51
|
Sato S, Nomura S, Kawano F, Tanihata J, Tachiyashiki K, Imaizumi K. Adaptive effects of the beta2-agonist clenbuterol on expression of beta2-adrenoceptor mRNA in rat fast-twitch fiber-rich muscles. J Physiol Sci 2010; 60:119-27. [PMID: 20033361 PMCID: PMC10716947 DOI: 10.1007/s12576-009-0075-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
Administration of the beta(2)-agonist clenbuterol has been shown to reduce the expression of beta(2)-adrenoceptor (AR) mRNA in fast-twitch fiber-rich (extensor digitorum longus, EDL) muscle without changing that in slow-twitch fiber-rich (soleus, SOL) muscle in rats. However, the regulatory mechanism for muscle fiber type-dependent down-regulation of the expression of beta(2)-AR mRNA induced by clenbuterol is still unclear. Therefore, mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels in fast-twitch fiber-rich (EDL and plantaris, PLA) and slow-twitch fiber-rich (SOL) muscles in clenbuterol-administered (1.0 mg/kg body weight/day for 10 days, subcutaneous) rats was studied by real-time reverse transcription-polymerase chain reaction. Administration of clenbuterol significantly reduced expression of beta(2)-AR mRNA in EDL and PLA muscles without changing that in SOL muscle. Administration of clenbuterol also significantly reduced the mRNA expression of transcriptional regulatory factor (glucocorticoid receptor) and mRNA stabilizing factor (Hu antigen R) in EDL and PLA muscles without changing those in SOL muscle. These results suggest that muscle fiber type-dependent effects of clenbuterol on expression of beta(2)-AR mRNA are closely related to the down-regulation of mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/physiology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cells, Cultured
- Clenbuterol/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Shogo Sato
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Sachiko Nomura
- Graduate School of Medicine, Osaka University, 1-17 Machikaneyama, Toyonaka, Osaka 560-0043 Japan
| | - Fuuun Kawano
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902 Japan
| | - Jun Tanihata
- Laboratory of Rehabilitation Biomedical Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| | - Kaoru Tachiyashiki
- Department of Living and Health Sciences, Graduate School of Joetsu University of Education, 1 Yamayashiki, Joetsu, Niigata 943-8512 Japan
| | - Kazuhiko Imaizumi
- Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 Japan
| |
Collapse
|
52
|
Baviera AM, Zanon NM, Navegantes LCC, Kettelhut IC. Involvement of cAMP/Epac/PI3K-dependent pathway in the antiproteolytic effect of epinephrine on rat skeletal muscle. Mol Cell Endocrinol 2010; 315:104-12. [PMID: 19804812 DOI: 10.1016/j.mce.2009.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/14/2009] [Accepted: 09/28/2009] [Indexed: 02/04/2023]
Abstract
Very little is known about the signaling pathways by which catecholamines exert anabolic effects on muscle protein metabolism, stimulating protein synthesis and suppressing proteolysis. The present work tested the hypothesis that epinephrine-induced inhibition of muscle proteolysis is mediated through the cAMP/Epac/PI3K-dependent pathway with the involvement of AKT and Foxo. The incubation of extensor digitorum longus (EDL) muscles from rats with epinephrine and/or insulin increased the phosphorylation of AKT and its downstream target Foxo3a, a well-known effect that prevents Foxo translocation to the nucleus and the activation of proteolysis. Similar effects on AKT/Foxo signaling were observed in muscles incubated with DBcAMP (cAMP analog). The stimulatory effect of epinephrine on AKT phosphorylation was completely blocked by wortmannin (selective PI3K inhibitor), suggesting that the epinephrine-induced activation of AKT is mediated through PI3K. As for epinephrine and DBcAMP, the incubation of muscles with 8CPT-2Me-cAMP (selective Epac agonist) reduced rates of proteolysis and increased phosphorylation levels of AKT and Foxo3a. The specific PKA agonist (N6BZ-cAMP) inhibited proteolysis and abolished the epinephrine-induced AKT and Foxo3a phosphorylation. On the other hand, inhibition of PKA by H89 further increased the phosphorylation levels of AKT and Foxo3a induced by epinephrine, DBcAMP or 8CPT-2Me-cAMP. These findings suggest that the antiproteolytic effect of the epinephrine on isolated skeletal muscle may occur through a cAMP/Epac/PI3K-dependent pathway, which leads to the phosphorylation of AKT and Foxo3a. The parallel activation of PKA-dependent pathway also inhibits proteolysis and seems to limit the stimulatory effect of cAMP on AKT/Foxo3a signaling.
