51
|
Curtis LM, George J, Vallon V, Barnes S, Darley-Usmar V, Vaingankar S, Cutter GR, Gutierrez OM, Seifert M, Ix JH, Mehta RL, Sanders PW, Agarwal A. UAB-UCSD O'Brien Center for Acute Kidney Injury Research. Am J Physiol Renal Physiol 2021; 320:F870-F882. [PMID: 33779316 DOI: 10.1152/ajprenal.00661.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute kidney injury (AKI) remains a significant clinical problem through its diverse etiologies, the challenges of robust measurements of injury and recovery, and its progression to chronic kidney disease (CKD). Bridging the gap in our knowledge of this disorder requires bringing together not only the technical resources for research but also the investigators currently endeavoring to expand our knowledge and those who might bring novel ideas and expertise to this important challenge. The University of Alabama at Birmingham-University of California-San Diego O'Brien Center for Acute Kidney Injury Research brings together technical expertise and programmatic and educational efforts to advance our knowledge in these diverse issues and the required infrastructure to develop areas of novel exploration. Since its inception in 2008, this O'Brien Center has grown its impact by providing state-of-the-art resources in clinical and preclinical modeling of AKI, a bioanalytical core that facilitates measurement of critical biomarkers, including serum creatinine via LC-MS/MS among others, and a biostatistical resource that assists from design to analysis. Through these core resources and with additional educational efforts, our center has grown its investigator base to include >200 members from 51 institutions. Importantly, this center has translated its pilot and catalyst funding program with a $37 return per dollar invested. Over 500 publications have resulted from the support provided with a relative citation ratio of 2.18 ± 0.12 (iCite). Through its efforts, this disease-centric O'Brien Center is providing the infrastructure and focus to help the development of the next generation of researchers in the basic and clinical science of AKI. This center creates the promise of the application at the bedside of the advances in AKI made by current and future investigators.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Volker Vallon
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sucheta Vaingankar
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gary R Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutierrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Seifert
- Division of Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joachim H Ix
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Ravindra L Mehta
- Division of Nephrology, Department of Medicine, University of California-San Diego, San Diego, California
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs, Birmingham, Alabama
| |
Collapse
|
52
|
Abstract
SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada;
- Departments of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
53
|
Tuttle KR, Brosius FC, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJ, Manley T, McGuire DK, Molitch ME, Mottl AK, Perreault L, Rosas SE, Rossing P, Sola L, Vallon V, Wanner C, Perkovic V. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Am J Kidney Dis 2021; 77:94-109. [DOI: 10.1053/j.ajkd.2020.08.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
|
54
|
Tuttle KR, Brosius FC, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJL, Manley T, McGuire DK, Molitch ME, Mottl AK, Perreault L, Rosas SE, Rossing P, Sola L, Vallon V, Wanner C, Perkovic V. SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Diabetes 2021; 70:1-16. [PMID: 33106255 PMCID: PMC8162454 DOI: 10.2337/dbi20-0040] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
Diabetes is the most frequent cause of chronic kidney disease (CKD), leading to nearly half of all cases of kidney failure requiring replacement therapy. The principal cause of death among patients with diabetes and CKD is cardiovascular disease (CVD). Sodium/glucose cotransporter 2 (SGLT2) inhibitors were developed to lower blood glucose levels by inhibiting glucose reabsorption in the proximal tubule. In clinical trials designed to demonstrate the CVD safety of SGLT2 inhibitors in type 2 diabetes mellitus (T2DM), consistent reductions in risks for secondary kidney disease end points (albuminuria and a composite of serum creatinine doubling or 40% estimated glomerular filtration rate decline, kidney failure, or death), along with reductions in CVD events, were observed. In patients with CKD, the kidney and CVD benefits of canagliflozin were established by the CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) trial in patients with T2DM, urinary albumin-creatinine ratio >300 mg/g, and estimated glomerular filtration rate of 30 to <90 mL/min/1.73 m2 To clarify and support the role of SGLT2 inhibitors for treatment of T2DM and CKD, the National Kidney Foundation convened a scientific workshop with an international panel of more than 80 experts. They discussed the current state of knowledge and unanswered questions in order to propose therapeutic approaches and delineate future research. SGLT2 inhibitors improve glomerular hemodynamic function and are thought to ameliorate other local and systemic mechanisms involved in the pathogenesis of CKD and CVD. SGLT2 inhibitors should be used when possible by people with T2DM to reduce risks for CKD and CVD in alignment with the clinical trial entry criteria. Important risks of SGLT2 inhibitors include euglycemic ketoacidosis, genital mycotic infections, and volume depletion. Careful consideration should be given to the balance of benefits and harms of SGLT2 inhibitors and risk mitigation strategies. Effective implementation strategies are needed to achieve widespread use of these life-saving medications.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Health Care and University of Washington School of Medicine, Spokane, WA
| | | | | | - Paola Fioretto
- Department of Medicine, University of Padua, Padua, Italy
| | | | | | - Tom Manley
- National Kidney Foundation, New York, NY
| | | | - Mark E Molitch
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern, University Feinberg School of Medicine, Chicago, IL
| | - Amy K Mottl
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Sylvia E Rosas
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Laura Sola
- University of the Republic, Montevideo, Uruguay
| | | | - Christoph Wanner
- Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Vlado Perkovic
- George Institute for Global Health, UNSW Sydney, Australia
| |
Collapse
|
55
|
Sadria M, Layton AT. Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers During the COVID-19 Pandemic: A Modeling Analysis. PLoS Comput Biol 2020; 16:e1008235. [PMID: 33031368 PMCID: PMC7575117 DOI: 10.1371/journal.pcbi.1008235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/20/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB) are frequently prescribed for a range of diseases including hypertension, proteinuric chronic kidney disease, and heart failure. There is evidence indicating that these drugs upregulate ACE2, a key component of the renin-angiotensin system (RAS) and is found on the cells of a number of tissues, including the epithelial cells in the lungs. While ACE2 has a beneficial role in many diseases such as hypertension, diabetes, and cardiovascular disease, it also serves as a receptor for both SARS-CoV and SARS-CoV-2 via binding with the spike protein of the virus, thereby allowing it entry into host cells. Thus, it has been suggested that these therapies can theoretically increase the risk of SARS- CoV-2 infection and cause more severe COVID-19. Given the success of ACEi and ARBs in cardiovascular diseases, we seek to gain insights into the implications of these medications in the pathogenesis of COVID-19. To that end, we have developed a mathematical model that represents the RAS, binding of ACE2 with SARS-CoV-2 and the subsequent cell entry, and the host's acute inflammatory response. The model can simulate different levels of SARS-CoV-2 exposure, and represent the effect of commonly prescribed anti-hypertensive medications, ACEi and ARB, and predict tissue damage. Model simulations indicate that whether the extent of tissue damage may be exacerbated by ACEi or ARB treatment depends on a number of factors, including the level of existing inflammation, dosage, and the effect of the drugs on ACE2 protein abundance. The findings of this study can serve as the first step in the development of appropriate and more comprehensive guidelines for the prescription of ACEi and ARB in the current and future coronavirus pandemics.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
56
|
