51
|
Chumakov D, Moiseeva A, Anisimov A, Uzhinov B, Khoroshutin A. Regioselective bromination of palladium tetraphenyltetrabenzoporphyrin to benzo-rings: Synthesis of mono- and octabromotetrabenzoporphyrins and their properties. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424610002653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bromination of palladium meso-tetraphenyl tetrabenzoporphyrin ( Pd Ph4TBP, 1) by Me4NBr3 or Me4NBr/Br2 was shown to proceed regioselectively to the benzo-rings annelated to main porphyrin macrocycle. Conditions for preferential mono- and octa-bromination have been established. The respective mono- and octa-bromide ( Pd Ph4TBP( Br ), 2 and Pd Ph4TBP( Br )8, 3) have been isolated and characterized by UV-vis, NMR and LDI-TOF spectroscopy. Changes of electrochemical properties of tetrabenzoporphyrins induced by Br atoms were found to follow the same trends as the changes in analogous non-extended porphyrins. Room temperature phosphorescence is not substantially influenced by the substitution.
Collapse
Affiliation(s)
- Denis Chumakov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anna Moiseeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Anisimov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Boris Uzhinov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Khoroshutin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
52
|
Koga S, Kano Y, Barstow TJ, Ferreira LF, Ohmae E, Sudo M, Poole DC. Kinetics of muscle deoxygenation and microvascular Po2 during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques. J Appl Physiol (1985) 2012; 112:26-32. [DOI: 10.1152/japplphysiol.00925.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that for microvascular O2 partial pressure (i.e., PmvO2, phosphorescence quenching) within the same muscle region (0.5∼1 mm depth) during transitions from rest to electrically stimulated contractions in the gastrocnemius of male Wistar rats ( n = 14). Both responses could be modeled by a time delay (TD), followed by a close-to-exponential change to the new steady level. However, the TD for the muscle deoxygenation profile was significantly longer compared with that for the phosphorescence-quenching PmvO2 [8.6 ± 1.4 and 2.7 ± 0.6 s (means ± SE) for the deoxygenation and PmvO2, respectively; P < 0.05]. The time constants (τ) of the responses were not different (8.8 ± 4.7 and 11.2 ± 1.8 s for the deoxygenation and PmvO2, respectively). These disparate (TD) responses suggest that the deoxygenation characteristics of Mb extend the TD, thereby increasing the duration (number of contractions) before the onset of muscle deoxygenation. However, this effect was insufficient to increase the mean response time. Somewhat differently, the muscle deoxygenation response measured using near-infrared spectroscopy in the deeper regions (∼5 mm depth) (∼50% type I Mb-rich, highly oxidative fibers) was slower (τ = 42.3 ± 6.6 s; P < 0.05) than the corresponding value for superficial muscle measured using visible light spectroscopy or PmvO2 and can be explained on the basis of known fiber-type differences in PmvO2 kinetics. These data suggest that, within the superficial and also deeper muscle regions, the τ of the deoxygenation signal may represent a useful index of local O2 extraction kinetics during exercise transients.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe
| | - Yutaka Kano
- The University of Electro-Communications, Chofu; and
| | - Thomas J. Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Mizuki Sudo
- The University of Electro-Communications, Chofu; and
| | - David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
53
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
54
|
Shander A, Javidroozi M, Ozawa S, Hare G. What is really dangerous: anaemia or transfusion? Br J Anaesth 2011; 107 Suppl 1:i41-59. [DOI: 10.1093/bja/aer350] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
55
|
Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 2011; 36:83-9. [PMID: 21368713 DOI: 10.1097/shk.0b013e3182169d5a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathophysiology of sepsis-induced acute kidney injury remains poorly understood. As changes in renal perfusion and oxygenation have been shown, we aimed to study the short-term effects of endotoxemia on microvascular and interstitial oxygenation in the cortex and medulla, in conjunction with global and renal hemodynamics. In a 4-h rat model of endotoxemia, we simultaneously assessed renal artery blood flow and microvascular and interstitial oxygen tensions in the renal cortex and medulla using ultrasonic flowmetry, dual wavelength phosphorimetry, and tissue oxygen tension monitoring, respectively. Whereas medullary microvascular and interstitial oxygen tensions decreased promptly in line with macrovascular blood flow, changes in cortical oxygenation were only seen later on. During the entire experimental protocol, the gradient between microvascular PO₂ and tissue oxygen tension remained unchanged in both cortex and outer medulla. At study end, urine output was significantly decreased despite a maintained oxygen consumption rate. In this 4-h rat model of endotoxemia, total renal oxygen consumption and the gradient between microvascular PO₂ and tissue oxygen tension remained unaltered, despite falls in renal perfusion and oxygen delivery and urine output. Taken in conjunction with the decrease in urine output, our results could represent either a functional renal impairment or an adaptive response.
Collapse
|
56
|
Harms FA, de Boon WMI, Balestra GM, Bodmer SIA, Johannes T, Stolker RJ, Mik EG. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid. JOURNAL OF BIOPHOTONICS 2011; 4:731-739. [PMID: 21770036 DOI: 10.1002/jbio.201100040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Mitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that delayed fluorescence is readily observed from skin in rat and man after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Delayed fluorescence lifetimes respond to changes in inspired oxygen fraction and blood supply. The signals contain lifetime distributions and the fitting of rectangular distributions to the data appears more adequate than mono-exponential fitting. The use of topically applied ALA for delayed fluorescence lifetime measurements might pave the way for clinical use of this technique.
Collapse
Affiliation(s)
- Floor A Harms
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, ErasmusMC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW The holy grail of circulatory monitoring is an accurate, continuous and relatively noninvasive means of assessing the adequacy of organ perfusion. This could be then advantageously used to direct therapeutic interventions to prevent both under-treatment and over-treatment and thus improve outcomes. However, in view of the heterogeneous response (adaptive or maladaptive) of different organs to various shock states, any monitor of perfusion adequacy cannot reflect every organ system, but should at least detect early deterioration in a 'canary' organ. Tissue oxygen tension reflects the balance between local oxygen supply and demand, and could thus be a potentially useful monitoring modality. This article examines the different technologies available and reviews the current literature regarding its utility as a monitor. RECENT FINDINGS Tissue oxygen tension, measured at a variety of sites in both human and laboratory studies, does appear to be a sensitive indicator of organ perfusion in different shock states. However, responses can vary not only between organs and between different shock states, but also over time. These changes reflect the particular oxygen supply-demand balance present in that tissue bed at that specific time point in the disease process. The response to a dynamic oxygen challenge test provides further information that allows severity to be more readily differentiated. SUMMARY Monitoring of tissue oxygen tension may offer a potentially useful tool for clinical management though significant validation needs to be first performed to confirm its promise.
