%) expression levels of epidermal growth factor receptor and HER2 proteins in HBL100 cells. Proteome Profilertrade mark antibody arrays capable of simultaneously detecting relative levels of phosphorylation of 42 phospho-receptor Tyr-kinases (RTKs) confirmed that acute activation of endogenous FA biosynthesis specifically promoted hyper-Tyr-phosphorylation of HER1 and HER2 in MCF10A cells. This FASN-triggered HER1/HER2-breast cancer-like phenotype was specifically inhibitable either by FASN inhibitor C75 or by Tyr-kinase inhibitors (TKIs) gefitinib (Iressa) and lapatinib (Tykerb) but not by chemotherapeutic agents such as cisplatin. Transient overexpression of FASN dramatically increased HBL100 breast epithelial cells' sensitivity to cytotoxic effects of C75, gefitinib and lapatinib (approximately 8, 10 and > 15 times, respectively), while significantly decreasing (approximately 3 times) cisplatin efficacy. CONCLUSIONS Although we cannot definitely establish FASN as a novel oncogene in breast cancer, this study reveals for the first time that exacerbated endogenous FA biosynthesis in non-cancerous epithelial cells is sufficient to induce a cancer-like phenotype functionally dependent on the HER1/HER2 duo. These findings may perhaps radically amend our current perspective of endogenously synthesized fat, as on its own, it appears to actively increase signal-to-noise ratio in the HER1/HER2-driven progression of human breast epithelial cells towards malignancy.
Collapse
Affiliation(s)
- A Vazquez-Martin
- Catalan Institute of Oncology, Health Services Division of Catalonia, Catalonia, Spain
| | | | | | | | | |
Collapse
|
82
|
Young CD, Anderson SM. Sugar and fat - that's where it's at: metabolic changes in tumors. Breast Cancer Res 2008; 10:202. [PMID: 18304378 PMCID: PMC2374962 DOI: 10.1186/bcr1852] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tumor cells exhibit an altered metabolism, characterized by increased glucose uptake and elevated glycolysis, which was first recognized by Otto Warburg 70 years ago. Warburg originally hypothesized that these metabolic changes reflected damage to mitochondrial oxidative phosphorylation. Although hypoxia and hypoxia inducible factor can induce transcriptional changes that stimulate glucose transport and glycolysis, it is clear that these changes can occur in cultured tumor or transformed cells cultured under normoxic conditions, and thus there must be genetic alterations independent of hypoxia that can stimulate aerobic glycolysis. In recent years it has become clear that loss of p53 and activation of Akt can induce all or part of the metabolic changes reflected in the Warburg effect. Likewise, changes in expression of lactate dehydrogenase and other glycolytic control enzymes can contribute to increased or altered glycolysis. It is also clear that changes in lipid biosynthesis occur in tumor cells to support increased membrane biosynthesis and perhaps the altered energy needs of the cells. Changes in fatty acid synthase, Spot 14, Akt, and DecR1 (2,4-dienoylcoenzyme A reductase) may underlie altered lipid metabolism in tumor cells and contribute to the ability of tumor cells to proliferate or metastasize. Although these advances provide new therapeutic targets that merit exploration, there remain critical questions to be explored at the mechanistic level; this work may yield insights into tumor cell biology and identify additional therapeutic targets.
Collapse
Affiliation(s)
- Christian D Young
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Anschutz Medical Campus, East 17th Avenue, Aurora, Colorado 80045, USA
| | | |
Collapse
|
83
|
Abstract
Epidemiologic studies have suggested for decades an association between dietary fat and cancer risk. A large body of work performed in tissue culture and xenograft models of cancer supports an important role of various types of fat in modulating the cancer phenotype. Yet, the molecular mechanisms underlining the effects of fat on cancer initiation and progression are largely unknown. The relationships between saturated fat, polyunsaturated fat, cholesterol or phytanic acid with cancer have been reviewed respectively. However, few have considered the relationship between all of these fats and cancer. The purpose of this review is to present a more cohesive view of dietary fat-gene interactions, and outline a working hypothesis of the intricate connection between fat, genes and cancer.
Collapse
Affiliation(s)
- Yong Q Chen
- Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
84
|
Kridel SJ, Lowther WT, Pemble CW. Fatty acid synthase inhibitors: new directions for oncology. Expert Opin Investig Drugs 2007; 16:1817-29. [PMID: 17970640 DOI: 10.1517/13543784.16.11.1817] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty acid synthase (FASN) is the enzyme that catalyzes the de novo synthesis of fatty acids in cells. Because of the strong expression in many cancers, FASN is an attractive and tractable target for therapeutic intervention. The discovery and development of pharmacologic agents that block FASN activity highlight the promise of these anticancer compounds. FASN inhibitors have also proven to be invaluable in developing a better understanding of the contribution of FASN and fatty acid synthesis to tumor cells. Recent advances in the development of crystal structures of FASN have provided promise towards the development of novel FASN inhibitors. This review outlines the preclinical development of FASN inhibitors, their antitumor effects and the strategies underway to develop novel inhibitors.
