51
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Hypoxia and hypercapnia inhibit hypothalamic orexin neurons in rats. J Neurophysiol 2016; 116:2250-2259. [PMID: 27559138 DOI: 10.1152/jn.00196.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/21/2016] [Indexed: 01/18/2023] Open
Abstract
Evidence of impaired function of orexin neurons has been found in individuals with cardiorespiratory disorders, such as obstructive sleep apnea (OSA) and sudden infant death syndrome (SIDS), but the mechanisms responsible are unknown. Individuals with OSA and SIDS experience repetitive breathing cessations and/or rebreathing of expired air, resulting in hypoxia/hypercapnia (H/H). In this study, we examined the responses of fluorescently identified rat orexin neurons in the lateral hypothalamus to acute H/H to test if and how these neurons alter their activity and function during this challenge. Experiments were conducted in an in vitro slice preparation using voltage-clamp and current-clamp configurations. H/H (10 min) induced hyperpolarization, accompanied by rapid depression, and finally, cessation of firing activity in orexin neurons. Hypoxia alone had similar but less potent effects. H/H did not alter the frequency of inhibitory glycinergic postsynaptic currents. The frequency of GABAergic currents was diminished but only at 8-10 min of H/H. In contrast, the frequency of excitatory glutamatergic postsynaptic events was diminished as early as 2-4 min of H/H. In the presence of glutamatergic receptor blockers, the inhibitory effects of H/H on the firing activity and membrane potential of orexin neurons persisted but to a lesser extent. In conclusion, both direct alteration of postsynaptic membrane properties and diminished glutamatergic neurotransmission likely contribute to the inhibition of orexin neurons by H/H. These mechanisms could be responsible for the decreased function of orexin in individuals at risk for OSA and SIDS.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| |
Collapse
|
52
|
Martin EJ, Hernandez ME, Hayward LF. Blockade of orexin receptors attenuates the cardiovascular response to air-jet stress in spontaneously hypertensive rats. Auton Neurosci 2016; 201:8-16. [PMID: 27591948 DOI: 10.1016/j.autneu.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022]
Abstract
This study tested the hypothesis that orexin plays a role in the elevated pressor response to acute stress in the spontaneously hypertensive rat (SHR). The pressor response to air jet stress (AJS) (n=11/group) was 2.5 times greater in vehicle treated SHR versus Wistar (WIS) rats. Systemic delivery of 30mg/kg of the dual orexin receptor antagonist almorexant did not significantly change resting mean arterial pressure (MAP) but did attenuate the pressor response elicited by AJS to a greater extent in the SHR compared to the Wistar rats (~65% versus ~33% reduction respectively; n=6/group). Alternatively 100mg/kg almorexant reduced resting MAP in the SHR (~25mm Hg drop) and attenuated both the heart rate (HR; ~50% reduction) and MAP (~62% reduction) response to AJS in both strains (n=6/group). Systemic application of SB-334867 (3mg/kg), an orexin receptor type 1 antagonist (n=5/group), selectively reduced resting MAP and attenuated the HR response to AJS in the SHR but had no effect on the pressor response in either strain. The potential role of endogenous orexin release in cardiovascular control in the SHR was linked to a significant increase in brain-derived neurotrophic factor mRNA expression in the hypothalamus and elevated orexin receptor expression (type 2 only) in the dorsal pons when compared to WIS (n=4/group). These results demonstrate that the exaggerated pressor response in the SHR to stress is linked to increased orexin receptor activation and possibly altered orexin receptor expression in the dorsal pons and BDNF expression in the hypothalamus.
Collapse
Affiliation(s)
- Eric J Martin
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| | - Morgan E Hernandez
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States
| | - Linda F Hayward
- University of Florida, College of Veterinary Medicine, Dept. of Physiological Sciences, Gainesville, FL 32610, United States.
| |
Collapse
|
53
|
Kim SJ, Kim YJ, Kakall Z, Farnham MMJ, Pilowsky PM. Intermittent hypoxia-induced cardiorespiratory long-term facilitation: A new role for microglia. Respir Physiol Neurobiol 2016; 226:30-8. [PMID: 27015670 DOI: 10.1016/j.resp.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia induces plasticity in neural networks controlling breathing and cardiovascular function. Studies demonstrate that mechanisms causing cardiorespiratory plasticity rely on intracellular signalling pathways that are activated by specific neurotransmitters. Peptides such as serotonin, PACAP and orexin are well-known for their physiological significance in regulating the cardiorespiratory system. Their receptor counterparts are present in cardiorespiratory centres of the brainstem medulla and spinal cord. Microglial cells are also important players in inducing plasticity. The phenotype and function of microglial cells can change based on the physiological state of the central nervous system. Here, we propose that in the autonomic nuclei of the ventral brainstem the relationship between neurotransmitters and neurokines, neurons and microglia determines the overall neural function of the central cardiorespiratory system.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Yeon Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Melissa M J Farnham
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Paul M Pilowsky
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia.