Collapse
|
58
|
Govorkova EA, Marathe BM, Prevost A, Rehg JE, Webster RG. Assessment of the efficacy of the neuraminidase inhibitor oseltamivir against 2009 pandemic H1N1 influenza virus in ferrets. Antiviral Res 2011; 91:81-8. [PMID: 21635924 DOI: 10.1016/j.antiviral.2011.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 01/01/2023]
Abstract
Pandemic 2009 influenza A (H1N1) virus (H1N1pdm) is different from contemporary seasonal human viruses in that it can cause infection deep in the lungs of critical care patients. Here we establish a mammalian animal model and assessed the efficacy of the neuraminidase (NA) inhibitor oseltamivir treatment against H1N1pdm virus infection. Oseltamivir (25 mg/kg/day twice daily for 5 days) was orally administered to groups of ferrets, starting either 2 or 24 h after inoculation with 10(6)PFU of A/California/04/2009 (H1N1) influenza virus. We determined that virus replication was restricted to 1 or 2 of 4 lung lobes in oseltamivir-treated animals, while virus was consistently isolated from 4 of 4 lung lobes in control animals (1.5-3.8log(10)PFU/g). Analysis of arterial blood oxygenation revealed less pronounced changes in partial oxygen and carbon dioxide pressure in oseltamivir-treated ferrets, and histologic examination confirmed reduced pneumonia. Treated animals had significantly decreased inflammatory responses in the upper respiratory tract (P < 0.05), less fever and weight loss, and less reduction of activity. Virus titers in the nasal washes of treated and control ferrets did not differ significantly. NA sequencing and fluorescence-based phenotypic assays identified no oseltamivir-resistant variants. Overall, oseltamivir treatment decreases the signs of infection and reduced the spread of H1N1pdm influenza virus in the lungs of ferrets and therefore impeded the development of viral pneumonia.
Collapse
Affiliation(s)
- Elena A Govorkova
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | | | | | |
Collapse
|
59
|
Bruce EN, Bruce MC, Erupaka-Chada K. A mathematical modeling approach to risk assessment for normal and anemic women chronically exposed to carbon monoxide from biomass-fueled cookstoves. J Appl Physiol (1985) 2011; 111:473-84. [PMID: 21596914 DOI: 10.1152/japplphysiol.00040.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In developing countries, the chronic exposure to carbon monoxide (CO) from biomass-fueled cookstoves may pose a significant health risk for women who use these stoves, especially for those with underlying clinical conditions that impair tissue oxygenation, e.g., anemia and coronary artery disease. CO concentrations measured in the vicinity of these cookstoves often exceed World Health Organization (WHO) indoor air guidelines for an 8-h average (9 ppm) and a 1-h maximum (26 ppm). Carboxyhemoglobin levels, reported infrequently because they are difficult to obtain, often exceed the WHO threshold of 2.5%. Despite this evidence, specific adverse effects have not yet been linked with chronic CO exposures in these women. Furthermore, anemia, which is prevalent in populations that use biomass fuels, could exacerbate the adverse effects of chronic CO exposure. Because of the difficulties inherent in conducting prospective studies to address this issue, we used a mathematical model to calculate the effects of reported CO levels and exercise on carboxyhemoglobin for women living in 1) Guatemalan villages at altitudes of 4,429-4,593 ft, and 2) coastal villages in Pakistan. In addition, we used the model to calculate the effects of CO exposures in women with moderate to severe anemia on specific physiological parameters (carboxyhemoglobin, carboxymyoglobin, cardiac output, and tissue Po(2)) at exercise levels representing the activities in which these women would be engaged. Our results demonstrate the efficacy of using a mathematical model to predict the physiologic responses to CO and also demonstrate that chronic anemia is a critically important determinant of CO toxicity in these women.
Collapse
Affiliation(s)
- Eugene N Bruce
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA.
| | | | | |
Collapse
|
60
|
The synthesis of new tetrabenzo- and tetranaphthoporphyrins via the addition reactions of 4,7-dihydroisoindole. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.01.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Lee YEK, Ulbrich EE, Kim G, Hah H, Strollo C, Fan W, Gurjar R, Koo S, Kopelman R. Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem 2011; 82:8446-55. [PMID: 20849084 DOI: 10.1021/ac1015358] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of sensors for noninvasive determination of oxygen levels in live cells and tissues is critical for the understanding of cellular functions, as well as for monitoring the status of disease, such as cancer, and for predicting the efficacy of therapy. We describe such nontoxic, targeted, and ratiometric 30 nm oxygen nanosensors made of polyacrylamide hydrogel, near-infrared (NIR) luminescent dyes, and surface-conjugated tumor-specific peptides. They enabled noninvasive real-time monitoring of oxygen levels in live cancer cells under normal and hypoxic conditions. The required sensitivity, brightness, selectivity, and stability were achieved by tailoring the interaction between the nanomatrix and indicator dyes. The developed nanosensors may become useful for in vivo oxygen measurements.