Collapse
Affiliation(s)
- Amanda Martins Baviera
- Department of Chemistry, Federal University of Mato Grosso, 78060-900 Cuiabá, MT, Brazil
| | | | | | | |
Collapse
|
53
|
Gonçalves DAP, Lira EC, Baviera AM, Cao P, Zanon NM, Arany Z, Bedard N, Tanksale P, Wing SS, Lecker SH, Kettelhut IC, Navegantes LCC. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Endocrinology 2009; 150:5395-404. [PMID: 19837877 DOI: 10.1210/en.2009-0428] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Adrenergic beta-2 Receptor Agonists
- Animals
- Blotting, Western
- Cell Line
- Clenbuterol/pharmacology
- Cyclic AMP/metabolism
- Dexamethasone/pharmacology
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation/drug effects
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Tripartite Motif Proteins
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dawit A P Gonçalves
- Departments of Physiology and Biochemistry & Immunology, School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Koopman R, Ryall JG, Church JE, Lynch GS. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Curr Opin Clin Nutr Metab Care 2009; 12:601-6. [PMID: 19741516 DOI: 10.1097/mco.0b013e3283318a25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW The beta-adrenergic signaling pathway represents a novel therapeutic target for skeletal muscle wasting disorders due to its roles in regulating protein synthesis and degradation. beta-Adrenoceptor agonists (beta-agonists) have therapeutic potential for attenuating muscle wasting associated with sarcopenia (age-related muscle wasting), cancer cachexia, sepsis, disuse, burns, HIV-AIDS, chronic kidney or heart failure, and neuromuscular diseases such as the muscular dystrophies. This review describes the role of beta-adrenergic signaling in the mechanisms controlling muscle wasting due to its effects on protein synthesis, protein degradation, and muscle fiber phenotype. RECENT FINDINGS Stimulation of the beta-adrenergic signaling pathway with beta-agonists has therapeutic potential for muscle wasting since administration can elicit an anabolic response in skeletal muscle. As a consequence of their potent muscle anabolic actions, the effects of beta-agonist administration have been examined in several animal models and human conditions of muscle wasting in the hope of discovering a new therapeutic. The repartitioning characteristics of beta-agonists (increasing muscle mass and decreasing fat mass) have also made them attractive anabolic agents for use in livestock and by some athletes. However, potentially deleterious cardiovascular side-effects of beta-agonists have been identified and these will need to be obviated in order for the therapeutic potential of beta-agonists to be realized. SUMMARY Multiple studies have identified anticachectic effects of beta-agonists and their therapeutic potential for pathologic states when muscle protein hypercatabolism is indicated. Future studies examining beta-agonist administration for muscle wasting conditions need to separate beneficial effects on skeletal muscle from potentially deleterious effects on the heart and cardiovascular system.
Collapse
Affiliation(s)
- René Koopman
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
55
|
Navegantes LCC, Baviera AM, Kettelhut IC. The inhibitory role of sympathetic nervous system in the Ca2+-dependent proteolysis of skeletal muscle. Braz J Med Biol Res 2009; 42:21-8. [PMID: 19219294 DOI: 10.1590/s0100-879x2009000100005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/04/2008] [Indexed: 02/04/2023] Open
Abstract
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of beta2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by beta2- and beta3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.
Collapse
Affiliation(s)
- L C C Navegantes
- Departamento de Fisiologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
56
|
Pearen MA, Ryall JG, Lynch GS, Muscat GE. Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics 2009; 10:448. [PMID: 19772666 PMCID: PMC2758907 DOI: 10.1186/1471-2164-10-448] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 09/23/2009] [Indexed: 02/08/2023] Open
Abstract
Background Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic) administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2). Conclusion This is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
57
|
Chopard A, Hillock S, Jasmin BJ. Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures. J Cell Mol Med 2009; 13:3032-50. [PMID: 19656243 PMCID: PMC4516463 DOI: 10.1111/j.1582-4934.2009.00864.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disuse-induced skeletal muscle atrophy occurs following chronic periods of inactivity such as those involving prolonged bed rest, trauma and microgravity environments. Deconditioning of skeletal muscle is mainly characterized by a loss of muscle mass, decreased fibre cross-sectional area, reduced force, increased fatigability, increased insulin resistance and transitions in fibre types. A description of the role of specific transcriptional mechanisms contributing to muscle atrophy by altering gene expression during muscle disuse has recently emerged and focused primarily on short period of inactivity. A better understanding of the transduction pathways involved in activation of proteolytic and apoptotic pathways continues to represent a major objective, together with the study of potential cross-talks in these cellular events. In parallel, evaluation of the impact of countermeasures at the cellular and molecular levels in short- and long-term disuse experimentations or microgravity environments should undoubtedly and synergistically increase our basic knowledge in attempts to identify new physical, pharmacological and nutritional targets to counteract muscle atrophy. These investigations are important as skeletal muscle atrophy remains an important neuromuscular challenge with impact in clinical and social settings affecting a variety of conditions such as those seen in aging, cancer cachexia, muscle pathologies and long-term space exploration.
Collapse
Affiliation(s)
- Angèle Chopard
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
58
|
Angulo M, Taranto E, Soto JP, Malacrida L, Nin N, Hurtado FJ, Píriz H. [Salbutamol improves diaphragmatic contractility in chronic airway obstruction]. Arch Bronconeumol 2009; 45:230-4. [PMID: 19371995 DOI: 10.1016/j.arbres.2008.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/13/2008] [Accepted: 09/15/2008] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Chronic airflow obstruction in conditions such as chronic obstructive pulmonary disease is associated with respiratory muscle dysfunction. Our aim was to study the effects of salbutamol-a beta-adrenergic agonist known to improve muscle strength in physiologic and pathologic conditions-on diaphragm contractility in an animal model of chronic airway obstruction achieved by tracheal banding. MATERIALS AND METHODS Twenty-four Sprague-Dawley rats were randomized into a control group and 3 tracheal banding groups, 1 that received acute salbutamol treatment, 1 that received chronic salbutamol treatment, and 1 that received nothing. Arterial blood gases, acid-base balance, and in vitro diaphragmatic contractility were evaluated by measuring peak twitch tension, contraction time, contraction velocity, half-relaxation time, relaxation velocity, and force-frequency curves. RESULTS The 3 study groups had significantly reduced arterial pH and increased PaCO2 and bicarbonate levels compared to the control group (P<.05). The untreated tracheal banding group had significantly reduced peak twitch tension and contraction velocity, and a significantly lower force-frequency curve in comparison with the other groups (P<.05). The chronic treatment group had a higher relaxation velocity than the untreated study group (P<.05). The mean (SE) peak twitch tension values were 6.46 (0.90)N/cm(2) for the control group, 3.28 (0.55)N/cm(2) for the untreated tracheal banding group, 6.18 (0.71)N/cm(2) for the acute treatment group, and 7.09 (0.59)N/cm(2) for the chronic treatment group. CONCLUSIONS Diaphragmatic dysfunction associated with chronic airflow obstruction improves with both the acute and chronic administration of salbutamol. The mechanisms involved in respiratory muscle dysfunction warrant further study.