| |
Collapse
|
54
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
55
|
Orexinergic system in the locus coeruleus modulates the CO2 ventilatory response. Pflugers Arch 2016; 468:763-74. [DOI: 10.1007/s00424-016-1793-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/29/2023]
|
56
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
57
|
Franco P, Junqua A, Guignard-Perret A, Raoux A, Perier M, Raverot V, Claustrat B, Gustin MP, Inocente CO, Lin JS. High bicarbonate levels in narcoleptic children. J Sleep Res 2015; 25:194-202. [PMID: 26574184 DOI: 10.1111/jsr.12357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/08/2015] [Indexed: 12/01/2022]
Abstract
The objective of this study was to evaluate the levels of plasma bicarbonate levels in narcoleptic children. Clinical, electrophysiological data and bicarbonate levels were evaluated retrospectively in children seen in our paediatric national reference centre for hypersomnia. The cohort included 23 control subjects (11.5 ± 4 years, 43% boys) and 51 patients presenting de-novo narcolepsy (N) (12.7 ± 3.7 years, 47% boys). In narcoleptic children, cataplexy was present in 78% and DQB1*0602 was positive in 96%. The control children were less obese (2 versus 47%, P = 0.001). Compared with control subjects, narcoleptic children had higher bicarbonate levels (P = 0.02) as well as higher PCO2 (P < 0.01) and lower venous pH gas (P < 0.01). Bicarbonate levels higher than 27 mmol L(-1) were found in 41.2% of the narcoleptic children and 4.2% of the controls (P = 0.001). Bicarbonate levels were correlated with the Adapted Epworth Sleepiness Scale (P = 0.01). Narcoleptic patients without obesity often had bicarbonate levels higher than 27 mmol L (-1) (55 versus 25%, P = 0.025). No differences were found between children with and without cataplexy. In conclusion, narcoleptic patients had higher bicarbonate plasma levels compared to control children. This result could be a marker of hypoventilation in this pathology, provoking an increase in PCO2 and therefore a respiratory acidosis, compensated by an increase in plasma bicarbonates. This simple screening tool could be useful for prioritizing children for sleep laboratory evaluation in practice.
Collapse
Affiliation(s)
- Patricia Franco
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aurelie Junqua
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France.,Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Anne Guignard-Perret
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aude Raoux
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Magali Perier
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Veronique Raverot
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Bruno Claustrat
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Marie-Paule Gustin
- Department of Public Health, Institute of Pharmacy and Service de Biostatistique, University Lyon1, Lyon, France
| | - Clara Odilia Inocente
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Jian-Sheng Lin
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| |
Collapse
|
58
|
Bastianini S, Silvani A, Berteotti C, Lo Martire V, Cohen G, Ohtsu H, Lin JS, Zoccoli G. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. PLoS One 2015; 10:e0140520. [PMID: 26474479 PMCID: PMC4608736 DOI: 10.1371/journal.pone.0140520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/27/2015] [Indexed: 01/10/2023] Open
Abstract
Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gary Cohen
- Department of Women & Child Health, Karolinska Institutet, Stockholm, Sweden
| | - Hiroshi Ohtsu
- Applied Quantum Medical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil, Centre de recherche en neurosciences de Lyon, INSERM U1028-CNRS UMR 5292 Faculté de Médecine, Université Claude Bernard, Lyon, France
| | - Giovanna Zoccoli
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
59
|
Sasai-Sakuma T, Kinoshita A, Inoue Y. Polysomnographic Assessment of Sleep Comorbidities in Drug-Naïve Narcolepsy-Spectrum Disorders--A Japanese Cross-Sectional Study. PLoS One 2015; 10:e0136988. [PMID: 26322978 PMCID: PMC4556112 DOI: 10.1371/journal.pone.0136988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023] Open
Abstract
This is a large cross-sectional study which aimed to investigate comorbidity rate, degree of sleep-related breathing disorder, polysomnigraphically diagnosible rapid eye movement sleep behavior disorder/rapid eye movement sleep without atonia and periodic limb movements during sleep in Japanese drug-naïve patients with narcolepsy-spectrum disorders. A total of 158 consecutive drug naïve patients with narcolepsy with cataplexy, 295 patients with narcolepsy without cataplexy and 395 patients with idiopathic hypersomnia without long sleep time were enrolled. From retrospectively analyzed data of nocturnal polysomnography and multiple sleep latency test, higher rates of periodic limb movements during sleep (> = 15 h-1) (10.2%) and polysomnographically diagnosable rapid eye movement sleep behavior disorder (1.9%) were found in patients with narcolepsy with cataplexy. They had more severe periodic limb movements during sleep especially during rapid eye movement sleep and higher percentages of rapid eye movement sleep without atonia than the other two patient groups. In the present large sample study, Japanese drug naïve patients with narcolepsy with cataplexy showed the highest comorbidity rates of periodic limb movements during sleep, polysomnographically diagnosable rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia among those with the other narcolepsy-spectrum disorders; the rates were lower than those for Western patients.