Athyros VG, Polyzos SA, Kountouras J, Katsiki N, Anagnostis P, Doumas M, Mantzoros CS. Non-Alcoholic Fatty Liver Disease Treatment in Patients with Type 2 Diabetes Mellitus; New Kids on the Block. Curr Vasc Pharmacol 2020; 18:172-181. [PMID: 30961499 DOI: 10.2174/1570161117666190405164313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), affecting over 25% of the general population worldwide, is characterized by a spectrum of clinical and histological manifestations ranging from simple steatosis (>5% hepatic fat accumulation without inflammation) to non-alcoholic steatohepatitis (NASH) which is characterized by inflammation, and finally fibrosis, often leading to liver cirrhosis, and hepatocellular carcinoma. Up to 70% of patients with type 2 diabetes mellitus (T2DM) have NAFLD, and diabetics have much higher rates of NASH compared with the general non-diabetic population. OBJECTIVE The aim of this study is to report recent approaches to NAFLD/NASH treatment in T2DM patients. To-date, there are no approved treatments for NAFLD (apart from lifestyle measures). RESULTS Current guidelines (2016) from 3 major scientific organizations suggest that pioglitazone and vitamin E may be useful in a subset of patients for adult NAFLD/NASH patients with T2DM. Newer selective PPAR-γ modulators (SPPARMs, CHRS 131) have shown to provide even better results with fewer side effects in both animal and human studies in T2DM. Newer antidiabetic drugs might also be useful, but detailed studies with histological outcomes are largely lacking. Nevertheless, prior animal and human studies on incretin mimetics, glucagon-like peptide-1 receptor agonists (GLP-1 RA) approved for T2DM treatment, have provided indirect evidence that they may also ameliorate NAFLD/NASH, whereas dipeptidyl dipeptidase-4 inhibitors (DDP-4i) were not better than placebo in reducing liver fat in T2DM patients with NAFLD. Sodium-glucoseco-transporter-2 inhibitors (SGLT2i) have been reported to improve NAFLD/NASH. Statins, being necessary for most patients with T2DM, may also ameliorate NAFLD/NASH, and could potentially reinforce the beneficial effects of the newer antidiabetic drugs, if used in combination, but this remains to be identified. CONCLUSION Newer antidiabetic drugs (SPPARMs, GLP-1 RA and SGLT2i) alone or in combination and acting alone or with potent statin therapy which is recommended in T2DM, might contribute substantially to NAFLD/NASH amelioration, possibly reducing not only liver-specific but also cardiovascular morbidity. These observations warrant long term placebo-controlled randomized trials with appropriate power and outcomes, focusing on the general population and more specifically on T2DM with NAFLD/NASH. Certain statins may be useful for treating NAFLD/NASH, while they substantially reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Vasilios G Athyros
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jiannis Kountouras
- 2nd Department of Internal Medicine, Division of Gastroenterology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | | | - Michael Doumas
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece.,VAMC and George Washington University, Washington, DC, United States
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
57
|
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V. A role for tubular Na +/H + exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 2020; 319:F712-F728. [PMID: 32893663 DOI: 10.1152/ajprenal.00264.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.
Collapse
Affiliation(s)
- Akira Onishi
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Maria Crespo-Masip
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California.,Biomedical Research Institute, University of Lleida, Lleida, Spain
| | - Winnie Huang
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Panai Song
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Scott Culver Thomson
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
58
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
59
|
Hu R, McDonough AA, Layton AT. Sex differences in solute transport along the nephrons: effects of Na + transport inhibition. Am J Physiol Renal Physiol 2020; 319:F487-F505. [PMID: 32744084 DOI: 10.1152/ajprenal.00240.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations.
Collapse
Affiliation(s)
- Rui Hu
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
60
|
Yu H, Basu S, Hallow KM. Cardiac and renal function interactions in heart failure with reduced ejection fraction: A mathematical modeling analysis. PLoS Comput Biol 2020; 16:e1008074. [PMID: 32804929 PMCID: PMC7451992 DOI: 10.1371/journal.pcbi.1008074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/27/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
Congestive heart failure is characterized by suppressed cardiac output and arterial filling pressure, leading to renal retention of salt and water, contributing to further volume overload. Mathematical modeling provides a means to investigate the integrated function and dysfunction of heart and kidney in heart failure. This study updates our previously reported integrated model of cardiac and renal functions to account for the fluid exchange between the blood and interstitium across the capillary membrane, allowing the simulation of edema. A state of heart failure with reduced ejection fraction (HF-rEF) was then produced by altering cardiac parameters reflecting cardiac injury and cardiovascular disease, including heart contractility, myocyte hypertrophy, arterial stiffness, and systemic resistance. After matching baseline characteristics of the SOLVD clinical study, parameters governing rates of cardiac remodeling were calibrated to describe the progression of cardiac hemodynamic variables observed over one year in the placebo arm of the SOLVD clinical study. The model was then validated by reproducing improvements in cardiac function in the enalapril arm of SOLVD. The model was then applied to prospectively predict the response to the sodium-glucose co-transporter 2 (SGLT2) inhibitor dapagliflozin, which has been shown to reduce heart failure events in HF-rEF patients in the recent DAPAHF clinical trial by incompletely understood mechanisms. The simulations predict that dapagliflozin slows cardiac remodeling by reducing preload on the heart, and relieves congestion by clearing interstitial fluid without excessively reducing blood volume. This provides a quantitative mechanistic explanation for the observed benefits of SGLT2i in HF-rEF. The model also provides a tool for further investigation of heart failure drug therapies.
Collapse
Affiliation(s)
- Hongtao Yu
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America
| | - Sanchita Basu
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America
| | - K. Melissa Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
61
|
Packer M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am J Kidney Dis 2020; 77:280-286. [PMID: 32711072 DOI: 10.1053/j.ajkd.2020.04.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitors exert important renoprotective effects in the diabetic kidney, which cannot be readily explained by their actions to lower blood glucose, blood pressure, or glomerular filtration pressures. Their effects to promote erythrocytosis suggest that these drugs act on hypoxia-inducible factors (HIFs; specifically, HIF-1α and HIF-2α), which may underlie their ability to reduce the progression of nephropathy. Type 2 diabetes is characterized by renal hypoxia, oxidative and endoplasmic reticulum stress, and defective nutrient deprivation signaling, which (acting in concert) are poised to cause both activation of HIF-1α and suppression of HIF-2α. This shift in the balance of HIF-1α/HIF-2α activities promotes proinflammatory and profibrotic pathways in glomerular and renal tubular cells. SGLT2 inhibitors alleviate renal hypoxia and cellular stress and enhance nutrient deprivation signaling, which collectively may explain their actions to suppress HIF-1α and activate HIF-2α and thereby augment erythropoiesis, while muting organellar dysfunction, inflammation, and fibrosis. Cobalt chloride, a drug conventionally classified as a hypoxia mimetic, has a profile of molecular and cellular actions in the kidney that is similar to those of SGLT2 inhibitors. Therefore, many renoprotective benefits of SGLT2 inhibitors may be related to their effect to promote oxygen deprivation signaling in the diabetic kidney.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX; Imperial College, London, United Kingdom.
| |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW SGLT2 inhibitors are a new class of antihyperglycemic drugs that protect kidneys and hearts of type 2 diabetic (T2DM) patients with preserved kidney function from failing. Here we discuss new insights on renal protection. RECENT FINDINGS Also in T2DM patients with CKD, SGLT2 inhibition causes an immediate functional reduction in glomerular filtration rate (GFR) and reduces blood pressure and preserves kidney and heart function in the long-term, despite a lesser antihyperglycemic effect. According to modeling studies, the GFR reduction reduces the tubular transport work and metabolic demand, thereby improving renal cortical oxygenation. In humans, the latter is linked to protection from CKD. Urine metabolomics in T2DM patients suggested improved renal mitochondrial function in response to SGLT2 inhibition, and experimental studies indicated improved tubular autophagy. Modeling studies predicted that also in diabetic CKD, SGLT2 inhibition is natriuretic and potentially stimulates erythropoiesis by mimicking systemic hypoxia in the kidney. Meta-analyses indicated that SGLT2 inhibition also reduces risk and severity of acute kidney injury in T2DM patients. Studies in nondiabetic mice implied inhibition of the renal urate transporter URAT1 in the uricosuric effect of SGLT2 inhibition. SUMMARY Renoprotection of SGLT2 inhibition involves blood glucose-dependent and independent effects and extends to CKD.