Collapse
Affiliation(s)
- Martín Angulo
- Departamento de Fisiopatología, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
59
|
Ryall JG, Lynch GS. The potential and the pitfalls of β-adrenoceptor agonists for the management of skeletal muscle wasting. Pharmacol Ther 2008; 120:219-32. [DOI: 10.1016/j.pharmthera.2008.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 01/08/2023]
|
60
|
Chen CN, Ferrington DA, Thompson LV. Carbonic anhydrase III and four-and-a-half LIM protein 1 are preferentially oxidized with muscle unloading. J Appl Physiol (1985) 2008; 105:1554-61. [PMID: 18756007 DOI: 10.1152/japplphysiol.90680.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The identities of proteins that show disuse-related changes in the content of oxidative modification are unknown. Furthermore, it is unknown whether the global accumulation of oxidized proteins is greater in aged animals with muscle disuse. The purposes of this study are 1) to identify the exact proteins that show disuse-related changes in oxidation levels and 2) to test the hypothesis that the global accumulation of oxidized proteins with muscle disuse would be greater in aged animals. Adult and old rats were randomized into four groups: weight bearing and 3, 7, or 14 days of hindlimb unloading. Soleus muscles were harvested to investigate the protein oxidation with unloading. Slot blot, SDS-PAGE, and Western blot analyses were used to detect the accumulation of 4-hydroxy-2-nonenol (HNE)- and nitrotyrosine (NT)-modified proteins. Matrix-assisted laser desorption ionization-time of flight and tandem mass spectroscopy were used to identify modified proteins. We found that global HNE- and NT-modified proteins accumulated significantly with aging but not with muscle unloading. Two HNE and NT target proteins, four-and-a-half LIM protein 1 (FHL1) and carbonic anhydrase III (CAIII), showed changes in the oxidation levels with muscle unloading. The changes in the oxidation levels happened to adult rats but not old rats. However, old rats had higher baseline levels of HNE-modified FHL1. In summary, the data suggest that the muscle unloading-related changes of protein oxidation are more significant in specific proteins and that the changes are age related.
Collapse
Affiliation(s)
- Chiao-nan Chen
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
61
|
Ramos BP, Colgan LA, Nou E, Arnsten AF. Beta2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiol Aging 2008; 29:1060-9. [PMID: 17363115 PMCID: PMC3154024 DOI: 10.1016/j.neurobiolaging.2007.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/29/2022]
Abstract
Previous studies using a mixed beta1 and beta2 adrenergic antagonist, propanolol, have indicated that beta adrenoceptors have little effect on the cognitive functioning of the prefrontal cortex. However, recent studies have suggested that endogenous stimulation of beta1 adrenoceptors impairs working memory in both rats and monkeys. Since propanolol has no effect on cognition, we hypothesized that activation of beta2 adrenoceptors might improve performance in a working memory task. We tested this hypothesis by observing the effects of the beta2 agonist, clenbuterol, on spatial working memory performance. Clenbuterol was either infused directly into the prefrontal cortex (rats) or administered systemically (monkeys). Results demonstrated that clenbuterol improved performance in many young and aged rats and monkeys who performed poorly under control conditions. Actions at beta2 adrenoceptors were confirmed by challenging the clenbuterol response with the beta2 adrenergic antagonist, ICI 118,551. The effects of clenbuterol were not universal and depended on the cognitive status of the animal: the drug moderately improved only a subset of animals with working memory impairment.
Collapse
Affiliation(s)
- Brian P. Ramos
- Yale University School of Medicine, Department of Neurobiology, SHM C-300, 333 Cedar Street, New Haven, CT 06510, USA
| | - Leslie A. Colgan
- Yale University School of Medicine, Department of Neurobiology, SHM C-300, 333 Cedar Street, New Haven, CT 06510, USA
| | - Eric Nou
- Yale University School of Medicine, Department of Neurobiology, SHM C-300, 333 Cedar Street, New Haven, CT 06510, USA
| | - Amy F.T. Arnsten
- Yale University School of Medicine, Department of Neurobiology, SHM C-300, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
62
|
Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88:729-67. [PMID: 18391178 DOI: 10.1152/physrev.00028.2007] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The importance of beta-adrenergic signaling in the heart has been well documented, but it is only more recently that we have begun to understand the importance of this signaling pathway in skeletal muscle. There is considerable evidence regarding the stimulation of the beta-adrenergic system with beta-adrenoceptor agonists (beta-agonists). Although traditionally used for treating bronchospasm, it became apparent that some beta-agonists could increase skeletal muscle mass and decrease body fat. These so-called "repartitioning effects" proved desirable for the livestock industry trying to improve feed efficiency and meat quality. Studying beta-agonist effects on skeletal muscle has identified potential therapeutic applications for muscle wasting conditions such as sarcopenia, cancer cachexia, denervation, and neuromuscular diseases, aiming to attenuate (or potentially reverse) the muscle wasting and associated muscle weakness, and to enhance muscle growth and repair after injury. Some undesirable cardiovascular side effects of beta-agonists have so far limited their therapeutic potential. This review describes the physiological significance of beta-adrenergic signaling in skeletal muscle and examines the effects of beta-agonists on skeletal muscle structure and function. In addition, we examine the proposed beneficial effects of beta-agonist administration on skeletal muscle along with some of the less desirable cardiovascular effects. Understanding beta-adrenergic signaling in skeletal muscle is important for identifying new therapeutic targets and identifying novel approaches to attenuate the muscle wasting concomitant with many diseases.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
63
|
Murakami T, Hijikata T, Yorifuji H. Staging of disuse atrophy of skeletal muscles on immunofluorescence microscopy. Anat Sci Int 2008; 83:68-76. [PMID: 18507615 DOI: 10.1111/j.1447-073x.2007.00205.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Japanese population is rapidly aging, thereby causing excess demand for facilities for elderly invalids. It is imperative that social measures and scientific studies be carried out to enable better care of bedridden elderly people. The purpose of the present study was to review the histological changes that occur in disuse atrophy of skeletal muscles, the primary pathophysiology of bedridden invalids, with the object of developing a staging standard to be used by researchers and clinicians. Rat hindlimb suspension was used as an experimental model. Atrophy of the soleus muscle was evaluated qualitatively and quantitatively on immunofluorescence microscopy. The myofibrils decreased significantly in the first 2-3 weeks of disuse atrophy. The earliest morphological change was fan-shaped multistep forking of sarcomeres, which appeared by the first week. This type of muscular lesion, designated here as 'sarcomeric disarray', was first described in the present study. Central-core lesions appeared mainly in slow muscle fibers by the second week. These lesions disappeared by the fourth or fifth week. Nerves remained intact and no inflammation or regeneration occurred up to the fifth week. Methods and criteria were compiled for staging of disuse atrophy based on the present results and a diagnosis kit designed for studies on disuse atrophy of skeletal muscles.