Collapse
Affiliation(s)
- Taeko Sasai-Sakuma
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
- Department of Life Sciences and Bio-informatics, Division of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Akihiko Kinoshita
- Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
- Japan Somnology Center, Neuropsychiatric Research Institute, Tokyo, Japan
| |
Collapse
|
60
|
Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015; 130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
Abstract
Infants at risk of sudden infant death syndrome (SIDS) have been shown to have dysfunctional sleep and poor arousal thresholds. In animal studies, both these attributes have been linked to impaired signalling of the neuropeptide orexin. This study examined the immunoreactivity of orexin (OxA and OxB) in the tuberal hypothalamus (n = 27) and the pons (n = 15) of infants (1-10 months) who died from SIDS compared to age-matched non-SIDS infants. The percentage of orexin immunoreactive neurons and the total number of neurons were quantified in the dorsomedial, perifornical and lateral hypothalamus at three levels of the tuberal hypothalamus. In the pons, the area of orexin immunoreactive fibres were quantified in the locus coeruleus (LC), dorsal raphe (DR), laterodorsal tegmental (LDT), medial parabrachial, dorsal tegmental (DTg) and pontine nuclei (Pn) using automated methods. OxA and OxB were co-expressed in all hypothalamic and pontine nuclei examined. In SIDS infants, orexin immunoreactivity was decreased by up to 21 % within each of the three levels of the hypothalamus compared to non-SIDS (p ≤ 0.050). In the pons, a 40-50 % decrease in OxA occurred in the all pontine nuclei, while a similar decrease in OxB immunoreactivity was observed in the LC, LDT, DTg and Pn (p ≤ 0.025). No correlations were found between the decreased orexin immunoreactivity and previously identified risk factors for SIDS, including prone sleeping position and cigarette smoke exposure. This finding of reduced orexin immunoreactivity in SIDS infants may be associated with sleep dysfunction and impaired arousal.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Room 206, SIDS and Sleep Apnoea Laboratory, Sydney Medical School, University of Sydney, Blackburn Building, D06, Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
61
|
Drager LF, Polotsky VY, O'Donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol 2015; 309:H1101-11. [PMID: 26232233 DOI: 10.1152/ajpheart.00094.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
Obstructive sleep apnea (OSA) is known to be independently associated with several cardiovascular diseases including hypertension, myocardial infarction, and stroke. To determine how OSA can increase cardiovascular risk, animal models have been developed to explore the underlying mechanisms and the cellular and end-organ targets of the predominant pathophysiological disturbance in OSA-intermittent hypoxia. Despite several limitations in translating data from animal models to the clinical arena, significant progress has been made in our understanding of how OSA confers increased cardiovascular risk. It is clear now that the hypoxic stress associated with OSA can elicit a broad spectrum of pathological systemic events including sympathetic activation, systemic inflammation, impaired glucose and lipid metabolism, and endothelial dysfunction, among others. This review provides an update of the basic, clinical, and translational advances in our understanding of the metabolic dysfunction and cardiovascular consequences of OSA and highlights the most recent findings and perspectives in the field.
Collapse
Affiliation(s)
- Luciano F Drager
- Hypertension Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; Hypertension Unit, Renal Division, University of São Paulo Medical School, São Paulo, Brazil;
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher P O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sergio L Cravo
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Sleep Laboratory, Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; and
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
62
|
Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015; 2:379-91. [PMID: 27227052 PMCID: PMC4843912 DOI: 10.1080/23328940.2015.1066921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023] Open
Abstract
In the past, studies on stress responses and sleep/wake regulation were performed separately. The discovery of orexin (hypocretin) in 1998, however, dramatically changed the course of research and new findings regarding its role in these complex processes provided a better insight into their interactions and intricacies. Orexin-containing neuronal activity has been found to be minimal during sleep. It increases during the waking period and further increases during the active waking period, which includes stress responses and exploratory behaviors. Autonomic regulation of the body, which includes body temperature, blood flow, and ventilation, is also activated along with the change in vigilance states. Our recent findings suggest that orexin neurons act as a conductor of orchestration for vigilance states, behaviors, and autonomic functions. Body temperature regulation by orexin neurons seems to be mediated by one of its cotransmitters while cardiovascular and respiratory regulation are mediated by orexin itself.
Collapse
Affiliation(s)
- Tomoyuki Kuwaki
- Department of Physiology; Kagoshima University Graduate School of Medical and Dental Sciences ; Kagoshima, Japan
| |
Collapse
|
63
|
Burke PGR, Kanbar R, Basting TM, Hodges WM, Viar KE, Stornetta RL, Guyenet PG. State-dependent control of breathing by the retrotrapezoid nucleus. J Physiol 2015; 593:2909-26. [PMID: 25820491 DOI: 10.1113/jp270053] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS This study explores the state dependence of the hypercapnic ventilatory reflex (HCVR). We simulated an instantaneous increase or decrease of central chemoreceptor activity by activating or inhibiting the retrotrapezoid nucleus (RTN) by optogenetics in conscious rats. During quiet wake or non-REM sleep, hypercapnia increased both breathing frequency (fR ) and tidal volume (VT ) whereas, in REM sleep, hypercapnia increased VT exclusively. Optogenetic inhibition of RTN reduced VT in all sleep-wake states, but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Phasic RTN stimulation produced active expiration and reduced early expiratory airflow (i.e. increased upper airway resistance) only during wake. We conclude that the HCVR is highly state-dependent. The HCVR is reduced during REM sleep because fR is no longer under chemoreceptor control and thus could explain why central sleep apnoea is less frequent in REM sleep. ABSTRACT Breathing has different characteristics during quiet wake, non-REM or REM sleep, including variable dependence on PCO2. We investigated whether the retrotrapezoid nucleus (RTN), a proton-sensitive structure that mediates a large portion of the hypercapnic ventilatory reflex, regulates breathing differently during sleep vs. wake. Electroencephalogram, neck electromyogram, blood pressure, respiratory frequency (fR ) and tidal volume (VT ) were recorded in 28 conscious adult male Sprague-Dawley rats. Optogenetic stimulation of RTN with channelrhodopsin-2, or inhibition with archaerhodopsin, simulated an instantaneous increase or decrease of central chemoreceptor activity. Both opsins were delivered with PRSX8-promoter-containing lentiviral vectors. RTN and catecholaminergic neurons were transduced. During quiet wake or non-REM sleep, hypercapnia (3 or 6% FI,CO2 ) increased both fR and VT whereas, in REM sleep, hypercapnia increased VT exclusively. RTN inhibition always reduced VT but reduced fR only during quiet wake and non-REM sleep. RTN stimulation always increased VT but raised fR only in quiet wake and non-REM sleep. Blood pressure was unaffected by either stimulation or inhibition. Except in REM sleep, phasic RTN stimulation entrained and shortened the breathing cycle by selectively shortening the post-inspiratory phase. Phasic stimulation also produced active expiration and reduced early expiratory airflow but only during wake. VT is always regulated by RTN and CO2 but fR is regulated by CO2 and RTN only when the brainstem pattern generator is in autorhythmic mode (anaesthesia, non-REM sleep, quiet wake). The reduced contribution of RTN to breathing during REM sleep could explain why certain central apnoeas are less frequent during this sleep stage.