Collapse
|
63
|
Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, Laverman GD, Lim SK, Di Tanna GL, Reich HN, Vervloet MG, Wong MG, Gansevoort RT, Heerspink HJL. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 2020; 8:582-593. [PMID: 32559474 DOI: 10.1016/s2213-8587(20)30162-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND SGLT2 inhibition decreases albuminuria and reduces the risk of kidney disease progression in patients with type 2 diabetes. These benefits are unlikely to be mediated by improvements in glycaemic control alone. Therefore, we aimed to examine the kidney effects of the SGLT2 inhibitor dapagliflozin in patients with proteinuric kidney disease without diabetes. METHODS DIAMOND was a randomised, double-blind, placebo-controlled crossover trial done at six hospitals in Canada, Malaysia, and the Netherlands. Eligible participants were adult patients (aged 18-75 years) with chronic kidney disease, without a diagnosis of diabetes, with a 24-h urinary protein excretion greater than 500 mg and less than or equal to 3500 mg and an estimated glomerular filtration rate (eGFR) of at least 25 mL/min per 1·73 m2, and who were on stable renin-angiotensin system blockade. Participants were randomly assigned (1:1) to receive placebo and then dapagliflozin 10 mg per day or vice versa. Each treatment period lasted 6 weeks with a 6-week washout period in between. Participants, investigators, and study personnel were masked to assignment throughout the trial and analysis. The primary outcome was percentage change from baseline in 24-h proteinuria during dapagliflozin treatment relative to placebo. Secondary outcomes were changes in measured GFR (mGFR; via iohexol clearance), bodyweight, blood pressure, and concentrations of neurohormonal biomarkers. Analyses were done in accordance with the intention-to-treat principle. This study is registered with ClinicalTrials.gov, NCT03190694. FINDINGS Between Nov 22, 2017, and April 5, 2019, 58 patients were screened, of whom 53 (mean age 51 years [SD 13]; 32% women) were randomly assigned (27 received dapagliflozin then placebo and 26 received placebo then dapagliflozin). One patient discontinued during the first treatment period. All patients were included in the analysis. Mean baseline mGFR was 58·3 mL/min per 1·73 m2 (SD 23), median proteinuria was 1110 mg per 24 h (IQR 730-1560), and mean HbA1c was 5·6% (SD 0·4). The difference in mean proteinuria change from baseline between dapagliflozin and placebo was 0·9% (95% CI -16·6 to 22·1; p=0·93). Compared with placebo, mGFR was changed with dapagliflozin treatment by -6·6 mL/min per 1·73 m2 (-9·0 to -4·2; p<0·0001) at week 6. This reduction was fully reversible within 6 weeks after dapagliflozin discontinuation. Compared with placebo, bodyweight was reduced by 1·5 kg (0·03-3·0; p=0·046) with dapagliflozin; changes in systolic and diastolic blood pressure and concentrations of neurohormonal biomarkers did not differ significantly between dapagliflozin and placebo treatment. The numbers of patients who had one or more adverse events during dapagliflozin treatment (17 [32%] of 53) and during placebo treatment (13 [25%] of 52) were similar. No hypoglycaemic events were reported and no deaths occurred. INTERPRETATION 6-week treatment with dapagliflozin did not affect proteinuria in patients with chronic kidney disease without diabetes, but did induce an acute and reversible decline in mGFR and a reduction in bodyweight. Long-term clinical trials are underway to determine whether SGLT2 inhibitors can safely reduce the rate of major clinical kidney outcomes in patients with chronic kidney disease with and without diabetes. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Claire C J Dekkers
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Sean J Barbour
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Cattran
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Abdul Halim Abdul Gafor
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gozewijn D Laverman
- Department of Internal Medicine, ZGT Hospital, Almelo and Hengelo, Netherlands
| | - Soo Kun Lim
- Division of Nephrology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gian Luca Di Tanna
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Heather N Reich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Marc G Vervloet
- Department of Nephrology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Muh Geot Wong
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.
| | | |
Collapse
|
64
|
Machado MP, Schavinski AZ, Deluque AL, Volpato GT, Campos KE. The Treatment of Prednisone in Mild Diabetic Rats: Biochemical Parameters and Cell Response. Endocr Metab Immune Disord Drug Targets 2020; 20:797-805. [DOI: 10.2174/1871530319666191204130007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
Background:
Limited studies have been carried out with prednisone (PRED) in treatment by
glucose intolerant individuals, even in this model the animals presented low blood glucose levels at
adulthood, by the high regenerative capacity of β-cell.
Objective:
The aim was to evaluate the effects of the treatment of PRED in mild diabetes on biochemical
and immunological biomarkers.
Methods:
Rats were randomly divided into four groups: control (C), treated control C+PRED (treatment
of 1.25 mg/Kg/day PRED); diabetic DM (mild diabetes) and treated diabetic DM+PRED (treatment
with same dose as C+PRED group). Untreated groups received vehicle, adjusted volume to body
weight. The treatment lasted 21 days and measured body weight, food and water intake, and glycemia
weekly. In the 3rd week, the Oral Glucose Tolerance Test (OGTT) and the Insulin Tolerance Test (ITT)
was performed. On the last day, the rats were killed and the blood was collected for biochemical analyzes,
leukogram and immunoglobulin G levels.
Results:
There was a significant decrease in body weight in mild diabetes; however, the treatment in
diabetic groups increased food intake, glycemia, and the number of total leukocytes, lymphocytes and
neutrophils. On the other hand, it decreased the levels of triglycerides, high-density and very lowdensity
lipoproteins. In addition, diabetic groups showed glucose intolerance and mild insulin resistance,
confirming that this model induces glucose intolerant in adult life.
Conclusion:
The results showed that the use of prednisone is not recommended for glucose intolerant
individuals and should be replaced in order to not to aggravate this condition.