Collapse
Affiliation(s)
- Steven J Kridel
- Wake Forest University School of Medicine, Department of Cancer Biology, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
85
|
Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V, Lavoie C, Turpin J, Cianflone K, Huntsman DG, Muller WJ. Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol 2007; 27:6361-71. [PMID: 17636013 PMCID: PMC2099621 DOI: 10.1128/mcb.00686-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid beta-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Fatty Acids/biosynthesis
- Female
- Fluorescent Antibody Technique, Direct
- Glucose/metabolism
- Humans
- Kinetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Nude
- Mice, Transgenic
- Models, Biological
- Mutation
- Neoplasm Transplantation
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptors, Tumor Necrosis Factor, Member 10c/genetics
- Receptors, Tumor Necrosis Factor, Member 10c/metabolism
- Transplantation, Homologous
Collapse
|
86
|
Zhao W, Kridel S, Thorburn A, Kooshki M, Little J, Hebbar S, Robbins M. Fatty acid synthase: a novel target for antiglioma therapy. Br J Cancer 2006; 95:869-78. [PMID: 16969344 PMCID: PMC2360524 DOI: 10.1038/sj.bjc.6603350] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
High levels of fatty acid synthase (FAS) expression have been observed in several cancers, including breast, prostate, colon and lung carcinoma, compared with their respective normal tissue. We present data that show high levels of FAS protein in human and rat glioma cell lines and human glioma tissue samples, as compared to normal rat astrocytes and normal human brain. Incubating glioma cells with the FAS inhibitor cerulenin decreased endogenous fatty acid synthesis by approximately 50%. Cell cycle analysis demonstrated a time- and dose-dependent increase in S-phase cell arrest following cerulenin treatment for 24 h. Further, treatment with cerulenin resulted in time- and dose-dependent decreases in glioma cell viability, as well as reduced clonogenic survival. Increased apoptotic cell death and PARP cleavage were observed in U251 and SNB-19 cells treated with cerulenin, which was independent of the death receptor pathway. Overexpressing Bcl-2 inhibited cerulenin-mediated cell death. In contrast, primary rat astrocytes appeared unaffected. Finally, RNAi-mediated knockdown of FAS leading to reduced FAS enzymatic activity was associated with decreased glioma cell viability. These findings suggest that FAS might be a novel target for antiglioma therapy.
Collapse
Affiliation(s)
- W Zhao
- Department of Radiation Oncology, Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 2006; 26:4863-71. [PMID: 16782875 PMCID: PMC1489152 DOI: 10.1128/mcb.00657-05] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factors can be sequestered at specific organelles and translocate to the nucleus in response to changes in organellar homeostasis. MondoA is a basic helix-loop-helix leucine zipper transcriptional activator similar to Myc in function. However, unlike Myc, MondoA and its binding partner Mlx localize to the cytoplasm, suggesting tight regulation of their nuclear function. We show here that endogenous MondoA and Mlx associate with mitochondria in primary skeletal muscle cells and erythroblast K562 cells. Interaction between MondoA and the mitochondria is salt and protease sensitive, demonstrating that it associates with the outer mitochondrial membrane by binding a protein partner. Further, endogenous MondoA shuttles between the mitochondria and the nucleus, suggesting that it communicates between these two organelles. When nuclear, MondoA activates transcription of a broad spectrum of metabolic genes, including those for the glycolytic enzymes lactate dehydrogenase A, hexokinase II, and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3. Regulation of these three targets is mediated by direct interaction with CACGTG sites in their promoters. Consistent with its regulation of glycolytic targets, MondoA is both necessary and sufficient for glycolysis. We propose that MondoA communicates information about the intracellular energy state between the mitochondria and the nucleus, resulting in transcriptional activation of glycolytic target genes.
Collapse
Affiliation(s)
- Christopher L Sans
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Room 4365, Salt Lake City, UT 84112-5550, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW This review evaluates recent findings on the mechanisms by which lipogenic enzymes are upregulated or activated in cancer cells, the implications of increased lipogenesis for cancer cell biology and the feasibility of exploiting this pathway and its regulators as targets for antineoplastic intervention. RECENT FINDINGS The list of cancer types showing increased lipogenic enzyme expression keeps growing and further evidence is accumulating that growth factor signaling and particularly activation of the phosphatidylinositol 3'-kinase/protein kinase B pathway plays a role in this process. This signaling pathway stimulates lipogenic gene transcription through activation of the lipogenic transcription factor sterol regulatory element-binding protein-1 and directly activates lipogenic enzymes such as ATP-citrate lyase, linking the upregulation of lipogenesis in cancer cells to the well known tumor-associated increase in glycolysis. Steroid hormones, overexpression of the ubiquitin-specific protease-2a and mutations in breast cancer susceptibility gene 1 may further enhance lipid synthesis. While fatty acid synthase is further established as a target for antineoplastic intervention, recent findings show that interference with acetyl-CoA carboxylase-alpha, ATP citrate lyase or the AMP-activated protein kinase limits cancer cell proliferation and survival. SUMMARY The same disturbances in signaling pathways responsible for oncogenic transformation may also contribute to the increased lipogenesis observed in tumor cells. Increased lipogenesis involves modulation of multiple lipogenic enzymes at both transcriptional and posttranscriptional level and is linked to other cancer-associated metabolic changes. Not only fatty acid synthase, but in fact all key enzymes involved in fatty acid synthesis as well as key metabolic regulators are potential targets for antineoplastic intervention.
Collapse
Affiliation(s)
- Johannes V Swinnen
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | |
Collapse
|