Collapse
Affiliation(s)
- Yong-Eun Koo Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Cammidge AN, Chambrier I, Cook MJ, Hughes DL, Rahman M, Sosa‐Vargas L. Phthalocyanine Analogues: Unexpectedly Facile Access to Non‐Peripherally Substituted Octaalkyl Tetrabenzotriazaporphyrins, Tetrabenzodiazaporphyrins, Tetrabenzomonoazaporphyrins and Tetrabenzoporphyrins. Chemistry 2011; 17:3136-46. [DOI: 10.1002/chem.201002176] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/13/2010] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Michael J. Cook
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ (UK)
| | - David L. Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ (UK)
| | - Muhibur Rahman
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ (UK)
| | - Lydia Sosa‐Vargas
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ (UK)
| |
Collapse
|
63
|
Hiesinger W, Vinogradov SA, Atluri P, Fitzpatrick JR, Frederick JR, Levit RD, McCormick RC, Muenzer JR, Yang EC, Marotta NA, MacArthur JW, Wilson DF, Woo YJ. Oxygen-dependent quenching of phosphorescence used to characterize improved myocardial oxygenation resulting from vasculogenic cytokine therapy. J Appl Physiol (1985) 2011; 110:1460-5. [PMID: 21292844 DOI: 10.1152/japplphysiol.01138.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 μl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.
Collapse
Affiliation(s)
- William Hiesinger
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Bezemer R, Faber DJ, Almac E, Kalkman J, Legrand M, Heger M, Ince C. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms. Med Biol Eng Comput 2010; 48:1233-42. [PMID: 21046272 PMCID: PMC2993890 DOI: 10.1007/s11517-010-0698-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/08/2010] [Indexed: 11/29/2022]
Abstract
Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2)) histograms has never been extensively evaluated and lacks documentation. The aim of this study was, therefore, to evaluate the use of the ESM to adequately determine pO(2) histograms from phosphorescence decay traces. For this purpose we simulated decay traces corresponding to uni- and bimodal pO(2) distributions and recovered the pO(2) histograms at different signal-to-noise ratios (SNRs). Ultimately, we recovered microvascular pO(2) histograms measured in the rat kidney in a model of endotoxemic shock and fluid resuscitation and showed that the mean microvascular oxygen tension, [Symbol: see text]pO(2)[Symbol: see text], decreased after induction of endotoxemia and that after 2 h of fluid resuscitation, [Symbol: see text]pO(2)[Symbol: see text] remained low, but the hypoxic peak that had arisen during endotoxemia was reduced. This finding illustrates the importance of recovering pO(2) histograms under (patho)physiological conditions. In conclusion, this study has characterized how noise affects the recovery of pO(2) histograms using the ESM and documented the reliability of the ESM for recovering both low- and high-pO(2) distributions for SNRs typically found in experiments. This study might therefore serve as a frame of reference for investigations focused on oxygen (re)distribution during health and disease and encourage researchers to (re-)analyze data obtained in (earlier) studies possibly revealing new insights into complex disease states and treatment strategies.
Collapse
Affiliation(s)
- Rick Bezemer
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
65
|
Golub AS, Tevald MA, Pittman RN. Phosphorescence quenching microrespirometry of skeletal muscle in situ. Am J Physiol Heart Circ Physiol 2010; 300:H135-43. [PMID: 20971766 DOI: 10.1152/ajpheart.00626.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an optical method for the evaluation of the oxygen consumption (Vo(2)) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po(2), together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po(2) values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po(2) decreased rapidly and the initial slope of the ODC was used to calculate the Vo(2). Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of Vo(2). The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was Vo(2) = 123.4 ± 13.4 (SE) nl O(2)/cm(3) · s (N = 38, within 6 muscles) at a baseline interstitial Po(2) of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0551, USA
| | | | | |
Collapse
|
66
|
Grist SM, Chrostowski L, Cheung KC. Optical oxygen sensors for applications in microfluidic cell culture. SENSORS (BASEL, SWITZERLAND) 2010; 10:9286-316. [PMID: 22163408 PMCID: PMC3230974 DOI: 10.3390/s101009286] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/17/2010] [Accepted: 10/10/2010] [Indexed: 01/09/2023]
Abstract
The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications.
Collapse
Affiliation(s)
- Samantha M. Grist
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Lukas Chrostowski
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Karen C. Cheung
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| |
Collapse
|
67
|
Pirzadeh A, Mammen A, Kubin J, Reade E, Liu H, Mendoza A, Greeley WJ, Wilson DF, Pastuszko A. Early regional response of apoptotic activity in newborn piglet brain following hypoxia and ischemia. Neurochem Res 2010; 36:83-92. [PMID: 20872244 DOI: 10.1007/s11064-010-0267-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 12/24/2022]
Abstract
Responses of selected neuroregulatory proteins that promote (Caspase 3 and Bax) or inhibit (Bcl-2, high Bcl-2/Bax ratio) apoptotic cell death were measured in the brain of piglets subjected to precisely controlled hypoxic and ischemic insults: 1 h hypoxia (decreasing FiO₂ from 21 to 6%) or ischemia (ligation of carotid arteries and hemorrhage), followed by 0, 2 and 4 h recovery with 21% FiO₂. Protein expression was measured in cortex, hippocampus and striatum by Western blot. There were no significant differences in expression of Caspase-3 between sham operated, hypoxic and ischemic groups. There were significant regional differences in expression of Bcl-2 and Bax in response to hypoxia and ischemia. The changes in Bcl-2/Bax ratio were similar for hypoxia and ischemia except for striatum at zero time recovery, with ischemia giving lower ratios than hypoxia. The Bcl-2/Bax ratio was also lower for the striatum than for the other regions of the brain, suggesting this region is the more susceptible to apoptotic injury.
Collapse
Affiliation(s)
- A Pirzadeh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Phosphorescent Light–Emitting Iridium Complexes Serve as a Hypoxia-Sensing Probe for Tumor Imaging in Living Animals. Cancer Res 2010; 70:4490-8. [DOI: 10.1158/0008-5472.can-09-3948] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Tsai AG, Cabrales P, Intaglietta M. The physics of oxygen delivery: facts and controversies. Antioxid Redox Signal 2010; 12:683-91. [PMID: 19757988 PMCID: PMC2834451 DOI: 10.1089/ars.2009.2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/13/2022]
Abstract
At the microvascular level, the radial oxygen gradient is greater in arterioles than in any other vascular segment and thus drives the oxygen from the blood (high concentration, source) into the perivascular tissue (low concentration, sink). Thus, arterioles appear to be the main suppliers of oxygen to the tissue, in contrast to the capillaries, where the oxygen gradient is only a few millimeters of mercury. However, longitudinal oxygen loss from arteriolar blood is higher than can be solely accounted for by diffusion. This discrepancy becomes evident when determining how oxygen is distributed in the microvascular network, an approach that requires confirmation of the data in terms of mass balance and thermodynamic considerations. A fundamental difficulty is that measuring tissue Po 2 is complicated by methods, exposure of tissue, interpretation, and resolution. The literature reports mean tissue Po 2 as low as 5 and up to 50 mm Hg. This large variability is due to the differences in techniques, species, tissue, handling, and interpretation of signals used to resolve Po 2 levels. Improving measurement accuracy and physiological interpretation of the emerging Po 2 data is ongoing. We present an analysis of our current understanding of how tissue is supplied by oxygen at the microscopic level in terms of present results from laboratories using differing methods. Antioxid. Redox Signal. 12, 683–691.