Collapse
Affiliation(s)
- Mariana P.R. Machado
- Postgraduate Program in Pharmacology and Biotechnology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Sao Paulo, Brazil
| | - Aline Z. Schavinski
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Amanda L. Deluque
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo T. Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological Sciences and Health, Federal University of Mato Grosso (UFMT), Barra do Garcas, Mato Grosso, Brazil
| | - Kleber E. Campos
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological Sciences and Health, Federal University of Mato Grosso (UFMT), Barra do Garcas, Mato Grosso, Brazil
| |
Collapse
|
65
|
Hesp AC, Schaub JA, Prasad PV, Vallon V, Laverman GD, Bjornstad P, van Raalte DH. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int 2020; 98:579-589. [PMID: 32739206 DOI: 10.1016/j.kint.2020.02.041] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease is the most common cause of end-stage kidney disease and poses a major global health problem. Finding new, safe, and effective strategies to halt this disease has proven to be challenging. In part that is because the underlying mechanisms are complex and not fully understood. However, in recent years, evidence has accumulated suggesting that chronic hypoxia may be the primary pathophysiological pathway driving diabetic kidney disease and chronic kidney disease of other etiologies and was called the chronic hypoxia hypothesis. Hypoxia is the result of a mismatch between oxygen delivery and oxygen demand. The primary determinant of oxygen delivery is renal perfusion (blood flow per tissue mass), whereas the main driver of oxygen demand is active sodium reabsorption. Diabetes mellitus is thought to compromise the oxygen balance by impairing oxygen delivery owing to hyperglycemia-associated microvascular damage and exacerbate oxygen demand owing to increased sodium reabsorption as a result of sodium-glucose cotransporter upregulation and glomerular hyperfiltration. The resultant hypoxic injury creates a vicious cycle of capillary damage, inflammation, deposition of the extracellular matrix, and, ultimately, fibrosis and nephron loss. This review will frame the role of chronic hypoxia in the pathogenesis of diabetic kidney disease and its prospect as a promising therapeutic target. We will outline the cellular mechanisms of hypoxia and evidence for renal hypoxia in animal and human studies. In addition, we will highlight the promise of newer imaging modalities including blood oxygenation level-dependent magnetic resonance imaging and discuss salutary interventions such as sodium-glucose cotransporter 2 inhibition that (may) protect the kidney through amelioration of renal hypoxia.
Collapse
Affiliation(s)
- Anne C Hesp
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands.
| | - Jennifer A Schaub
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pottumarthi V Prasad
- Department of Radiology, NorthShore University Health System, Evanston, Illinois, USA; Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Gozewijn D Laverman
- Department of Internal Medicine, Ziekenhuis Groep Twente, Almelo, The Netherlands
| | - Petter Bjornstad
- Department of Medicine, Division of Nephrology, and Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Gardiner BS, Smith DW, Lee C, Ngo JP, Evans RG. Renal oxygenation: From data to insight. Acta Physiol (Oxf) 2020; 228:e13450. [PMID: 32012449 DOI: 10.1111/apha.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Computational models have made a major contribution to the field of physiology. As the complexity of our understanding of biological systems expands, the need for computational methods only increases. But collaboration between experimental physiologists and computational modellers (ie theoretical physiologists) is not easy. One of the major challenges is to break down the barriers created by differences in vocabulary and approach between the two disciplines. In this review, we have two major aims. Firstly, we wish to contribute to the effort to break down these barriers and so encourage more interdisciplinary collaboration. So, we begin with a "primer" on the ways in which computational models can help us understand physiology and pathophysiology. Second, we aim to provide an update of recent efforts in one specific area of physiology, renal oxygenation. This work is shedding new light on the causes and consequences of renal hypoxia. But as importantly, computational modelling is providing direction for experimental physiologists working in the field of renal oxygenation by: (a) generating new hypotheses that can be tested in experimental studies, (b) allowing experiments that are technically unfeasible to be simulated in silico, or variables that cannot be measured experimentally to be estimated, and (c) providing a means by which the quality of experimental data can be assessed. Critically, based on our experience, we strongly believe that experimental and theoretical physiology should not be seen as separate exercises. Rather, they should be integrated to permit an iterative process between modelling and experimentation.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Chang‐Joon Lee
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
- Department of Cardiac Physiology National Cerebral and Cardiovascular Research Center Osaka Japan
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
| |
Collapse
|
67
|
Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors. Hypertension 2020; 75:894-901. [DOI: 10.1161/hypertensionaha.119.11684] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Empaglifolzin, canagliflozin, and dapagliflozin are SGLT2 (sodium-glucose linked transporter type 2) inhibitors for treatment of type 2 diabetes mellitus that also reduce blood pressure, mortality, and cardiovascular disease and slow the loss of glomerular filtration rate. SGLT2 inhibitors inhibit the coupled reabsorption of sodium and glucose from the proximal tubules, thereby increasing renal glucose and sodium excretion, but they have more widespread renal effects, including inhibition of the sodium:proton exchanger. They increase the delivery of sodium to the loop of Henle and can thereby activate the tubuloglomerular feedback response to correct glomerular hyperfiltration. There are multiple potential mechanisms whereby these drugs lower blood pressure and preserve kidney function that are the focus of this review.
Collapse
|
68
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
69
|
Ahmed S, Layton AT. Sex-specific computational models for blood pressure regulation in the rat. Am J Physiol Renal Physiol 2020; 318:F888-F900. [PMID: 32036698 DOI: 10.1152/ajprenal.00376.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past decades, substantial effort has been devoted to the development of computational models of the cardiovascular system. Some of these models simulate blood pressure regulation in humans and include components of the circulatory, renal, and neurohormonal systems. Although such human models are intended to have clinical value in that they can be used to assess the effects and reveal mechanisms of hypertensive therapeutic treatments, rodent models would be more useful in assisting the interpretation of animal experiments. Also, despite well-known sexual dimorphism in blood pressure regulation, almost all published models are gender neutral. Given these observations, the goal of this project is to develop the first computational models of blood pressure regulation for male and female rats. The resulting sex-specific models represent the interplay among cardiovascular function, renal hemodynamics, and kidney function in the rat; they also include the actions of the renal sympathetic nerve activity and the renin-angiotensin-aldosterone system as well as physiological sex differences. We explore mechanisms responsible for blood pressure and renal autoregulation and notable sexual dimorphism. Model simulations suggest that fluid and sodium handling in the kidney of female rats, which differs significantly from males, may contribute to their observed lower salt sensitivity as compared with males. Additionally, model simulations highlight sodium handling in the kidney and renal sympathetic nerve activity sensitivity as key players in the increased resistance of females to angiotensin II-induced hypertension as compared with males.