Collapse
Affiliation(s)
- Tohru Murakami
- Neuromuscular and Developmental Anatomy, Gunma University Graduate School of Medicine, 39-22 Showa-machi 3-chome, Maebashi, Gunma, Japan.
| | | | | |
Collapse
|
64
|
Píriz H, Nin N, Boggia J, Angulo M, Hurtado FJ. [Salbutamol improves diaphragm force generation in experimental sepsis]. Arch Bronconeumol 2008; 44:135-139. [PMID: 18361884 DOI: 10.1016/s1579-2129(08)60027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE In a high percentage of cases, severe sepsis is accompanied by acute respiratory failure, in which weakness of the respiratory muscles plays an important role. Weakened respiratory muscles that are subjected to an increased mechanical load may develop muscle fatigue, with exacerbation of the respiratory failure. Because beta2-adrenergic drugs increase muscle contraction force, they may play a role in preventing and managing respiratory failure in septic patients. Our aim was to study the effects of salbutamol on diaphragm function in an animal model of peritoneal sepsis. MATERIAL AND METHODS The study included 3 groups of animals: a) a control group (n=7), in which the animals underwent a median laparotomy without visceral manipulation; b) a septic group (n=10), in which peritoneal sepsis was induced by cecal ligation and puncture (CLP); and c) a salbutamol group (n=7), in which peritoneal sepsis (CLP) was treated with salbutamol. Hemodynamic parameters and blood gases were measured in vivo. Diaphragm function was evaluated in vitro. RESULTS Salbutamol increased aortic blood flow and heart rate while it reduced mean arterial pressure in the animals with peritoneal sepsis (P< .05). Sepsis produced a significant drop in diaphragmatic force both before and after the application of a muscle-fatigue protocol. Treatment with salbutamol improved muscle contraction force before and after application of the protocol (P< .05). CONCLUSIONS The use of beta2-adrenergic drugs such as salbutamol improves diaphragm function in experimental sepsis. The mechanisms that produce this improvement require further study.
Collapse
Affiliation(s)
- Héctor Píriz
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
65
|
Píriz H, Nin N, Boggia J, Angulo M, Javier Hurtado F. El salbutamol mejora la fuerza diafragmática en la sepsis experimental. Arch Bronconeumol 2008. [DOI: 10.1157/13116600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Favier FB, Benoit H, Freyssenet D. Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch 2008; 456:587-600. [DOI: 10.1007/s00424-007-0423-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/06/2007] [Indexed: 12/21/2022]
|
67
|
Walker DK, Titgemeyer EC, Sissom EK, Brown KR, Higgins JJ, Andrews GA, Johnson BJ. Effects of steroidal implantation and ractopamine-HCl on nitrogen retention, blood metabolites and skeletal muscle gene expression in Holstein steers. J Anim Physiol Anim Nutr (Berl) 2007; 91:439-47. [PMID: 17845252 DOI: 10.1111/j.1439-0396.2007.00675.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six Holstein steers (231 +/- 17 kg) housed in metabolism crates were used in a randomized complete block design with three blocks of two steers based on previous serum insulin-like growth factor (IGF)-I concentrations. One of the two steers in each block was implanted with 120 mg trenbolone acetate and 24 mg oestradiol-17beta on day 0. None of the steers was fed ractopamine-HCl in the initial 28 days, and then all steers were fed 200 mg of ractopamine-HCl per steer daily from day 28 until the end of the trial. Steers were fed a corn-based diet (62% rolled corn, 20% expeller soya bean meal and 15% alfalfa hay) twice daily with an average dry matter intake of 4.8 kg/day. Blood and M. longissimus biopsy samples were collected prior to implantation and on days 14, 28, 42 and 56. There was an implant x ractopamine interaction for retained nitrogen (p < 0.05); ractopamine feeding led to only small improvements in nitrogen retention for implanted steers (45.9 g/day vs. 44.5 g/day), whereas ractopamine led to larger increases in nitrogen retention for non-implanted steers (39.0 g/day vs. 30.4 g/day). Implantation increased (p < 0.05) and ractopamine tended to decrease (p = 0.06) serum IGF-I concentrations. Implantation tended to increase (p = 0.16) and ractopamine decreased (p < 0.05) mRNA expression of IGF-I in the M. longissimus. Ractopamine decreased mRNA expression of beta(1)- and beta(2)-receptors in M. longissimus (p </= 0.02). The steroidal implant and the feeding of ractopamine both increased nitrogen retention in steers, but the combination did not yield an additive response. The two growth promotants had opposite effects on serum concentrations of IGF-I and mRNA expression of IGF-I in M. longissimus.