Collapse
Affiliation(s)
- Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roy Kanbar
- Department of Pharmaceutical Sciences, Lebanese American University, Beyrouth, Lebanon
| | - Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Walter M Hodges
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
64
|
Corcoran AE, Richerson GB, Harris MB. Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity. J Neurophysiol 2015; 114:381-9. [PMID: 25878157 DOI: 10.1152/jn.00870.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT)-synthesizing neurons of the medullary raphe are putative central chemoreceptors, proposed to be one of potentially multiple brain stem chemosensitive cell types and loci interacting to produce the respiratory chemoreflex. Hypocretin-synthesizing neurons of the lateral hypothalamus are important contributors to arousal state, thermoregulation, and feeding behavior and are also reportedly involved in the hypercapnic ventilatory response. Recently, a functional interaction was found between the hypocretin system and 5-HT neurons of the dorsal raphe. The validity and potential significance of hypocretin modulation of medullary raphe 5-HT neurons, however, is unknown. As such, the purpose of this study was to explore functional interactions between the hypocretin system and 5-HT system of the medullary raphe on baseline respiratory output and central chemosensitivity. To explore such interactions, we used the neonatal in vitro medullary slice preparation derived from wild-type (WT) mice (normal 5-HT function) and a knockout strain lacking all central 5-HT neurons (Lmx1b(f/f/p) mice). We examined effects of acidosis, hypocretin-1, a hypocretin receptor antagonist (SB-408124), and the effect of the antagonist on the response to acidosis. We confirmed the critical role of 5-HT neurons in central chemosensitivity given that the increased hypoglossal burst frequency with acidosis, characteristic of WT mice, was absent in preparations derived from Lmx1b(f/f/p) mice. We also found that hypocretin facilitated baseline neural ventilatory output in part through 5-HT neurons. Although the impact of hypocretin on 5-HT neuronal sensitivity to acidosis is still unclear, hypocretins did appear to mediate the burst duration response to acidosis via serotonergic mechanisms.
Collapse
Affiliation(s)
- Andrea E Corcoran
- Department of Biology and Wildlife, and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska; Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire;
| | - George B Richerson
- Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Veteran's Affairs Medical Center, West Haven, Connecticut; and Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa
| | - Michael B Harris
- Department of Biology and Wildlife, and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| |
Collapse
|
65
|
Umezawa N, Arisaka H, Sakuraba S, Sugita T, Matsumoto A, Kaku Y, Yoshida KI, Kuwana SI. Orexin-B antagonized respiratory depression induced by sevoflurane, propofol, and remifentanil in isolated brainstem-spinal cords of neonatal rats. Respir Physiol Neurobiol 2015; 205:61-5. [DOI: 10.1016/j.resp.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/16/2022]
|
66
|
Fonseca EM, Dias MB, Bícego KC, Gargaglioni LH. Orexin in the toad Rhinella schneideri: The location of orexinergic neurons and the role of orexin in ventilatory responses to hypercarbia and hypoxia. Respir Physiol Neurobiol 2014; 224:90-9. [PMID: 25434286 DOI: 10.1016/j.resp.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 01/24/2023]
Abstract
Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil
| | - Mirela B Dias
- Department of Physiology, Institute of Bioscience, Sao Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP FCAV at Jaboticabal, SP, Brazil.
| |
Collapse
|
67
|
Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respir Physiol Neurobiol 2014; 206:11-4. [PMID: 25462014 DOI: 10.1016/j.resp.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 11/22/2022]
Abstract
Hypothalamic orexin-containing neurons are activated by CO2 and contribute to hypercapnic ventilatory activation. However, their role in oxygen-related regulation of breathing is not well defined. In this study, we examined whether an experimental model mimicking apnea-induced repetitive hypoxemia (intermittent hypoxia [IH]) activates orexin-containing neurons. Mice were exposed to IH (5×5min at 10% O2), intermittent hyperoxia (IO; 5×5min at 50% O2), sustained hypoxia (SH; 25min at 10% O2), or sham stimulation. Their brains were examined using double immunohistochemical staining for orexin and c-Fos. The results indicated that IH (25.8±3.0%), but not SH (9.0±1.5%) activated orexin-containing neurons when compared to IO (5.5±0.6%) and sham stimulation (5.9±1.4%). These results correlate with those of our previous work showing that IH-induced respiratory long-term facilitation is dependent on orexin-containing neurons. Taken together, orexin contributes to repetitive hypoxia-induced respiratory activation and the hypoxic activation of orexin-containing neurons is pattern dependent.