Collapse
Affiliation(s)
- Amy G. Tsai
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | | | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
70
|
Robinson MA, Turtle SW, Otto CM, Koch CJ. pO(2)-dependent NO production determines OPPC activity in macrophages. Free Radic Biol Med 2010; 48:189-95. [PMID: 19822207 PMCID: PMC4159751 DOI: 10.1016/j.freeradbiomed.2009.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/28/2009] [Accepted: 10/06/2009] [Indexed: 01/01/2023]
Abstract
Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) using molecular O(2), L-arginine, and NADPH. Exposure of macrophages to hypoxia decreases NO production within seconds, suggesting substrate limitation as the mechanism. Conflicting data exist regarding the effect of pO(2) on NADPH production via the oxidative pentose phosphate cycle (OPPC). Therefore, the present studies were developed to determine whether NADPH could be limiting for NO production under hypoxia. Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon gamma (IFNgamma) at pO(2) ranging from 0.07 to 50%. OPPC activity correlated linearly with NOx production at pO(2)>0.13%. Increased OPPC activity by stimulated RAW 264.7 cells was significantly reduced by 1400 W, an iNOS inhibitor. OPPC activity was significantly increased by concomitant treatment of stimulated RAW 264.7 cells with chemical oxidants such as hydroxyethyldisulfide or pimonidazole, at 0.07 and 50% O(2), without decreasing NOx production. These results are the first to investigate the effect of pO(2) on the relationship between NO production and OPPC activity, and to rule out limitations in OPPC activity as a mechanism by which NO production is decreased under hypoxia.
Collapse
Affiliation(s)
- Mary A. Robinson
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| | - Stephen W. Turtle
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| | - Cynthia M. Otto
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania Philadelphia PA 19104
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania Philadelphia, PA 19104
| | - Cameron J. Koch
- Department of Radiation Oncology, School of Medicine, University of Pennsylvania Philadelphia PA 19104
| |
Collapse
|
71
|
Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:353-70. [PMID: 19496677 DOI: 10.1089/ten.teb.2009.0085] [Citation(s) in RCA: 649] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering is currently limited by the inability to adequately vascularize tissues in vitro or in vivo. Issues of nutrient perfusion and mass transport limitations, especially oxygen diffusion, restrict construct development to smaller than clinically relevant dimensions and limit the ability for in vivo integration. There is much interest in the field as researchers have undertaken a variety of approaches to vascularization, including material functionalization, scaffold design, microfabrication, bioreactor development, endothelial cell seeding, modular assembly, and in vivo systems. Efforts to model and measure oxygen diffusion and consumption within these engineered tissues have sought to quantitatively assess and improve these design strategies. This review assesses the current state of the field by outlining the prevailing approaches taken toward producing vascularized tissues and highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
- Michael Lovett
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
72
|
Reglin B, Secomb TW, Pries AR. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors? Am J Physiol Heart Circ Physiol 2009; 297:H2206-19. [PMID: 19783778 DOI: 10.1152/ajpheart.00348.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maintenance of functional vascular networks requires structural adaptation of vessel diameters in response to hemodynamic and metabolic conditions. The mechanisms by which diameters respond to the metabolic state are not known, but may involve the release of vasoactive substances in response to low oxygen by tissue ("tissue signaling", e.g., CO2, adenosine), by vessel walls ("wall signaling", e.g., prostaglandins, adenosine), and/or by red blood cells (RBCs) ("RBC signaling", e.g., ATP and nitric oxide). Here, the goal was to test the potential of each of these locations of oxygen-dependent signaling to control steady-state vascular diameters and tissue oxygenation. A previously developed theoretical model of structural diameter adaptation based on experimental data on microvascular network morphology and hemodynamics was used. Resulting network characteristics were analyzed with regard to tissue oxygenation (Oxdef; percentage of tissue volume with PO2<1 Torr) and the difference between estimated blood flow velocities and corresponding experimental data [velocity error (Verr); root mean square deviation of estimated vs. measured velocity]. Wall signaling led to Oxdef<1% and to the closest hemodynamic similarity (Verr: 0.60). Tissue signaling also resulted in a low oxygen deficit, but a higher Verr (0.73) and systematic diameter deviations. RBC signaling led to widespread hypoxia (Oxdef: 4.7%), unrealistic velocity distributions (Verr: 0.81), and shrinkage of small vessels. The results suggest that wall signaling plays a central role in structural control of vessel diameters in microvascular networks of given angioarchitecture. Tissue-derived and RBC-derived signaling of oxygen levels may be more relevant for the regulation of angiogenesis and/or smooth muscle tone.
Collapse
Affiliation(s)
- Bettina Reglin
- Department of Physiology and Cardiovascular Research Center, Charité Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | | | | |
Collapse
|
73
|
Affiliation(s)
- Wei-Shi Li
- ERATO-SORST “Nanospace Project”, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan, and Department of Chemistry and Biotechnology, School of Engineering, and Centre for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- ERATO-SORST “Nanospace Project”, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan, and Department of Chemistry and Biotechnology, School of Engineering, and Centre for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
74
|
Lebedev AY, Cheprakov AV, Sakadžić S, Boas DA, Wilson DF, Vinogradov SA. Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS APPLIED MATERIALS & INTERFACES 2009; 1:1292-304. [PMID: 20072726 PMCID: PMC2805241 DOI: 10.1021/am9001698] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically pi-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). pi-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe's solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe's parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO(2) in the rat brain.