Collapse
Affiliation(s)
- D K Walker
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Nury D, Doucet C, Coux O. Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S7. [PMID: 18047744 PMCID: PMC2106371 DOI: 10.1186/1471-2091-8-s1-s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already suggests screens for new compounds inhibiting these mechanisms and highlights the potential for pharmaceutical drugs able to treat muscle wasting when it becomes deleterious. This review presents an overview of the main pathways contributing to UPS activation in muscle and describes the present state of efforts made to develop new strategies aimed at blocking or slowing muscle wasting. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- David Nury
- CRBM-CNRS UMR5237, IFR22, 1919 route de Mende, 34000 Montpellier, France.
| | | | | |
Collapse
|
69
|
Lira EC, Graca FA, Goncalves DAP, Zanon NM, Baviera AM, Strindberg L, Lönnroth P, Migliorini RH, Kettelhut IC, Navegantes LCC. Cyclic adenosine monophosphate-phosphodiesterase inhibitors reduce skeletal muscle protein catabolism in septic rats. Shock 2007; 27:687-94. [PMID: 17505310 DOI: 10.1097/shk.0b013e31802e43a6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that catecholamines exert an inhibitory effect on muscle protein degradation through a pathway involving the cyclic adenosine monophosphate (cAMP) cascade in normal rats. In the present work, we investigated in vivo and in vitro effects of cAMP-phosphodiesterase inhibitors on protein metabolism in skeletal muscle from rats submitted to a model of acute sepsis. The in vivo muscle protein metabolism was evaluated indirectly by measurements of the tyrosine interstitial concentration using microdialysis. Muscle blood flow (MBF) was monitored by ethanol perfusion technique. Sepsis was induced by cecal ligation and puncture and resulted in lactate acidosis, hypotension, and reduction in MBF (-30%; P < 0.05). Three-hour septic rats showed an increase in muscle interstitial tyrosine concentration (approximately 150%), in arterial plasma tyrosine levels (approximately 50%), and in interstitial-arterial tyrosine concentration difference (approximately 200%; P < 0.05). Pentoxifylline (50 mg/kg of body weight, i.v.) infusion during 1 h after cecal ligation and puncture prevented the tumor necrosis factor alpha increase and significantly reduced by 50% (P < 0.05) the interstitial-arterial tyrosine difference concentration. In situ perfusion with isobutylmethylxanthine (IBMX; 10(-3) M) reduced by 40% (P < 0.05) the muscle interstitial tyrosine in both sham-operated and septic rats. Neither pentoxifylline nor IBMX altered MBF. The addition of IBMX (10(-3) M) to the incubation medium increased (P < 0.05) muscle cAMP levels and reduced proteolysis in both groups. The in vitro addition of H89, a protein kinase A inhibitor, completely blocked the antiproteolytic effect of IBMX. The data show that activation of cAMP-dependent pathways and protein kinase A reduces muscle protein catabolism during basal and septic state.
Collapse
|
70
|
Kawano F, Matsuoka Y, Oke Y, Higo Y, Terada M, Wang XD, Nakai N, Fukuda H, Imajoh-Ohmi S, Ohira Y. Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass. Am J Physiol Cell Physiol 2007; 293:C35-44. [PMID: 17182729 DOI: 10.1152/ajpcell.00297.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of 14 days of hindlimb unloading or synergist ablation-related overloading with or without deafferentation on the fiber cross-sectional area, myonuclear number, size, and domain, the number of nucleoli in a single myonucleus, and the levels in the phosphorylation of the ribosomal protein S6 (S6) and 27-kDa heat shock protein (HSP27) were studied in rat soleus. Hypertrophy of fibers (+24%), associated with increased nucleolar number (from 1–2 to 3–5) within a myonucleus and myonuclear domain (+27%) compared with the preexperimental level, was induced by synergist ablation. Such phenomena were associated with increased levels of phosphorylated S6 (+84%) and HSP27 (+28%). Fiber atrophy (−52%), associated with decreased number (−31%) and domain size (−28%) of myonuclei and phosphorylation of S6 (−98%) and HSP27 (−63%), and with increased myonuclear size (+19%) and ubiquitination of myosin heavy chain (+33%, P > 0.05), was observed after unloading, which inhibited the mechanical load. Responses to deafferentation, which inhibited electromyogram level (−47%), were basically similar to those caused by hindlimb unloading, although the magnitudes were minor. The deafferentation-related responses were prevented and nucleolar number was even increased (+18%) by addition of synergist ablation, even though the integrated electromyogram level was still 30% less than controls. It is suggested that the load-dependent maintenance or upregulation of the nucleolar number and/or phosphorylation of S6 and HSP27 plays the important role(s) in the regulation of muscle mass. It was also indicated that such regulation was not necessarily associated with the neural activity.
Collapse
Affiliation(s)
- F Kawano
- Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Smith IJ, Dodd SL. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp Physiol 2007; 92:561-73. [PMID: 17272355 DOI: 10.1113/expphysiol.2006.035790] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the calpain proteases in skeletal muscle atrophy is poorly understood. One goal of these experiments was to clarify whether calpains act upstream of the ubiquitin-proteasome pathway (UPP). Calpain activation may also inhibit the anabolic signalling of Akt, since a molecular chaperone previously shown to mediate Akt activity, heat shock protein 90 (HSP 90), is a calpain substrate. Thus, an additional objective was to determine whether calpain activation affects the Akt signalling pathway. Ex vivo experiments were conducted using isolated rat diaphragm muscle. Calpain activation increased total protein degradation by 65%. Proteasome inhibition prevented this large rise in proteolysis, demonstrating that the proteasome was necessary for calpain-activated protein degradation. In addition, calpain activation increased proteasome-dependent proteolysis by 144%, further supporting the idea of sequential proteolytic pathways. Calpain reduced Akt and mammalian target of rapamycin (mTOR) phosphorylation by 35 and 50%, respectively, and activated glycogen synthase kinase-3 beta (GSK-3beta) by 40%. Additionally, calpain activation reduced HSP 90beta and mTOR protein content by 33 and 50%, respectively. These data suggest that calpains play a dual role in protein metabolism by concomitantly activating proteasome-dependent proteolysis and inhibiting the Akt pathway of protein synthesis.