Collapse
Affiliation(s)
- Sameed Ahmed
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology and Schools of Computer Science and Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
70
|
Edwards A, Palm F, Layton AT. A model of mitochondrial O 2 consumption and ATP generation in rat proximal tubule cells. Am J Physiol Renal Physiol 2020; 318:F248-F259. [PMID: 31790302 PMCID: PMC6985826 DOI: 10.1152/ajprenal.00330.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022] Open
Abstract
Oxygen tension in the kidney is mostly determined by O2 consumption (Qo2), which is, in turn, closely linked to tubular Na+ reabsorption. The objective of the present study was to develop a model of mitochondrial function in the proximal tubule (PT) cells of the rat renal cortex to gain more insight into the coupling between Qo2, ATP formation (GATP), ATP hydrolysis (QATP), and Na+ transport in the PT. The present model correctly predicts in vitro and in vivo measurements of Qo2, GATP, and ATP and Pi concentrations in PT cells. Our simulations suggest that O2 levels are not rate limiting in the proximal convoluted tubule, absent large metabolic perturbations. The model predicts that the rate of ATP hydrolysis and cytoplasmic pH each substantially regulate the GATP-to-Qo2 ratio, a key determinant of the number of Na+ moles actively reabsorbed per mole of O2 consumed. An isolated increase in QATP or in cytoplasmic pH raises the GATP-to-Qo2 ratio. Thus, variations in Na+ reabsorption and pH along the PT may, per se, generate axial heterogeneities in the efficiency of mitochondrial metabolism and Na+ transport. Our results also indicate that the GATP-to-Qo2 ratio is strongly impacted not only by H+ leak permeability, which reflects mitochondrial uncoupling, but also by K+ leak pathways. Simulations suggest that the negative impact of increased uncoupling in the diabetic kidney on mitochondrial metabolic efficiency is partly counterbalanced by increased rates of Na+ transport and ATP consumption. This model provides a framework to investigate the role of mitochondrial dysfunction in acute and chronic renal diseases.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, North Carolina
- Departments of Applied Mathematics and Biology, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
71
|
Hu R, McDonough AA, Layton AT. Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am J Physiol Renal Physiol 2019; 317:F1462-F1474. [PMID: 31566436 DOI: 10.1152/ajprenal.00352.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of the present study was to investigate the functional implications of sexual dimorphism in the pattern of transporters along the rodent nephron as reported by Veiras et al. (J Am Soc Nephrol 28: 3504-3517, 2017). To do so, we developed sex-specific computational models of water and solute transport along the superficial nephrons from male and female rat kidneys. The models account for the sex differences in the abundance of apical and basolateral transporters, single nephron glomerular filtration rate, and tubular dimensions. Model simulations predict that ~70% and 60% of filtered Na+ is reabsorbed by the proximal tubule of male and female rat kidneys, respectively. The lower fractional Na+ reabsorption in female kidneys is due primarily to their smaller transport area, lower Na+/H+ exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na+ to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na+ transporters, including Na+-K+-Cl- cotransporters, Na+-Cl- cotransporters, and epithelial Na+ channels. The higher abundance of transporters accounts for the enhanced water and Na+ transport along the female, relative to male, distal nephron, resulting in similar urine excretion between the sexes. Consequently, in response to a saline load, the Na+ load delivered distally is greater in female rats than male rats, overwhelming transport capacity and resulting in higher natriuresis in female rats.
Collapse
Affiliation(s)
- Rui Hu
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anita T Layton
- Department of Biology and Schools of Computer Science and Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
72
|
Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res 2019; 42:1905-1915. [PMID: 31537914 PMCID: PMC8075936 DOI: 10.1038/s41440-019-0326-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Impaired pressure natriuresis (PN) underlies salt-sensitive hypertension, and renal inflammation and hypoxia-inducible factor-1 (HIF-1) have been implicated in the modulation of systemic hypertension. Although sodium-glucose cotransporter-2 (SGLT2) inhibitors were reported to lower blood pressure (BP) in type 2 diabetes mellitus, whether they have a role in nondiabetic hypertensive kidney diseases is unclear. The present study was undertaken to investigate whether nondiabetic salt-sensitive hypertension and accompanying renal inflammation are ameliorated by SGLT2 inhibition. Male Sprague-Dawley rats were randomly divided into three groups: sham controls (SCs), uninephrectomized controls (UCs), and empagliflozin-treated rats (ETs). All rats were fed a rodent diet with 8% NaCl throughout the study period. Empagliflozin was orally administered for 3 weeks after uninephrectomy. Systolic blood pressure was recorded weekly, and kidneys were harvested for immunoblotting, immunohistochemistry, and quantitative PCR analysis at the end of the animal experiment. Systolic BP was significantly decreased in ETs that were orally given empagliflozin for 3 weeks after uninephrectomy. Although ETs did not show any increase in weekly measured urine sodium, the right-shifted PN relationship in UCs was improved by empagliflozin treatment. The expression of HIF-1α was increased in the renal outer medulla of ETs. Consistent with this, HIF prolyl-hydroxylase-2 protein and mRNA were decreased in ETs. The abundance of CD3 and ED-1 immunostaining in UCs was reduced by empagliflozin treatment. The increased IL-1ß, gp91phox, and NOX4 mRNA levels in UCs were also reversed. Empagliflozin restored impaired PN in nondiabetic hypertensive kidney disease in association with increased renal medullary expression of HIF-1α and amelioration of renal inflammation.
Collapse
Affiliation(s)
- Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | - Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Korea. .,Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
73
|
|
74
|
Fattah H, Layton A, Vallon V. How Do Kidneys Adapt to a Deficit or Loss in Nephron Number? Physiology (Bethesda) 2019; 34:189-197. [PMID: 30968755 DOI: 10.1152/physiol.00052.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A deficit or loss in the number of nephrons, the functional unit of the kidney, can induce compensatory growth and hyperfunction of remaining nephrons. An increase in single nephron glomerular filtration rate (SNGFR) aims to compensate but may be deleterious in the long term. The increase in SNGFR is determined by the dynamics of nephron loss, total remaining GFR, the body's excretory demand, and the functional capacity to sustain single nephron hyperfunction.
Collapse
Affiliation(s)
- Hadi Fattah
- Departments of Medicine and Pharmacology, Division of Nephrology and Hypertension, University of California San Diego , San Diego, California.,Department of Veterans Affairs, San Diego Healthcare System, San Diego, California
| | - Anita Layton
- Department of Applied Mathematics and School of Pharmacy, University of Waterloo , Waterloo, Ontario , Canada.,Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University , Durham, North Carolina
| | - Volker Vallon
- Departments of Medicine and Pharmacology, Division of Nephrology and Hypertension, University of California San Diego , San Diego, California.,Department of Veterans Affairs, San Diego Healthcare System, San Diego, California
| |
Collapse
|
75
|
Layton AT, Vallon V. Renal tubular solute transport and oxygen consumption: insights from computational models. Curr Opin Nephrol Hypertens 2019; 27:384-389. [PMID: 30016311 DOI: 10.1097/mnh.0000000000000435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW To maintain electrolyte homeostasis, the kidneys reabsorb more than 99% of the filtered Na under physiological conditions, resulting in less than 1% of the filtered Na excreted in urine. In contrast, due to distal tubular secretion, urinary K output may exceed filtered load. This review focuses on a relatively new methodology for investigating renal epithelial transport, computational modelling and highlights recent insights regarding renal Na and K transport and O2 consumption under pathophysiological conditions, with a focus on nephrectomy. RECENT FINDINGS Recent modelling studies investigated the extent to which the adaptive response to nephrectomy, which includes elevation in single-nephron glomerular filtration rate and tubular transport capacity, may achieve balance but increases O2 consumption per nephron. Simulation results pointed to potential mechanisms in a hemi-nephrectomized rat that may attenuate the natriuresis response under K load, or that may augment the natriuretic, diuretic and kaliuretic effects of sodium glucose cotransporter 2 inhibition. SUMMARY Computational models provide a systemic approach for investigating system perturbations, such as those induced by drug administration or genetic alterations. Thus, computational models can be a great asset in data interpretation concerning (but not limited to) renal tubular transport and metabolism.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics.,Department of Biomedical Engineering.,Department of Medicine, Duke University, Durham, North Carolina.,Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Volker Vallon