Collapse
|
75
|
Sakadžić S, Yuan S, Dilekoz E, Ruvinskaya S, Vinogradov SA, Ayata C, Boas DA. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. APPLIED OPTICS 2009; 48:D169-77. [PMID: 19340106 PMCID: PMC2692697 DOI: 10.1364/ao.48.00d169] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain.
Collapse
Affiliation(s)
- Sava Sakadžić
- Photon Migration Imaging Laboratory, MGH/MIT/HMS Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Shuai Yuan
- Photon Migration Imaging Laboratory, MGH/MIT/HMS Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ergin Dilekoz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Svetlana Ruvinskaya
- Photon Migration Imaging Laboratory, MGH/MIT/HMS Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David A. Boas
- Photon Migration Imaging Laboratory, MGH/MIT/HMS Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
76
|
Hulin I, Duris I, Paulis L, Sapakova E, Mravec B. Dangerous versus useful hypertension (a holistic view of hypertension). Eur J Intern Med 2009; 20:226-30. [PMID: 19327617 DOI: 10.1016/j.ejim.2008.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 06/13/2008] [Accepted: 07/07/2008] [Indexed: 11/17/2022]
Abstract
The authors aim to offer a holistic view on hypertension and its treatment. Their approach is fairly confrontational, particularly by suggesting that hypertension may play a role in optimizing the blood flow and enhancing oxygen delivery. An increase in blood pressure brings about a threat of catastrophes. Therefore hypertension might be considered as either a subsequent complication, or an inevitable adaptation. When changes of many complicated and complex mechanisms result in retention of sodium and water, then the treatment of this condition is so far the most logical conclusion, and possibly beneficial to the patient. This can be done by influencing the peripheral resistance or the load of vascular bed. However, in some cases a moderate overfilling of the system with no increase in heart rate could be interpreted as an optimal solution for organism that does not necessarily need to be medically treated. This may apply especially to young hypertensive patients, and in cases when no catastrophe is assumed to take place. Lowering the blood pressure to average population levels in each case, especially by means of aggressive therapy may not necessarily lead to improved tissue perfusion. A decrease in blood pressure reduces the risk of catastrophes. However, on the other hand, it can deteriorate the tissue perfusion and cause unfavorable long-term consequences.
Collapse
Affiliation(s)
- I Hulin
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
77
|
Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA. Oxygen microscopy by two-photon-excited phosphorescence. Chemphyschem 2008; 9:1673-9. [PMID: 18663708 PMCID: PMC2645351 DOI: 10.1002/cphc.200800296] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Indexed: 12/11/2022]
Abstract
High-resolution images of oxygen distributions in microheterogeneous samples are obtained by two-photon laser scanning microscopy (2P LSM), using a newly developed dendritic nanoprobe with internally enhanced two-photon absorption (2PA) cross-section. In this probe, energy is harvested by a 2PA antenna, which passes excitation onto a phosphorescent metalloporphyrin via intramolecular energy transfer. The 2P LSM allows sectioning of oxygen gradients with near diffraction-limited resolution, and lifetime-based acquisition eliminates dependence on the local probe concentration. The technique is validated on objects with a priori known oxygen distributions and applied to imaging of pO(2) in cells.
Collapse
Affiliation(s)
- Olga S. Finikova
- Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
| | - Artem Y. Lebedev
- Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
| | - Alexey Aprelev
- Department of Physics, Drexel University, Philadelphia, PA 19104 (USA)
| | - Thomas Troxler
- Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
| | - Feng Gao
- Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
| | - Carmen Garnacho
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
| | - Silvia Muro
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
| | - Robin M. Hochstrasser
- Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
| |
Collapse
|
78
|
Lebedev AY, Filatov MA, Cheprakov AV, Vinogradov SA. Effects of structural deformations on optical properties of tetrabenzoporphyrins: free-bases and Pd complexes. J Phys Chem A 2008; 112:7723-33. [PMID: 18665576 PMCID: PMC2678055 DOI: 10.1021/jp8043626] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently developed method of synthesis of pi-extended porphyrins made it possible to prepare a series of tetrabenzoporphyrins (TBP) with different numbers of meso-aryl substituents. The photophysical parameters of free-bases and Pd complexes of meso-unsubstituted TBP's, 5,15-diaryl-TBP's (Ar2TBP's) and 5,10,15,20-tetraaryl-TBP's (Ar4TBP's) were measured. For comparison, similarly meso-arylsubstituted porphyrins fused with nonaromatic cyclohexeno-rings, i.e. Ar(n)-tetracyclohexenoporphyrins (Ar(n)TCHP's, n = 0, 2, 4), were also synthesized and studied. Structural information was obtained by ab initio (DFT) calculations and X-ray crystallography. It was found that: 1) Free-base Ar4TBP's are strongly distorted out-of-plane (saddled), possess broadened, red-shifted spectra, short excited-state lifetimes and low fluorescence quantum yields (tau(fl) = 2-3 ns, phi(fl) = 0.02-0.03). These features are characteristic of other nonplanar free-base porphyrins, including Ar4TCHP's. 2) Ar2TBP free-bases possess completely planar geometries, although with significant in-plane deformations. These deformations have practically no effect on the singlet excited-state properties of Ar2TBP's as compared to planar meso-unsubstituted TBP's. Both types of porphyrins retain strong fluorescence (tau(fl) = 10-12 ns, phi(fl) = 0.3-0.4), and their radiative rate constants (k(r)) are 3-4 times higher than those of planar H2TCHP's. 3) Nonplanar deformations dramatically enhance nonradiative decay of triplet states of regular Pd porphyrins. For example, planar PdTCHP phosphoresces with high quantum yield (phi(phos) = 0.45, tau(phos) = 1118 micros), while saddled PdPh4TCHP is practically nonemissive. In contrast, both ruffled and saddled PdAr(n)TBP's retain strong phosphorescence at ambient temperatures (PdPh2TBP: tau(phos) = 496 micros, phi(phos) = 0.15; PdPh4TBP: tau(phos) = 258 micros, phi(phos) = 0.08). It appears that pi-extension is capable of counterbalancing deleterious effects of nonplanar deformations on triplet emissivity of Pd porphyrins.