Collapse
Affiliation(s)
- Ira J Smith
- Muscle Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
72
|
Burniston JG, McLean L, Beynon RJ, Goldspink DF. Anabolic effects of a non-myotoxic dose of the beta2-adrenergic receptor agonist clenbuterol on rat plantaris muscle. Muscle Nerve 2007; 35:217-23. [PMID: 17058275 PMCID: PMC1852641 DOI: 10.1002/mus.20684] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous investigations of the effects of clenbuterol have used suprapharmacological doses that induce myocyte death, alter muscle phenotype, and do not approximate the proposed therapeutic dose for humans. Recently, we reported that smaller doses of clenbuterol induce muscle growth without causing myocyte death. In the present study we used histochemical and proteomic techniques to investigate the molecular effects of this dose. Male Wistar rats (n = 6, per group) were infused with saline or 10 microg/kg/day clenbuterol via subcutaneously implanted osmotic pumps. After 14 days the animals' plantaris muscles were isolated for histochemical and proteomic analyses. Clenbuterol induced significant muscle growth with concomitant protein accretion and preferential hypertrophy of fast oxidative glycolytic fibers. Clenbuterol reduced the optical density of mitochondrial staining in fast fibers by 20% and the glycogen content of the muscle by 30%. Differential analysis of two-dimensional gels showed that heat shock protein 72 and beta-enolase increased, whereas aldolase A, phosphogylcerate mutase, and adenylate kinase decreased. Only heat shock protein 72 has previously been investigated in clenbuterol-treated muscles. The clenbuterol-induced increase in muscle growth was concomitant with qualitative changes in the muscle's proteome that need to be considered when proposing therapeutic uses for this agent.
Collapse
Affiliation(s)
- Jatin G Burniston
- Muscle Physiology and Proteomics Laboratory, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Webster Street, Liverpool L3 2ET, UK.
| | | | | | | |
Collapse
|
73
|
Baviera AM, Zanon NM, Carvalho Navegantes LC, Migliorini RH, do Carmo Kettelhut I. Pentoxifylline inhibits Ca2+-dependent and ATP proteasome-dependent proteolysis in skeletal muscle from acutely diabetic rats. Am J Physiol Endocrinol Metab 2007; 292:E702-8. [PMID: 17077345 DOI: 10.1152/ajpendo.00147.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies from this laboratory have shown that catecholamines exert an inhibitory effect on muscle protein degradation through a pathway involving the cAMP cascade. The present work investigated the systemic effect of pentoxifylline (PTX; cAMP-phosphodiesterase inhibitor) treatment on the rate of overall proteolysis, the activity of proteolytic systems, and the process of protein synthesis in extensor digitorum longus muscles from normal and acutely diabetic rats. The direct in vitro effect of this drug on the rates of muscle protein degradation was also investigated. Muscles from diabetic rats treated with PTX showed an increase (22%) in the cAMP content and reduction in total rates of protein breakdown and in activity of Ca2+-dependent (47%) and ATP proteasome-dependent (23%) proteolytic pathways. The high content of m-calpain observed in muscles from diabetic rats was abolished by PTX treatment. The addition of PTX (10(-3) M) to the incubation medium increased the cAMP content in muscles from normal (22%) and diabetic (51%) rats and induced a reduction in the rates of overall proteolysis that was accompanied by decreased activity of the Ca2+-dependent and ATP proteasome-dependent proteolytic systems, in both groups. The in vitro addition of H-89, an inhibitor of protein kinase A (PKA), completely blocked the effect of PTX on the reduction of proteolysis in muscles from normal and diabetic rats. The present data suggest that PTX exerts a direct inhibitory effect on protein degradative systems in muscles from acutely diabetic rats, probably involving the participation of cAMP intracellular pathways and activation of PKA, independently of tumor necrosis factor-alpha inhibition.
Collapse
Affiliation(s)
- Amanda Martins Baviera
- Department of Biochemistry and Immunology, School of Medicine, USP, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
74
|
Kline WO, Panaro FJ, Yang H, Bodine SC. Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol (1985) 2007; 102:740-7. [PMID: 17068216 DOI: 10.1152/japplphysiol.00873.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clenbuterol and other β2-adrenergic agonists are effective at inducing muscle growth and attenuating muscle atrophy through unknown mechanisms. This study tested the hypothesis that clenbuterol-induced growth and muscle sparing is mediated through the activation of Akt and mammalian target of rapamycin (mTOR) signaling pathways. Clenbuterol was administered to normal weight-bearing adult rats to examine the growth-inducing effects and to adult rats undergoing muscle atrophy as the result of hindlimb suspension or denervation to examine the muscle-sparing effects. The pharmacological inhibitor rapamycin was administered in combination with clenbuterol in vivo to determine whether activation of mTOR was involved in mediating the effects of clenbuterol. Clenbuterol administration increased the phosphorylation status of PKB/Akt, S6 kinase 1/p70s6k, and eukaryotic initiation factor 4E binding protein 1/PHAS-1. Clenbuterol treatment induced growth by 27–41% in normal rats and attenuated muscle loss during hindlimb suspension by 10–20%. Rapamycin treatment resulted in a 37–97% suppression of clenbuterol-induced growth and a 100% reduction of the muscle-sparing effect. In contrast, rapamycin was unable to block the muscle-sparing effects of clenbuterol after denervation. Clenbuterol was also shown to suppress the expression of the MuRF1 and MAFbx transcripts in muscles from normal, denervated, and hindlimb-suspended rats. These results demonstrate that the effects of clenbuterol are mediated, in part, through the activation of Akt and mTOR signaling pathways.