- Department of Medicine.,Department of Pharmacology, University of California, San Diego, La Jolla.,San Diego Veterans Affairs Healthcare System, San Diego, California, USA
| |
Collapse
|
76
|
Layton AT. Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases. BIOLOGICAL CYBERNETICS 2019; 113:139-148. [PMID: 29955959 DOI: 10.1007/s00422-018-0765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Diabetes induces glomerular hyperfiltration, affects kidney function, and may lead to chronic kidney diseases. A novel therapeutic treatment for diabetic patients targets the sodium-glucose cotransporter isoform 2 (SGLT2) in the kidney. SGLT2 inhibitors enhance urinary glucose, [Formula: see text] and fluid excretion and lower hyperglycemia in diabetes by inhibiting [Formula: see text] and glucose reabsorption along the proximal convoluted tubule. A goal of this study is to predict the effects of SGLT2 inhibitors in diabetic patients with and without chronic kidney diseases. To that end, we applied computational rat kidney models to assess how SGLT2 inhibition affects renal solute transport and metabolism when nephron population are normal or reduced (the latter simulates chronic kidney disease). The model predicts that SGLT2 inhibition induces glucosuria and natriuresis, with those effects enhanced in a remnant kidney. The model also predicts that the [Formula: see text] transport load and thus oxygen consumption of the S3 segment are increased under SGLT2 inhibition, a consequence that may increase the risk of hypoxia for that segment. To protect the vulnerable S3 segment, we explore dual SGLT2/SGLT1 inhibition and seek to determine the optimal combination that would yield sufficient urinary glucose excretion while limiting the metabolic load on the S3 segment. The model predicts that the optimal combination of SGLT2/SGLT1 inhibition lowers the oxygen requirements of key tubular segments, but decreases urine flow and [Formula: see text] excretion; the latter effect may limit the cardiovascular protection of the treatment.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
77
|
Abstract
Type 1 diabetes mellitus is a difficult disease to treat due to the relative paucity of therapeutic options other than injectable insulin. The latter, however, can induce hypoglycemia, which has been linked to enhanced cardiovascular risk. Sodium glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral anti-hyperglycemic medications that do not increase the hypoglycemia risk and are US Food and Drug Administration (FDA) approved in type 2 diabetes mellitus. SGLT2 inhibitors may also be of benefit in type 1 diabetic patients, in addition to insulin, although they have not yet been approved for this indication. By blocking SGLT2 in the early proximal tubules of the kidney, these drugs decrease renal glucose retention, which is enhanced in hyperglycemia, thereby improving blood glucose control, in type 1 and type 2 diabetic patents. Their low hypoglycemia risk is due to the compensating reabsorption capacity of another glucose transporter, SGLT1, in the downstream late proximal tubule and the body's metabolic counter-regulation, which remains intact during SGLT2 inhibition. When insulin dosage is lowered too much, SGLT2 inhibitors can enhance ketogenesis to the extent that the risk of diabetic ketoacidosis increases, particularly in type 1 diabetic patients. SGLT2 inhibitors improve the renal and cardiovascular outcome in type 2 diabetic patients. The mechanisms likely include a reduction in glomerular hyperfiltration, blood pressure, volume overload, and body weight, as well as lowering blood glucose without increasing the hypoglycemia risk. The same mechanistic effects are induced in type 1 diabetic patients. More studies are needed with SGLT2 inhibitors in type 1 diabetic patients, including renal and cardiovascular clinical outcome trials, to fully evaluate their therapeutic potential in this specific population.
Collapse
|
78
|
Layton AT, Layton HE. A computational model of epithelial solute and water transport along a human nephron. PLoS Comput Biol 2019; 15:e1006108. [PMID: 30802242 PMCID: PMC6405173 DOI: 10.1371/journal.pcbi.1006108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/07/2019] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
We have developed the first computational model of solute and water transport from Bowman space to the papillary tip of the nephron of a human kidney. The nephron is represented as a tubule lined by a layer of epithelial cells, with apical and basolateral transporters that vary according to cell type. The model is formulated for steady state, and consists of a large system of coupled ordinary differential equations and algebraic equations. Model solution describes luminal fluid flow, hydrostatic pressure, luminal fluid solute concentrations, cytosolic solute concentrations, epithelial membrane potential, and transcellular and paracellular fluxes. We found that if we assume that the transporter density and permeabilities are taken to be the same between the human and rat nephrons (with the exception of a glucose transporter along the proximal tubule and the H+-pump along the collecting duct), the model yields segmental deliveries and urinary excretion of volume and key solutes that are consistent with human data. The model predicted that the human nephron exhibits glomerulotubular balance, such that proximal tubular Na+ reabsorption varies proportionally to the single-nephron glomerular filtration rate. To simulate the action of a novel diabetic treatment, we inhibited the Na+-glucose cotransporter 2 (SGLT2) along the proximal convoluted tubule. Simulation results predicted that the segment’s Na+ reabsorption decreased significantly, resulting in natriuresis and osmotic diuresis. In addition to its well-known function of waste removal from the body, the kidney is also responsible for the critical regulation of the body’s salt, potassium, acid content, and blood pressure. The kidneys perform these life-sustaining task by filtering and returning to blood stream about 200 quarts of blood every 24 hours. What isn’t returned to blood stream is excreted as urine. The production of urine involves highly complex steps of secretion and reabsorption. To study these processes without employing invasive experimental procedures, we developed the first computational model of the human nephron (which is the functional unit of a kidney). The model contains detailed representation of the transport processes that take place in the epithelial cells that form the walls of the nephron. Using that model, we conducted simulations to predict how much filtered solutes and and water is transported along each individual and functionally distinct nephron segment. We conducted these simulations under normal physiological conditions, and under pharmacological conditions. The nephron model can be used as an essential component in an integrated model of kidney function in humans.
Collapse
Affiliation(s)
- Anita T. Layton
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Departments of Applied Mathematics and Biology, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Harold E. Layton
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
79
|
Affiliation(s)
- Anita T. Layton
- Department of Applied Mathematics and School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada; and Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
80
|
Layton AT, Sullivan JC. Recent advances in sex differences in kidney function. Am J Physiol Renal Physiol 2018; 316:F328-F331. [PMID: 30565997 DOI: 10.1152/ajprenal.00584.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics and School of Pharmacy, University of Waterloo , Waterloo, Ontario , Canada.,Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University , Durham, North Carolina
| | | |
Collapse
|
81
|
Leete J, Layton AT. Sex-specific long-term blood pressure regulation: Modeling and analysis. Comput Biol Med 2018; 104:139-148. [PMID: 30472496 DOI: 10.1016/j.compbiomed.2018.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/17/2023]
Abstract
Hypertension is a global health challenge: it affects one billion people worldwide and is estimated to account for >60% of all cases or types of cardiovascular disease. In part because sex differences in blood pressure regulation mechanisms are not sufficiently well understood, fewer hypertensive women achieve blood pressure control compared to men, even though compliance and treatment rates are generally higher in women. Thus, the objective of this study is to identify which factors contribute to the sexual dimorphism in response to anti-hypertensive therapies targeting the renin angiotensin system (RAS). To accomplish that goal, we develop sex-specific blood pressure regulation models. Sex differences in the RAS, baseline adosterone level, and the reactivity of renal sympathetic nervous activity (RSNA) are represented. A novel aspect of the model is the representation of sex-specific vasodilatory effect of the bound angiotensin II type two receptor (AT2R-bound Ang II) on renal vascular resistance. Model simulations suggest that sex differences in RSNA are the largest cause of female resistance to developing hypertension due to the direct influence of RSNA on afferent arteriole resistance. Furthermore, the model predicts that the sex-specific vasodilatory effects of AT2R-bound Ang II on renal vascular resistance may explain the higher effectiveness of angiotensin receptor blockers in treating hypertensive women (but not men), compared to angiotensin converting enzyme inhibitors.