Collapse
Affiliation(s)
- Artem Y. Lebedev
- Department of Biochemistry and Biophysics, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104
| | | | | | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104
| |
Collapse
|
79
|
In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 2008; 95:3977-90. [PMID: 18641065 DOI: 10.1529/biophysj.107.126094] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial oxygen tension (mitoPO(2)) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO(2) in vivo exists. Here we report in vivo measurement of mitoPO(2) and the recovery of mitoPO(2) histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO(2) in rat liver in vivo. The results demonstrate mitoPO(2) values of approximately 30-40 mmHg. mitoPO(2) was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO(2) distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications.
Collapse
|
80
|
Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal 2008; 10:1185-98. [PMID: 18331202 PMCID: PMC2932548 DOI: 10.1089/ars.2007.1959] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) affects two key aspects of O2 supply and demand: It regulates vascular tone and blood flow by activating soluble guanylate cyclase (sGC) in the vascular smooth muscle, and it controls mitochondrial O2 consumption by inhibiting cytochrome c oxidase. However, significant gaps exist in our quantitative understanding of the regulation of NO production in the vascular region. Large apparent discrepancies exist among the published reports that have analyzed the various pathways in terms of the perivascular NO concentration, the efficacy of NO in causing vasodilation (EC50), its efficacy in tissue respiration (IC50), and the paracrine and endocrine NO release. In this study, we review the NO literature, analyzing NO levels on various scales, identifying and analyzing the discrepancies in the reported data, and proposing hypotheses that can potentially reconcile these discrepancies. Resolving these issues is highly relevant to improving our understanding of vascular biology and to developing pharmaceutical agents that target NO pathways, such as vasodilating drugs.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
81
|
Filatov MA, Lebedev AY, Vinogradov SA, Cheprakov AV. Synthesis of 5,15-diaryltetrabenzoporphyrins. J Org Chem 2008; 73:4175-85. [PMID: 18452337 PMCID: PMC2491715 DOI: 10.1021/jo800509k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method of synthesis of 5,15-diaryltetrabenzoporphyrins (Ar 2TBPs) has been developed, based on 2 + 2 condensation of dipyrromethanes followed by oxidative aromatization. Two pathways to Ar 2TBPs were investigated: the tetrahydroisoindole pathway and the dihydroisoindole pathway. In the tetrahydroisoindole pathway, precursor 5,15-diaryltetracyclohexenoporphyrins (5,15-Ar 2TCHPs) were assembled from cyclohexeno-fused meso-unsubstituted dipyrromethanes and aromatic aldehydes or, alternatively, by way of the classical MacDonald synthesis. In the first case, scrambling was observed. Aromatization by tetracyclone was more effective than aromatization by DDQ but failed in the cases of porphyrins with electron-withdrawing substituents in the meso-aryl rings. The dihydroisoindole pathway was found to be much superior to the tetrahydroisoindole pathway, and it was developed into a general preparative method, consisting of (1) the synthesis of 4,7-dihydroisoindole and its transformation into meso-unsubstituted dipyrromethanes, (2) the synthesis of 5,15-diaryloctahydrotetrabenzoporphyrins (5,15-Ar 2OHTBPs), and (3) their subsequent aromatization by DDQ. Ar 2TBP free bases exhibit optical absorption spectra similar to those of meso-unsubstituted tetrabenzoporphyrins and fluoresce with high quantum yields. Pd complex of Ph 2TBP was found to be highly phosphorescent at room temperature.
Collapse
Affiliation(s)
- Mikhail A Filatov
- Department of Chemistry, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
82
|
Golub AS, Pittman RN. Po2measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am J Physiol Heart Circ Physiol 2008; 294:H2905-16. [DOI: 10.1152/ajpheart.01347.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In phosphorescence quenching microscopy (PQM), the multiple excitation of a reference volume produces the integration of oxygen consumption artifacts caused by individual flashes. We analyzed the performance of two types of PQM instruments to explain reported data on Po2in the microcirculation. The combination of a large excitation area (LEA) and high flash rate produces a large oxygen photoconsumption artifact manifested differently in stationary and flowing fluids. A LEA instrument strongly depresses Po2in a motionless tissue, but less in flowing blood, creating an apparent transmural Po2drop in arterioles. The proposed model explains the mechanisms responsible for producing apparent transmural and longitudinal Po2gradients in arterioles, a Po2rise in venules, a hypothetical high respiration rate in the arteriolar wall and mesenteric tissue, a low Po2in lymphatic microvessels, and both low and uniform tissue Po2. This alternative explanation for reported paradoxical results of Po2distribution in the microcirculation obviates the need to revise the dominant role of capillaries in oxygen transport to tissue. Finding a way to eliminate the photoconsumption artifact is crucial for accurate microscopic oxygen measurements in microvascular networks and tissue. The PQM technique that employs a small excitation area (SEA) together with a low flash rate was specially designed to avoid accumulated oxygen photoconsumption in flowing blood and lymph. The related scanning SEA instrument provides artifact-free Po2measurements in stationary tissue and motionless fluids. Thus the SEA technique significantly improves the accuracy of microscopic Po2measurements in the microcirculation using the PQM.