Collapse
Affiliation(s)
- William O Kline
- Univ. of California, Davis, Section of Neurobiology, Physiology, and Behavior, One Shields Ave., Davis, California 95616, USA
| | | | | | | |
Collapse
|
75
|
Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC. Role for IκBα, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 2007; 292:C372-82. [PMID: 16928772 DOI: 10.1152/ajpcell.00293.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle atrophy is associated with a marked and sustained activation of nuclear factor-κB (NF-κB) activity. Previous work showed that p50 is one of the NF-κB family members required for this activation and for muscle atrophy. In this work, we tested whether another NF-κB family member, c-Rel, is required for atrophy. Because endogenous inhibitory factor κBα (IκBα) was activated (i.e., decreased) at 3 and 7 days of muscle disuse (i.e., hindlimb unloading), we also tested if IκBα, which binds and retains Rel proteins in the cytosol, is required for atrophy and intermediates of the atrophy process. To do this, we electrotransferred a dominant negative IκBα (IκBαΔN) in soleus muscles, which were either unloaded or weight bearing. IκBαΔN expression abolished the unloading-induced increase in both NF-κB activation and total ubiquitinated protein. IκBαΔN inhibited unloading-induced fiber atrophy by 40%. The expression of certain genes known to be upregulated with atrophy were significantly inhibited by IκBαΔN expression during unloading, including MAFbx/atrogin-1, Nedd4, IEX, 4E-BP1, FOXO3a, and cathepsin L, suggesting these genes may be targets of NF-κB transcription factors. In contrast, c-Rel was not required for atrophy because the unloading-induced markers of atrophy were the same in c-rel−/−and wild-type mice. Thus IκBα degradation is required for the unloading-induced decrease in fiber size, the increase in protein ubiquitination, activation of NF-κB signaling, and the expression of specific atrophy genes, but c-Rel is not. These data represent a significant advance in our understanding of the role of NF-κB/IκB family members in skeletal muscle atrophy, and they provide new candidate NF-κB target genes for further study.
Collapse
Affiliation(s)
- Andrew R Judge
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, 4th Fl., Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
76
|
Spurlock DM, McDaneld TG, McIntyre LM. Changes in skeletal muscle gene expression following clenbuterol administration. BMC Genomics 2006; 7:320. [PMID: 17181869 PMCID: PMC1766935 DOI: 10.1186/1471-2164-7-320] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 12/20/2006] [Indexed: 12/24/2022] Open
Abstract
Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P < 0.01) and increased body weight gain (P < 0.05) 24 hours or 10 days, respectively, after initiation of clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.
Collapse
Affiliation(s)
- Diane M Spurlock
- Department of Animal Sciences, Iowa State University, Ames, IA, USA
| | - Tara G McDaneld
- Department of Animal Sciences, Iowa State University, Ames, IA, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
77
|
Scarth JP. Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review. Xenobiotica 2006; 36:119-218. [PMID: 16702112 DOI: 10.1080/00498250600621627] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth hormone-insulin-like growth factor (GH-IGF) axis has gained considerable focus over recent years. One cause of this increased interest is due to a correlation of age-related decline in plasma GH/IGF levels with age-related degenerative processes, and it has led to the prescribing of GH replacement therapy by some practitioners. On the other hand, however, research has also focused on the pro-carcinogenic effects of high GH-IGF levels, providing strong impetus for finding regimes that reduce its activity. Whereas the effects of GH/IGF activity on the action of xenobiotic-metabolizing enzyme systems is reasonably well appreciated, the effects of xenobiotic exposure on the GH-IGF axis has not received substantial review. Relevant xenobiotics are derived from pharmaceutical, nutraceutical and environmental exposure, and many of the mechanisms involved are highly complex in nature, not easily predictable from existing in vitro tests and do not always predict well from in vivo animal models. After a review of the human and animal in vivo and in vitro literature, a framework for considering the different levels of direct and indirect modulation by xenobiotics is developed herein, and areas that still require further investigation are highlighted, i.e. the actions of common endocrine disruptors such as pesticides and phytoestrogens, as well as the role of xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. It is anticipated that a fuller appreciation of the existing human paradigms for GH-IGF axis modulation gained through this review may help explain some of the variation in levels of plasma IGF-1 and its binding proteins in the population, aid in the prescription of particular dietary regimens to certain individuals such as those with particular medical conditions, guide the direction of long-term drug/nutraceutical safety trials, and stimulate ideas for future research. It also serves to warn athletes that using compounds touted as performance enhancing because they promote short-term GH release could in fact be detrimental to performance in the long-run.
Collapse
Affiliation(s)
- J P Scarth
- The Horseracing Forensic Laboratories (HFL), Fordham, UK.
| |
Collapse
|
78
|
Burniston JG, Clark WA, Tan LB, Goldspink DF. Dose-dependent separation of the hypertrophic and myotoxic effects of the beta(2)-adrenergic receptor agonist clenbuterol in rat striated muscles. Muscle Nerve 2006; 33:655-63. [PMID: 16411205 PMCID: PMC1828609 DOI: 10.1002/mus.20504] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle growth in response to large doses (milligrams per kilogram) of beta(2)-adrenergic receptor agonists has been reported consistently. However, such doses may also induce myocyte death in the heart and skeletal muscles and hence may not be safe doses for humans. We report the hypertrophic and myotoxic effects of different doses of clenbuterol. Rats were infused with clenbuterol (range, 1 microg to 1 mg.kg(-1)) for 14 days. Muscle protein content, myofiber cross-sectional area, and myocyte death were then investigated. Infusions of >or=10 microg.kg(-1).d(-1) of clenbuterol significantly (P<0.05) increased the protein content of the heart (12%-15%), soleus (12%), plantaris (18%-29%), and tibialis anterior (11%-22%) muscles, with concomitant myofiber hypertrophy. Larger doses (100 microg or 1 mg) induced significant (P<0.05) myocyte death in the soleus (peak 0.2+/-0.1% apoptosis), diaphragm (peak 0.15+/-0.1% apoptosis), and plantaris (peak 0.3+/-0.05% necrosis), and significantly increased the area fraction of collagen in the myocardium. These data show that the low dose of 10 microg.kg(-1).d(-1) can be used in rats to investigate the anabolic effects of clenbuterol in the absence of myocyte death.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Webster Street, Liverpool L3 2ET, UK.