Collapse
Affiliation(s)
- Jessica Leete
- Computational Biology & Bioinformatics Program, Duke University, Durham, NC, USA.
| | - Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, NC, USA; Department of Applied Mathematics and School of Pharmacy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
82
|
Tsimihodimos V, Filippatos TD, Elisaf MS. SGLT2 inhibitors and the kidney: Effects and mechanisms. Diabetes Metab Syndr 2018; 12:1117-1123. [PMID: 29909004 DOI: 10.1016/j.dsx.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
AIMS Numerous clinical trials have shown that sodium glucose cotransporter 2 (SGLT2) inhibitors exert a favorable effect on the indices of renal function (albuminuria, glomerular filtration rate decline over time) and the incidence of hard renal endpoints such as renal death or time to initiation of renal replacement therapy. MATERIALS AND METHODS In this review, we describe in detail the evidence regarding the nephroprotective mechanisms of SGLT2 inhibitors and describe the risk factors that may predispose to the development of acute kidney injury in patients receiving these drugs. RESULTS Although the impact of these drugs on renal hemodynamics seems to represent the most important renoprotective mechanism of action, many other effects of these compounds, including beneficial effects on metabolism and blood pressure, have been proposed to contribute to the observed clinical benefit. CONCLUSIONS SGLT2 inhibitors clearly act beneficially in terms of kidney function with many proposed mechanisms.
Collapse
Affiliation(s)
- V Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - T D Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, Crete, Greece.
| | - M S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
83
|
León Jiménez D, Cherney DZI, Bjornstad P, Castilla-Guerra L, Miramontes González JP. Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1406-F1415. [PMID: 30066584 PMCID: PMC6293300 DOI: 10.1152/ajprenal.00384.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
While sodium-glucose cotransporter-2 (SGLT2) inhibitors have been used for the routine management of type 2 diabetes for several years, it is perhaps their natriuretic effects that are most important clinically. This natriuresis activates tubuloglomerular feedback, resulting in reduced glomerular hypertension and proteinuria, leading to renal protective effects in the EMPA-REG OUTCOME and CANVAS Program trials. In the cardiovascular system, it is likely that plasma volume contraction due to natriuresis in response to SGLT2 inhibition is at least in part responsible for the reduction in the risk of heart failure observed in these trials. We compare this mechanism of action with other antidiabetics. Importantly, other diuretic classes, including thiazide and loop diuretics, have not resulted in such robust clinical benefits in patients with type 2 diabetes, possibly because these older agents do not influence intraglomerular pressure directly. In contrast, SGLT2 inhibitors do have important physiological similarities with carbonic anhydrase inhibitors, which also act proximally, and have been shown to activate tubuloglomerular feedback.
Collapse
Affiliation(s)
- David León Jiménez
- Vascular Risk Unit, Internal Medicine Clinical Management Unit, Hospital Universitario Virgen Macarena , Seville , Spain
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology. Toronto General Hospital, University of Toronto , Toronto , Ontario, Canada
| | - Petter Bjornstad
- Department of Pediatrics, Division of Endocrinology and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado , Aurora, Colorado
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Internal Medicine Clinical Management Unit, Hospital Universitario Virgen Macarena , Seville , Spain
| | - José Pablo Miramontes González
- Service of Internal Medicine, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca , Salamanca , Spain
| |
Collapse
|
84
|
Takiyama Y, Sera T, Nakamura M, Ishizeki K, Saijo Y, Yanagimachi T, Maeda M, Bessho R, Takiyama T, Kitsunai H, Sakagami H, Fujishiro D, Fujita Y, Makino Y, Abiko A, Hoshino M, Uesugi K, Yagi N, Ota T, Haneda M. Impacts of Diabetes and an SGLT2 Inhibitor on the Glomerular Number and Volume in db/db Mice, as Estimated by Synchrotron Radiation Micro-CT at SPring-8. EBioMedicine 2018; 36:329-346. [PMID: 30322799 PMCID: PMC6197731 DOI: 10.1016/j.ebiom.2018.09.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recent large-scale clinical studies demonstrate that sodium-glucose cotransporter 2 (SGLT2) inhibitors protect the diabetic kidney. However, clinical and animal studies have not shown the changes of the total glomeruli in the whole kidney treated with SGLT2 inhibitors. METHODS We performed computed tomography (CT) imaging on mice using synchrotron radiation to investigate the impact of luseogliflozin, a SGLT2 inhibitor, on the number and volume of glomeruli in the whole kidney. FINDINGS We did not observe a significant difference in the total glomerular number (Nglom) among mice. Luseogliflozin redistributed the number of glomeruli in different regions, accompanied by the normalization of diabetes-augmented renal volume (Vkidney). Diabetic db/db mice had a larger glomerular volume in the mid-cortex than did control db/m mice, and luseogliflozin increased the glomerular volume in all renal cortical zones of the whole kidney in db/db mice. According to the multivariate regression analysis, hemoglobin A1c level was the most relevant determinant of Vkidney, not Nglom or mean glomerular volume (Vglom), indicating that hyperglycemia induced renal (tubular) hypertrophy, but not glomerular enlargement. Luseogliflozin increased hypoxia in the juxtamedullary region, sustained upregulated renal renin expression and plasma renin activity, and failed to decrease albuminuria by downregulating megalin in db/db mice. INTERPRETATION Based on our findings, SGLT2 inhibitors may alter glomerular distribution and size in addition to their glucose-lowering effects, presumably by affecting oxygen metabolism and humoral factors. FUND: Funding for this research was provided by The Japan Society for the Promotion of Science, the Japan Diabetes Foundation, and Asahikawa Medical University.
Collapse
Affiliation(s)
- Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan.
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Japan
| | - Kanaki Ishizeki
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yasuaki Saijo
- Department of Health Science, Asahikawa Medical University, Japan
| | - Tsuyoshi Yanagimachi
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Manami Maeda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Takao Takiyama
- Department of Neurosurgery, Asahikawa Medical University, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Daisuke Fujishiro
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yukihiro Fujita
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Atsuko Abiko
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Masato Hoshino
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Kentaro Uesugi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Naoto Yagi
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
85
|
Abstract
Sodium-glucose cotransporters SGLT1 (encoded by SGLT1, also known as SLC5A1) and SGLT2 (encoded by SGLT2, also known as SLC5A2) are important mediators of epithelial glucose transport. While SGLT1 accounts for most of the dietary glucose uptake in the intestine, SGLT2 is responsible for the majority of glucose reuptake in the tubular system of the kidney, with SGLT1 reabsorbing the remainder of the filtered glucose. As a consequence, mutations in the SLC5A1 gene cause glucose/galactose malabsorption, whereas mutations in SLC5A2 are associated with glucosuria. Since the cloning of SGLT1 more than 30 years ago, big strides have been made in our understanding of these transporters and their suitability as drug targets. Phlorizin, a naturally occurring competitive inhibitor of SGLT1 and SGLT2, provided the first insights into potential efficacy, but its use was hampered by intestinal side effects and a short half-life. Nevertheless, it was a starting point for the development of specific inhibitors of SGLT1 and SGLT2, as well as dual SGLT1/2 inhibitors. Since the approval of the first SGLT2 inhibitor in 2013 by the US Food and Drug Administration, SGLT2 inhibitors have become a new mainstay in the treatment of type 2 diabetes mellitus. They also have beneficial effects on the cardiovascular system (including heart failure) and the kidney. This review focuses on the rationale for the development of individual SGLT2 and SGLT1 inhibitors, as well as dual SGLT1/2 inhibition, including, but not limited to, aspects of genetics, genetically modified mouse models, mathematical modelling and general considerations of drug discovery in the field of metabolism.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33592, USA.