Collapse
|
83
|
Robinson MA, Baumgardner JE, Good VP, Otto CM. Physiological and hypoxic O2 tensions rapidly regulate NO production by stimulated macrophages. Am J Physiol Cell Physiol 2008; 294:C1079-87. [PMID: 18272818 DOI: 10.1152/ajpcell.00469.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) production by inducible NO synthase (iNOS) is dependent on O(2) availability. The duration and degree of hypoxia that limit NO production are poorly defined in cultured cells. To investigate short-term O(2)-mediated regulation of NO production, we used a novel forced convection cell culture system to rapidly (response time of 1.6 s) and accurately (+/-1 Torr) deliver specific O(2) tensions (from <1 to 157 Torr) directly to a monolayer of LPS- and IFNgamma-stimulated RAW 264.7 cells while simultaneously measuring NO production via an electrochemical probe. Decreased O(2) availability rapidly (<or=30 s) and reversibly decreased NO production with an apparent K(m)O(2) of 22 (SD 6) Torr (31 microM) and a V(max) of 4.9 (SD 0.4) nmol min(-1) 10(-6) cells. To explore potential mechanisms of decreased NO production during hypoxia, we investigated O(2)-dependent changes in iNOS protein concentration, iNOS dimerization, and cellular NO consumption. iNOS protein concentration was not affected (P = 0.895). iNOS dimerization appeared to be biphasic [6 Torr (P = 0.008) and 157 Torr (P = 0.258) >36 Torr], but it did not predict NO production. NO consumption was minimal at high O(2) and NO tensions and negligible at low O(2) and NO tensions. These results are consistent with O(2) substrate limitation as a regulatory mechanism during brief hypoxic exposure. The rapid and reversible effects of physiological and pathophysiological O(2) tensions suggest that O(2) tension has the potential to regulate NO production in vivo.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
84
|
Bruce EN, Bruce MC, Erupaka K. Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues. Respir Physiol Neurobiol 2008; 161:142-59. [PMID: 18313993 DOI: 10.1016/j.resp.2008.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/10/2008] [Accepted: 01/20/2008] [Indexed: 11/26/2022]
Abstract
Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood-tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.
Collapse
Affiliation(s)
- Eugene N Bruce
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA.
| | | | | |
Collapse
|
85
|
Mik EG, Johannes T, Ince C. Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique. Am J Physiol Renal Physiol 2008; 294:F676-81. [PMID: 18184739 DOI: 10.1152/ajprenal.00569.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renal oxygen consumption (Vo(2,ren)) is an important parameter that has been shown to be influenced by various pathophysiological circumstances. Vo(2,ren) has to be repeatedly measured during an experiment to gain insight in the dynamics of (dys)regulation of oxygen metabolism. In small animals, the classical approach of blood gas analysis of arterial and venous blood samples is only limitedly applicable due to fragile vessels and a low circulating blood volume. We present a phosphorescence lifetime technique that allows near-continuous measurement of renal venous Po(2) (vPo(2)) and Vo(2,ren) in rats. The technique does not rely on penetration of the blood vessel, but uses a small reflection probe. This probe is placed in close proximity to the renal vein for detection of the oxygen-dependent phosphorescence of the injected water-soluble near-infrared phosphor Oxyphor G2. The technique was calibrated in vitro and the calibration constants were validated in vivo in anesthetized and mechanically ventilated male Wistar rats. The hemoglobin saturation curve and its pH dependency were determined for calculation of renal venous oxygen content. The phosphorescence technique was in good agreement with blood gas analysis of renal venous blood samples, for both Po(2) and hemoglobin saturation. To demonstrate its feasibility in practice, the technique was used in four rats during endotoxin infusion (10 mg x kg(-1) x h(-1) during 1 h). Renal vPo(2) reduced by 40% upon reduction in oxygen delivery to 30% of baseline, but Vo(2) remained unchanged. This study documents the feasibility of near-continuous, nondestructive measurement of renal vPo(2) and Vo(2) by oxygen-dependent quenching of phosphorescence.
Collapse
Affiliation(s)
- Egbert G Mik
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
86
|
Abstract
Longitudinal Po2profiles in the microvasculature of the rat mesentery were studied using a novel phosphorescence quenching microscopy technique that minimizes the accumulated photoconsumption of oxygen by the method. Intravascular oxygen tension (Po2, in mmHg) and vessel diameter ( d, in μm) were measured in mesenteric microvessels ( n = 204) of seven anesthetized rats (275 g). The excitation parameters were as follows: 7 × 7-μm spot size; 410 nm laser; and 100 curves at 11 pulses/s, with pulse parameters of 2-μs duration and 80-pJ/μm2energy density. The mean Po2(± SE) was 65.0 ± 1.4 mmHg ( n = 78) for arterioles ( d = 18.8 ± 0.7 μm), 62.1 ± 2.0 mmHg ( n = 38) at the arteriolar end of capillaries ( d = 7.8 ± 0.3 μm), and 52.0 ± 1.0 mmHg ( n = 88) for venules ( d = 22.5 ± 1.0 μm). There was no apparent dependence of Po2on d in arterioles and venules. There were also no significant deviations in Po2based on d (bin width, 5 μm) from the general mean for both of these types of vessels. Results indicate that the primary site of oxygen delivery to tissue is located between the smallest arterioles and venules (change of 16.3 mmHg, P = 0.001). In conclusion, oxygen losses from mesenteric arterioles and venules are negligible, indicating low metabolic rates for both the vascular wall and the mesenteric tissue. Capillaries appear to be the primary site of oxygen delivery to the tissue in the mesenteric microcirculation. In light of the present results, previously reported data concerning oxygen consumption in the mesenteric microcirculation can be explained as artifacts of accumulated oxygen consumption due to the application of instrumentation having a large excitation area for Po2measurements in slow moving and stationary media.
Collapse
|
87
|
Oxygen pressures in the interstitial space of skeletal muscle and tumors in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 614:53-62. [PMID: 18290314 DOI: 10.1007/978-0-387-74911-2_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Oxyphor (Oxyphor G3) has been used to selectively determine the oxygen pressure in interstitial (pericellular) spaces. Oxyphor G3 is a Pd-tetrabenzoporphyrin, encapsulated inside generation 2 poly-arylglycine (AG) dendrimer, and therefore is a true near infrared oxygen sensor, having a strong absorption band at 636nm and emission near 800nm. The periphery of the dendrimer is modified with oligoethylene glycol residues (Av. MW 350) to make the probe water soluble and biologically inert. Oxyphor G3 was injected along "tracks" in the tissue using a small needle (30gage or less) and remained in the pericellular space, allowing oxygen measurements for several hours with a single injection. The oxygen pressure distributions (histograms) were compared with those for Oxyphor G2 in the intravascular (blood plasma) space. In normal muscle, in the lower oxygen pressure region of the histograms (capillary bed) the oxygen pressure difference was small. At higher oxygen pressures in the histograms there were differences consistent with the presence of high flow vessels with oxygen pressures substantially above those of the surrounding interstitial space. In tumors, the oxygen pressures in the two spaces were similar but with large differences among tumors. In mice, anesthesia with ketamine plus xylazine markedly decreased oxygen pressures in the interstitial and intravascular spaces compared to awake or isoflurane anesthetized mice.