Collapse
|
68
|
van der Meijden WP, Fronczek R, Reijntjes RHAM, Corssmit EPM, Biermasz NR, Lammers GJ, van Dijk JG, Thijs RD. Time- and state-dependent analysis of autonomic control in narcolepsy: higher heart rate with normal heart rate variability independent of sleep fragmentation. J Sleep Res 2014; 24:206-14. [DOI: 10.1111/jsr.12253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/21/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Wisse P. van der Meijden
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Department of Sleep and Cognition; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; Amsterdam The Netherlands
| | - Rolf Fronczek
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | | | - Eleonora P. M. Corssmit
- Department of Endocrinology and Metabolic Diseases; Leiden University Medical Center; Leiden The Netherlands
| | - Nienke R. Biermasz
- Department of Endocrinology and Metabolic Diseases; Leiden University Medical Center; Leiden The Netherlands
| | - Gert Jan. Lammers
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Sleep Wake Center SEIN; Heemstede The Netherlands
| | - J. Gert van Dijk
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | - Roland D. Thijs
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- SEIN - Stichting Epilepsie Instellingen Nederland; Heemstede The Netherlands
| |
Collapse
|
69
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
70
|
Kinkead R, Tenorio L, Drolet G, Bretzner F, Gargaglioni L. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol 2014; 204:3-13. [PMID: 25038523 DOI: 10.1016/j.resp.2014.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The control of breathing is commonly viewed as being a "brainstem affair". As the topic of this special issue of Respiratory Physiology and Neurobiology indicates, we should consider broadening this notion since the act of breathing is also tightly linked to many functions other than close regulation of arterial blood gases. Accordingly, "non-brainstem" structures can exert a powerful influence on the core elements of the respiratory control network and as it is often the case, the importance of these structures is revealed when their dysfunction leads to disease. There is a clear link between respiration and anxiety and key theories of the psychopathology of anxiety (including panic disorders; PD) focus on respiratory control and related CO2 monitoring system. With that in mind, we briefly present the respiratory manifestations of panic disorder and discuss the role of the dorso-medial/perifornical hypothalamus, the amygdalar complex, and the periaqueductal gray in respiratory control. We then present recent advances in basic research indicating how adult rodent previously subjected to neonatal stress may provide a very good model to investigate the pathophysiology of PD.
Collapse
Affiliation(s)
- Richard Kinkead
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada.
| | - Luana Tenorio
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP FCAV at Jaboticabal, SP, Brazil
| | - Guy Drolet
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | | |
Collapse
|
71
|
Tarasiuk A, Levi A, Berdugo-Boura N, Yahalom A, Segev Y. Role of orexin in respiratory and sleep homeostasis during upper airway obstruction in rats. Sleep 2014; 37:987-98. [PMID: 24790278 DOI: 10.5665/sleep.3676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES Chronic upper airway obstruction (UAO) elicits a cascade of complex endocrine derangements that affect growth, sleep, and energy metabolism. We hypothesized that elevated hypothalamic orexin has a role in maintaining ventilation during UAO, while at the same time altering sleep-wake activity and energy metabolism. Here, we sought to explore the UAO-induced changes in hypothalamic orexin and their role in sleep-wake balance, respiratory activity, and energy metabolism. INTERVENTIONS The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed; UAO and sham-operated control animals were monitored for 7 weeks. We measured food intake, body weight, temperature, locomotion, and sleep-wake activity. Magnetic resonance imaging was used to quantify subcutaneous and visceral fat tissue volumes. In week 7, the rats were sacrificed and levels of hypothalamic orexin, serum leptin, and corticosterone were determined. The effect of dual orexin receptor antagonist (almorexant 300 mg/kg) on sleep and respiration was also explored. MEASUREMENTS AND RESULTS UAO increased hypothalamic orexin mRNA and protein content by 64% and 65%, respectively. UAO led to 30% chronic sleep loss, excessive active phase sleepiness, decreased body temperature, increased food intake, reduction of abdominal and subcutaneous fat tissue volume, and growth retardation. Administration of almorexant normalized sleep but induced severe breathing difficulties in UAO rats, while it had no effect on sleep or on breathing of control animals. CONCLUSIONS In upper airway obstruction animals, enhanced orexin secretion, while crucially important for respiratory homeostasis maintenance, is also responsible for chronic partial sleep loss, as well as considerable impairment of energy metabolism and growth.