| | - Volker Vallon
- Department of Medicine, Division of Nephrology and Hypertension, University of California San Diego, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego California, San Diego, CA, USA.
| |
Collapse
|
86
|
Li Q, McDonough AA, Layton HE, Layton AT. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am J Physiol Renal Physiol 2018; 315:F692-F700. [PMID: 29846110 PMCID: PMC6172582 DOI: 10.1152/ajprenal.00171.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The goal of this study is to investigate the functional implications of the sexual dimorphism in transporter patterns along the proximal tubule. To do so, we have developed sex-specific computational models of solute and water transport in the proximal convoluted tubule of the rat kidney. The models account for the sex differences in expression levels of the apical and basolateral transporters, in single-nephron glomerular filtration rate, and in tubular dimensions. Model simulations predict that 70.6 and 38.7% of the filtered volume is reabsorbed by the proximal tubule of the male and female rat kidneys, respectively. The lower fractional volume reabsorption in females can be attributed to their smaller transport area and lower aquaporin-1 expression level. The latter also results in a larger contribution of the paracellular pathway to water transport. Correspondingly similar fractions (70.9 and 39.2%) of the filtered Na+ are reabsorbed by the male and female proximal tubule models, respectively. The lower fractional Na+ reabsorption in females is due primarily to their smaller transport area and lower Na+/H+ exchanger isoform 3 and claudin-2 expression levels. Notably, unlike most Na+ transporters, whose expression levels are lower in females, Na+-glucose cotransporter 2 (SGLT2) expression levels are 2.5-fold higher in females. Model simulations suggest that the higher SGLT2 expression in females may compensate for their lower tubular transport area to achieve a hyperglycemic tolerance similar to that of males.
Collapse
Affiliation(s)
- Qianyi Li
- Kuang Yaming Honors School, Nanjing University , Nanjing , China
| | - Alicia A McDonough
- Department of Integrative Anatomical Sciences, Kerck School of Medicine, University of Southern California , Los Angeles, California
| | - Harold E Layton
- Department of Mathematics, Duke University , Durham, North Carolina
| | - Anita T Layton
- Department of Mathematics, Duke University , Durham, North Carolina
- Departments of Biomedical Engineering and Medicine, Duke University , Durham, North Carolina
- Department of Applied Mathematics, University of Waterloo , Waterloo, Ontario , Canada
| |
Collapse
|
87
|
Hallow KM, Greasley PJ, Helmlinger G, Chu L, Heerspink HJ, Boulton DW. Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data. Am J Physiol Renal Physiol 2018; 315:F1295-F1306. [PMID: 30019930 DOI: 10.1152/ajprenal.00202.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanisms of cardiovascular and renal protection observed in clinical trials of sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) are incompletely understood and likely multifactorial, including natriuretic, diuretic, and antihypertensive effects, glomerular pressure reduction, and lowering of plasma and interstitial fluid volume. To quantitatively evaluate the contribution of proposed SGLT2i mechanisms of action on changes in renal hemodynamics and volume status, we coupled a mathematical model of renal function and volume homeostasis with clinical data in healthy subjects administered 10 mg of dapagliflozin once daily. The minimum set of mechanisms necessary to reproduce observed clinical responses (urinary sodium and water excretion, serum creatinine and sodium) was determined, and important unobserved physiological variables (glomerular pressure, blood and interstitial fluid volume) were then simulated. We further simulated the response to SGLT2i in diabetic virtual patients with and without renal impairment. Multiple mechanisms were required to explain the observed response: 1) direct inhibition of sodium and glucose reabsorption through SGLT2, 2) SGLT2-driven inhibition of Na+/H+ exchanger 3 sodium reabsorption, and 3) osmotic diuresis coupled with peripheral sodium storage. The model also showed that the consequences of these mechanisms include lowering of glomerular pressure, reduction of blood and interstitial fluid volume, and mild blood pressure reduction, in agreement with clinical observations. The simulations suggest that these effects are more significant in diabetic patients than healthy subjects and that while glucose excretion may diminish with renal impairment, improvements in glomerular pressure and blood volume are not diminished at lower glomerular filtration rate, suggesting that cardiorenal benefits of SGLT2i may be sustained in renally impaired patients.
Collapse
Affiliation(s)
- K Melissa Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia , Athens, Georgia.,Department of Epidemiology and Biostatistics, University of Georgia , Athens, Georgia
| | - Peter J Greasley
- Early Clinical Development, Innovative Medicines, AstraZeneca, Gothenburg , Sweden
| | - Gabriel Helmlinger
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca, Waltham, Massachusetts
| | - Lulu Chu
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca, Waltham, Massachusetts
| | - Hiddo J Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - David W Boulton
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
88
|
Nespoux J, Vallon V. SGLT2 inhibition and kidney protection. Clin Sci (Lond) 2018; 132:1329-1339. [PMID: 29954951 PMCID: PMC6648703 DOI: 10.1042/cs20171298] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing public health concern worldwide. Numerous drug classes are available for treatment, however, their efficacy with regard to diabetes-induced renal and cardiovascular (CV) complications remains limited. Inhibitors of the sodium-glucose cotransporter 2 (SGLT2) are a new class of blood glucose lowering medications that block renal glucose reabsorption and have protective effects on the kidney and the heart. This review focusses on the effects of SGLT2 inhibitors on the kidney and renal outcome: it briefly outlines renal glucose handling in diabetes and its role in glomerular hyperfiltration and renal hypoxia; describes how SGLT2 inhibitors induce an early, reversible reduction in glomerular filtration rate (GFR) and preserve GFR in the long-term in patients with T2DM; discusses whether the enhanced active transport in the renal outer medulla (OM) in response to SGLT2 inhibition is friend or foe; proposes how the blood pressure lowering and heart failure protective effect of SGLT2 inhibitors can be preserved in chronic kidney disease (CKD) despite attenuated antihyperglycemic effects; and examines whether SGLT2 inhibition enhances the incidence or severity of acute kidney injury (AKI).
Collapse
Affiliation(s)
- Josselin Nespoux
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, U.S.A
- Nephrology Research, VA San Diego Healthcare System, San Diego, CA, U.S.A
| | - Volker Vallon
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, U.S.A.
- Nephrology Research, VA San Diego Healthcare System, San Diego, CA, U.S.A
- Department of Pharmacology, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
89
|
Layton AT, Vallon V. Cardiovascular benefits of SGLT2 inhibition in diabetes and chronic kidney diseases. Acta Physiol (Oxf) 2018; 222:e13050. [PMID: 29424089 PMCID: PMC5867254 DOI: 10.1111/apha.13050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A T Layton
- Departments of Mathematics and, Biomedical Engineering, and Medicine, Duke University, Durham, NC, USA
| | - V Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| |
Collapse
|