| | | | | | | |
Collapse
|
79
|
Dupont-Versteegden EE, Fluckey JD, Knox M, Gaddy D, Peterson CA. Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats. J Appl Physiol (1985) 2006; 101:202-12. [PMID: 16601304 DOI: 10.1152/japplphysiol.01540.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Flywheel-based resistance exercise (RE) attenuates muscle atrophy during hindlimb suspension. We have previously shown that protein synthesis is elevated in response to RE, but the effect on protein degradation, cell proliferation, or apoptosis was not investigated. We hypothesized that, in addition to affecting protein synthesis, RE inhibits processes that actively contribute to muscle atrophy during hindlimb suspension. Male rats were housed in regular cages (control), tail suspended for 2 wk (HS), or HS with RE every other day for 2 wk (HSRE). Although RE attenuated soleus muscle atrophy during HS, the observed fivefold elevation in apoptosis and the 53% decrease in cell proliferation observed with HS were unaffected by RE. Expression of genes encoding components of the ubiquitin-proteasome pathway of protein degradation were elevated with HS, including ubiquitin, MAFbx, Murf-1, Nedd4, and XIAP, and proteasome subunits C2 and C9. Total ubiquitinated protein was increased with HS, but proteasome activity was not different from control. RE selectively altered the expression of different components of this pathway: MAFbx, Murf-1, and ubiquitin mRNA abundance were downregulated, whereas C2 and C9 subunits remained elevated. Similarly, Nedd4 and XIAP continued to be upregulated, potentially accounting for the observed augmentation in total ubiquitinated protein with RE. Thus a different constellation of proteins is likely ubiquitinated with RE due to altered ubiquitin ligase composition. In summary, the flywheel-based resistance exercise paradigm used in this study is associated with the inhibition of some mechanisms associated with muscle atrophy, such as the increase in MAFbx and Murf-1, but not with others, such as proteasome subunit remodeling, apoptosis, and decreased proliferation, potentially accounting for the inability to completely restore muscle mass. Identifying specific exercise parameters that affect these latter processes may be useful in designing effective exercise strategies in the elderly or during spaceflight.
Collapse
Affiliation(s)
- Esther E Dupont-Versteegden
- Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 West Markham #807, Little Rock, Arkansas 72205, USA.
| | | | | | | | | |
Collapse
|
80
|
Salem M, Levesque H, Moon TW, Rexroad CE, Yao J. Anabolic effects of feeding beta2-adrenergic agonists on rainbow trout muscle proteases and proteins. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:145-54. [PMID: 16580855 DOI: 10.1016/j.cbpa.2006.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 11/28/2022]
Abstract
beta2-Adrenergic agonists (BAAs) act as repartitioning agents in domestic animals by redistributing nutrients away from adipose tissue and towards muscle accretion. The mechanism involves altering the rates of protein degradation and synthesis. The aim of this study was to test the effects of chronic feeding of the BAAs clenbuterol (CLEN) and ractopamine (RACT) on rainbow trout (RBT) muscle. Specifically, we examined the activities and mRNA levels of genes in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins, and the mRNA levels of genes encoding the myofibrillar proteins, fast-twitch and slow-twitch myosin heavy chains (f-MHC and s-MHC, respectively), and the cytoskeletal protein, beta-actin. RACT feeding significantly increased mRNA transcripts of the calpain catalytic subunit (Capn1), the regulatory subunit (cpns), and the calpastatin large isoform (CAST-L), without affecting the calpain enzyme activity. CLEN feeding significantly increased mRNA levels of the proteasome alpha subunit without a corresponding change in 20S enzyme activity. RACT significantly decreased cathepsin D activity without affecting mRNA levels suggesting that the action of RACT may be at the post-transcriptional level. In addition, both CLEN and RACT significantly increased mRNA transcripts of f-MHC and beta-actin genes suggesting an anabolic role of BAAs on myofibrillar and cytoskeletal proteins. Neither CLEN nor RACT altered mRNA expression of the s-MHC gene indicating no transformation of muscle fiber-types. This study supports a role for BAAs in inducing RBT muscle accretion by altering both protein synthesis and degradation.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | | | |
Collapse
|
81
|
|
82
|
Bajotto G, Shimomura Y. Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss. J Nutr Sci Vitaminol (Tokyo) 2006; 52:233-47. [PMID: 17087049 DOI: 10.3177/jnsv.52.233] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Muscle atrophy results from a variety of conditions such as disease states, neuromuscular injuries, disuse, and aging. Absence of gravitational loading during spaceflight or long-term bed rest predisposes humans to undergo substantial loss of muscle mass and, consequently, become unfit and/or unhealthy. Disuse- or inactivity-induced skeletal muscle protein loss takes place by differential modulation of proteolytic and synthetic systems. Transcriptional, translational, and posttranslational events are involved in the regulation of protein synthesis and degradation in myofibers, and these regulatory events are known to be responsive to contractile activity. However, regardless of the numerous studies which have been performed, the intracellular signals that mediate skeletal muscle wasting due to muscular disuse are not completely comprehended. Understanding the triggers of atrophy and the mechanisms that regulate protein loss in unloaded muscles may lead to the development of effective countermeasures such as exercise and dietary intervention. The objective of the present review is to provide a window into the molecular processes that underlie skeletal muscle remodeling and to examine what we know about exercise and nutrition countermeasures designed to minimize muscle atrophy.
Collapse
Affiliation(s)
- Gustavo Bajotto
- Department of Materials Science and Engineering, Shikumi College, Nagoya Institute of' Technology, Gokiso-cho, Showa-ku, Nagoya 466-8 555, Japan
| | | |
Collapse
|