Collapse
Affiliation(s)
- Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishag Levi
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nilly Berdugo-Boura
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ari Yahalom
- Sleep-Wake Disorders Unit, Soroka University Medical Center and Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel ; Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
72
|
Abstract
In this review we focus on the role of orexin in cardio-respiratory functions and its potential link to hypertension. (1) Orexin, cardiovascular function, and hypertension. In normal rats, central administration of orexin can induce significant increases in arterial blood pressure (ABP) and sympathetic nerve activity (SNA), which can be blocked by orexin receptor antagonists. In spontaneously hypertensive rats (SHRs), antagonizing orexin receptors can significantly lower blood pressure under anesthetized or conscious conditions. (2) Orexin, respiratory function, and central chemoreception. The prepro-orexin knockout mouse has a significantly attenuated ventilatory CO2 chemoreflex, and in normal rats, central application of orexin stimulates breathing while blocking orexin receptors decreases the ventilatory CO2 chemoreflex. Interestingly, SHRs have a significantly increased ventilatory CO2 chemoreflex relative to normotensive WKY rats and blocking both orexin receptors can normalize this exaggerated response. (3) Orexin, central chemoreception, and hypertension. SHRs have higher ABP and SNA along with an enhanced ventilatory CO2 chemoreflex. Treating SHRs by blocking both orexin receptors with oral administration of an antagonist, almorexant (Almxt), can normalize the CO2 chemoreflex and significantly lower ABP and SNA. We interpret these results to suggest that the orexin system participates in the pathogenesis and maintenance of high blood pressure in SHRs, and the central chemoreflex may be a causal link to the increased SNA and ABP in SHRs. Modulation of the orexin system could be a potential target in treating some forms of hypertension.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| |
Collapse
|
73
|
Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014; 8:22. [PMID: 24574958 PMCID: PMC3921571 DOI: 10.3389/fnins.2014.00022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/25/2014] [Indexed: 01/30/2023] Open
Abstract
In this review we focus on the role of orexin in cardio-respiratory functions and its potential link to hypertension. (1) Orexin, cardiovascular function, and hypertension. In normal rats, central administration of orexin can induce significant increases in arterial blood pressure (ABP) and sympathetic nerve activity (SNA), which can be blocked by orexin receptor antagonists. In spontaneously hypertensive rats (SHRs), antagonizing orexin receptors can significantly lower blood pressure under anesthetized or conscious conditions. (2) Orexin, respiratory function, and central chemoreception. The prepro-orexin knockout mouse has a significantly attenuated ventilatory CO2 chemoreflex, and in normal rats, central application of orexin stimulates breathing while blocking orexin receptors decreases the ventilatory CO2 chemoreflex. Interestingly, SHRs have a significantly increased ventilatory CO2 chemoreflex relative to normotensive WKY rats and blocking both orexin receptors can normalize this exaggerated response. (3) Orexin, central chemoreception, and hypertension. SHRs have higher ABP and SNA along with an enhanced ventilatory CO2 chemoreflex. Treating SHRs by blocking both orexin receptors with oral administration of an antagonist, almorexant (Almxt), can normalize the CO2 chemoreflex and significantly lower ABP and SNA. We interpret these results to suggest that the orexin system participates in the pathogenesis and maintenance of high blood pressure in SHRs, and the central chemoreflex may be a causal link to the increased SNA and ABP in SHRs. Modulation of the orexin system could be a potential target in treating some forms of hypertension.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| |
Collapse
|
74
|
Liu Z, Jiang L, Zhu F, Fu C, Lu S, Zhou J, Wu X, Bai C, Li S. Chronic intermittent hypoxia and the expression of orexin and its receptors in the brains of rats. Sleep Biol Rhythms 2014. [DOI: 10.1111/sbr.12043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zilong Liu
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Liyan Jiang
- Department of Pulmonary Medicine; Shanghai Chest Hospital; Shanghai Jiaotong University; Shanghai China
| | - Fen Zhu
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Cuiping Fu
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Shenyuan Lu
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Jing Zhou
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Xiaodan Wu
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| | - Chunxue Bai
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
| | - Shanqun Li
- Department of Pulmonary Medicine; Zhongshan Hospital, Fudan University; Shanghai China
- Clinical Center for Sleep Breathing Disorder and Snoring; Zhongshan Hospital, Fudan University; Shanghai China
| |
Collapse
|
75
|
Wang W, Li Q, Pan Y, Zhu D, Wang L. Influence of hypercapnia on the synthesis of neuropeptides and their receptors in murine brain. Respirology 2013; 18:102-7. [PMID: 22882587 DOI: 10.1111/j.1440-1843.2012.02245.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Sleep disorders are a complicated and major public health concern affecting millions of individuals. Obstructive sleep apnoea (OSA) is a common but still under-recognized disease which can cause intermittent nocturnal hypercapnia. Neuropeptides play critical roles in neurotransmission, acting as transmitters or modulators. Results from recent studies have implicated several neuropeptides in sleep and breathing regulation, including orexin, neuropeptides Y and galanin. Therefore, the present study aimed to evaluate the influence of hypercapnia on these neuropeptides and their receptors in order to assess their potential role in the pathogenesis of OSA. METHODS Fifteen C57BL/6J mice were randomly divided into three groups and exposed to moderate hypercapnia (5% CO(2) with balanced room air), or severe hypercapnia (10% CO(2) with balanced room air) or room air for 3 h (9:00-12:00 h), respectively. Immediately following exposure the brainstem and hypothalamus were excised for real-time reverse transcription polymerase chain reaction and western blot analyses. RESULTS In the hypothalamus gene expression including galanin, orexin and neuropeptide Y receptor 1 (NPYR1) was downregulated by hypercapnia. However, protein and mRNA levels of orexin-A receptor were upregulated by severe hypercapnia. In the brainstem only NPYR1 mRNA expression was decreased in moderate hypercapnia compared with that in severe hypercapnia. CONCLUSIONS These findings suggest that hypercapnia can affect these neuropeptides and their receptors, especially the orexin and orexin-A receptor. The potential relationships between these peptides and OSA are worthy of further investigation.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