Collapse
|
88
|
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
89
|
Khoroshutin AV, Chumakov DE, Anisimov AV, Kobrakov KI. Regioselective bromination of (Tetraphenyltetrabenzoporphyrinato)palladium(II). Synthesis of a new octabromo derivative of the tetraphenyltetrabenzoporphyrin series. RUSS J GEN CHEM+ 2007. [DOI: 10.1134/s1070363207110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Finikova OS, Troxler T, Senes A, DeGrado WF, Hochstrasser RM, Vinogradov SA. Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores. J Phys Chem A 2007; 111:6977-90. [PMID: 17608457 PMCID: PMC2441487 DOI: 10.1021/jp071586f] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced two-photon-absorbing (2PA) systems with triplet cores are currently under scrutiny for several biomedical applications, including photodynamic therapy (PDT) and two-photon microscopy of oxygen. The performance of so far developed molecules, however, is substantially below expected. In this study we take a detailed look at the processes occurring in these systems and propose ways to improve their performance. We focus on the interchromophore distance tuning as a means for optimization of two-photon sensors for oxygen. In these constructs, energy transfer from several 2PA chromophores is used to enhance the effective 2PA cross section of phosphorescent metalloporphyrins. Previous studies have indicated that intramolecular electron transfer (ET) can act as an effective quencher of phosphorescence, decreasing the overall sensor efficiency. We studied the interplay between 2PA, energy transfer, electron transfer, and phosphorescence emission using Rhodamine B-Pt tetrabenzoporphyrin (RhB-PtTBP) adducts as model compounds. 2PA cross sections (sigma2) of tetrabenzoporphyrins (TBPs) are in the range of several tens of GM units (near 800 nm), making TBPs superior 2PA chromophores compared to regular porphyrins (sigma2 values typically 1-2 GM). Relatively large 2PA cross sections of rhodamines (about 200 GM in 800-850 nm range) and their high photostabilities make them good candidates as 2PA antennae. Fluorescence of Rhodamine B (lambda(fl) = 590 nm, phi(fl) = 0.5 in EtOH) overlaps with the Q-band of phosphorescent PtTBP (lambda(abs) = 615 nm, epsilon = 98 000 M(-1) cm(-1), phi(p) approximately 0.1), suggesting that a significant amplification of the 2PA-induced phosphorescence via fluorescence resonance energy transfer (FRET) might occur. However, most of the excitation energy in RhB-PtTBP assemblies is consumed in several intramolecular ET processes. By installing rigid nonconducting decaproline spacers (Pro10) between RhB and PtTBP, the intramolecular ETs were suppressed, while the chromophores were kept within the Förster r0 distance in order to maintain high FRET efficiency. The resulting assemblies exhibit linear amplification of their 2PA-induced phosphorescence upon increase in the number of 2PA antenna chromophores and show high oxygen sensitivity. We also have found that PtTBPs possess unexpectedly strong forbidden S0 --> T1 bands (lambda(max) = 762 nm, epsilon = 120 M-1 cm-1). The latter may overlap with the laser spectrum and lead to unwanted linear excitation.
Collapse
Affiliation(s)
- Olga S Finikova
- Departments of Biochemistry and Biophysics and Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
91
|
Golub AS, Barker MC, Pittman RN. Po2 profiles near arterioles and tissue oxygen consumption in rat mesentery. Am J Physiol Heart Circ Physiol 2007; 293:H1097-106. [PMID: 17483242 DOI: 10.1152/ajpheart.00077.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A scanning phosphorescence quenching microscopy technique, designed to prevent accumulated O2 consumption by the method, was applied to Po2 measurements in mesenteric tissue. In an attempt to further increase the accuracy of the measurements, albumin-bound probe was topically applied to the tissue and an objective-mounted pressurized bag was used to reduce the oxygen transport bypass through the thin layer of fluid over the mesentery. Po2 was measured at multiple sites perpendicular to the blood/wall interface in the vicinity of 84 mesenteric arterioles (7–39 μm in diameter) at distances of 5, 15, 30, 60, 120, and 180 μm in seven anesthetized Sprague-Dawley rats, thereby creating Po2 profiles. Interstitial Po2 above and immediately beside arterioles was found to agree with known intravascular values. No significant difference in Po2 profiles was found between small and large arterioles, indicating a small longitudinal Po2 gradient in the precapillary mesenteric microvasculature. In addition, the Po2 profiles were used to calculate oxygen consumption in the mesenteric tissue (56–65 nl O2·cm−3·s−1). Correction of these values for contamination with ambient oxygen yielded an oxygen consumption rate of 60–68 nl O2·cm−3·s−1, the maximal limit for consumption in the mesentery. The results were compared with measurements made by other workers in regard to the employed techniques.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 E. Marshall St., PO Box 980551, Richmond, VA 23298-0551, USA
| | | | | |
Collapse
|
92
|
Tsai AG, Cabrales P, Johnson PC, Intaglietta M. New phosphorescence quenching oxygen measurements technique yields unusual tissue and plasma PO2 distributions. J Appl Physiol (1985) 2007; 102:2081-2; author reply 2083. [PMID: 17483445 DOI: 10.1152/japplphysiol.00122.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
93
|
Abstract
Oxygen transport from blood to the mitochondria is dependent on oxygen gradients. The interstitial or extracellular pO(2), measured by the phosphorescence-decay method, is indicative of these driving forces and the amount of oxygen available to the mitochondria. Diverse protocols for sampling tissue pO(2) show that measurements sampling only interstitial pO(2) levels provide a reliable measurement of the tissue pO(2) level. Present findings lead to the hypothesis that tissue has a fairly uniform interstitial fluid pO(2) level and that local inhomogeneity due to the presence arteriolar and venular vessels is smoothed out by the steep gradients at the microvascular walls.
Collapse
Affiliation(s)
- Amy G Tsai
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA.
| | | | | |
Collapse
|
94
|
Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. Reply to Tsai, Cabrales, Johnson, and Intaglietta. J Appl Physiol (1985) 2007. [DOI: 10.1152/japplphysiol.00188.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|