76
|
Davis EM, O'Donnell CP. Rodent models of sleep apnea. Respir Physiol Neurobiol 2013; 188:355-61. [PMID: 23722067 DOI: 10.1016/j.resp.2013.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022]
Abstract
Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
77
|
Pizza F, Tartarotti S, Poryazova R, Baumann CR, Bassetti CL. Sleep-disordered breathing and periodic limb movements in narcolepsy with cataplexy: a systematic analysis of 35 consecutive patients. Eur Neurol 2013; 70:22-6. [PMID: 23689193 DOI: 10.1159/000348719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/28/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disturbed sleep is a core feature of narcolepsy with cataplexy (NC). Few studies have independently assessed sleep-disordered breathing (SDB) and periodic limb movements (PLMs) in non-homogeneous series of patients with and without cataplexy. We systematically assessed both SDB and PLMs in well-defined NC patients. METHODS We analyzed the clinical and polysomnographic features of 35 consecutive NC patients (mean age 40 ± 16 years, 51% males, 23/23 hypocretin-deficient) to assess the prevalence of SDB (apnea-hypopnea index >5) and PLMs (periodic leg movements in sleep (PLMI) >15) together with their impact on nocturnal sleep and daytime sleepiness using the multiple sleep latency test. RESULTS 11 (31%) and 14 (40%) patients had SDB and PLMs, respectively. SDB was associated with older age (49 ± 16 vs. 35 ± 13 years, p = 0.02), higher BMI (30 ± 5 vs. 27 ± 6, p = 0.05), and a trend towards higher PLMI (25 ± 20 vs. 12 ± 23, p = 0.052), whereas PLMs with older age (50 ± 16 vs. 33 ± 11 years, p = 0.002) and reduced and fragmented sleep (e.g. sleep efficiency of 82 ± 12% vs. 91 ± 6%, p = 0.015; sleep time of 353 ± 66 vs. 395 ± 28, p = 0.010). SDB and PLMs were also mutually associated (p = 0.007), but not correlated to daytime sleepiness. CONCLUSIONS SDB and PLMs are highly prevalent and associated in NC. Nevertheless, SDB and PLMs are rarely severe, suggesting an overall limited effect on clinical manifestations.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
78
|
Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013; 115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article advances the theory that the hypocretinergic (orexinergic) system initiates, coordinates, and maintains survival behaviors and survival-related processes (i.e., the Unified Survival Theory of the Functioning of the Hypocretinergic System or "Unified Hypocretinergic Survival Theory"). A priori presumptive support for the Unified Hypocretinergic Survival Theory emanates from the fact that neurons that contain hypocretin are located in the key executive central nervous system (CNS) site, the lateral hypothalamus, that for decades has been well-documented to govern core survival behaviors such as fight, flight, and food consumption. In addition, the hypocretinergic system exhibits the requisite morphological and electrophysiological capabilities to control survival behaviors and related processes. Complementary behavioral data demonstrate that all facets of "survival" are coordinated by the hypocretinergic system and that hypocretinergic directives are not promulgated except during survival behaviors. Importantly, it has been shown that survival behaviors are selectively impacted when the hypocretinergic system is impaired or rendered nonfunctional, whereas other behaviors are relatively unaffected. The Unified Hypocretinergic Survival Theory resolves the disparate, perplexing, and often paradoxical-appearing results of previous studies; it also provides a foundation for future hypothesis-driven basic science and clinical explorations of the hypocretinergic system.
Collapse
Affiliation(s)
- Michael H Chase
- WebSciences International, Veterans Affairs-Greater Los Angeles Healthcare System, University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
79
|
Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013; 7:28. [PMID: 23616752 PMCID: PMC3629303 DOI: 10.3389/fnbeh.2013.00028] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. However, orexin neurons are “multi-tasking” neurons that regulate sleep/wake states as well as feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities in energy homeostasis, stress-related behavior, and reward systems. Orexin excites waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain stem regions to maintain a long, consolidated waking period. Orexin neurons also have reciprocal links with the hypothalamic nuclei, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues suggests that these neurons have an important role as a link between energy homeostasis and vigilance states. The link between orexin and the ventral tegmental nucleus serves to motivate an animal to engage in goal-directed behavior. This review focuses on the interaction of orexin neurons with emotion, reward, and energy homeostasis systems. These connectivities are likely to be highly important to maintain proper vigilance states.
Collapse
Affiliation(s)
- Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | | |
Collapse
|
80
|
Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013; 121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 02/04/2023]
Abstract
Physiological fluctuations in the levels of hormones, nutrients, and gasses are sensed in parallel by interacting control systems distributed throughout the brain and body. We discuss the logic of this arrangement and the definitions of "sensing"; and then focus on lateral hypothalamic (LH) control of energy balance and respiration. LH neurons control diverse behavioral and autonomic processes by projecting throughout the neuraxis. Three recently characterized types of LH cells are discussed here. LH orexin/hypocretin (ORX) neurons fire predominantly during wakefulness and are thought to promote reward-seeking, arousal, obesity resistance, and adaptive thermogenesis. Bidirectional control of ORX cells by extracellular macronutrients may add a new regulatory loop to these processes. ORX neurons also stimulate breathing and are activated by acid/CO2in vivo and in vitro. LH melanin-concentrating hormone (MCH) neurons fire mostly during sleep, promote physical inactivity, weight gain, and may impair glucose tolerance. Reported stimulation of MCH neurons by glucose may thus modulate energy homeostasis. Leptin receptor (LepR) neurons of the LH are distinct from ORX and MCH neurons, and may suppress feeding and locomotion by signaling to the mesolimbic dopamine system and local ORX neurons. Integration within the ORX-MCH-LepR microcircuit is suggested by anatomical and behavioral data, but requires clarification with direct assays of functional connectivity. Further studies of how LH circuits counteract evolutionarily-relevant environmental fluctuations will provide key information about the logic and fragilities of brain controllers of healthy homeostasis.
Collapse
Affiliation(s)
- Denis Burdakov
- King's College London, MRC Center for Developmental Neurobiology, London, UK; MRC National Institute for Medical Research, London, UK.
| | | | | |
Collapse
|
81
|
Wang W, Pan Y, Li Q, Wang L. Orexin: a potential role in the process of obstructive sleep apnea. Peptides 2013; 42:48-54. [PMID: 23313149 DOI: 10.1016/j.peptides.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a complicated disease with an unrecognized mechanism. Obesity, sex, age, and smoking have been found to be independent correlates of OSA. Orexin (also named hypocretin) mainly secreted by lateral hypothalamus neurons has a wide array of biological functions like regulating sleep, energy levels and breathing. Several clinical studies found ties between orexin and OSA. Because of the close correlation between orexin and obesity, sex, age and smoking (which are the key risk factors for OSA patients), we hypothesize that orexin may play a key role in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Nanjing Medical University, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
82
|
Hunt NJ, Waters KA, Machaalani R. Orexin receptors in the developing piglet hypothalamus, and effects of nicotine and intermittent hypercapnic hypoxia exposures. Brain Res 2013; 1508:73-82. [PMID: 23500635 DOI: 10.1016/j.brainres.2013.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 03/03/2013] [Indexed: 11/26/2022]
Abstract
Orexin and its receptors (OxR1 and OxR2) play a significant role in arousal and sleep regulation. Using developing piglets, we aimed to determine the effects of nicotine and Intermittent Hypercapnic Hypoxia (IHH), alone or in combination, on orexin receptor expression in the hypothalamus. Four piglet groups were studied: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry for OxR1 and OxR2 expression, eight nuclei/areas of the hypothalamus: dorsal medial nucleus (DMN), arcuate nucleus (ARC), perifornical area (PFA), paraventricular nucleus (PVN), lateral hypothalamic area (LHA), ventral medial nucleus (VMN), supraoptic nucleus, retrochiasmatic part (SONr) and tuberal mammillary nucleus (TMN), were studied. Compared to controls, OxR1 and OxR2 were increased due to exposures, however this was region dependent. Nicotine increased OxR1 in the DMN (P<0.001) and SONr (P=0.036), and OxR2 in the DMN (P<0.001), VMN (P=0.014) and the TMN (P=0.026). IHH increased OxR1 in the DMN, PVN, VMN and SONr (P<0.01 for all), and OxR2 in DMN (P<0.001), PFA (P=0.001), PVN (P=0.004), VMN (P=0.041) and the TMN (P<0.001). The nic+IHH exposure increased OxR1 expression in all nuclei (TMN excluded) however, the changes were not significantly different from IHH alone. For OxR2, the increased expression after nic+IHH was significant compared to IHH in the DMN, ARC and SONr. These results show that nicotine increases orexin receptor expression in a region dependent manner. IHH induced increases were specific to arousal and stress related regions and nic+IHH results suggest that for OxR1, nicotine has no additive effect whereas for OxR2 it does, and is region dependent.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Pathology, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
83
|
Li N, Li A, Nattie E. Focal microdialysis of CO₂ in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep. Respir Physiol Neurobiol 2013; 185:349-55. [PMID: 22999917 PMCID: PMC3530002 DOI: 10.1016/j.resp.2012.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
We investigated whether the perifornical-lateral hypothalamic area (PF-LHA), where the orexin neurons reside, is a central chemoreceptor site by microdialysis of artificial cerebrospinal fluid (aCSF) equilibrated with 25% CO(2) into PF-LHA in conscious rats. This treatment is known to produce a focal tissue acidification like that associated with a 6-7 mm Hg increase in arterial [Formula: see text] . Such focal acidification in the PF-LHA significantly increased ventilation up to 15% compared with microdialysis of normal aCSF equilibrated with 5% CO(2) only in wakefulness but not in sleep in both the dark (P=0.004) and light (P<0.001) phases of the diurnal cycle. This response was predominantly due to a significant increase in respiratory frequency (11%, P<0.001). There were no significant effects on ventilation in the group with probes misplaced outside the PF-LHA. These results suggest that PF-LHA functions as a central chemoreceptor site in the central nervous system in a vigilant state dependent manner with predominant effects in wakefulness.
Collapse
Affiliation(s)
- Ningjing Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| | | | | |
Collapse
|
84
|
Buchanan GF. Timing, sleep, and respiration in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:191-219. [PMID: 23899599 DOI: 10.1016/b978-0-12-396971-2.00008-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breathing is perhaps the physiological function that is most vital to human survival. Without breathing and adequate oxygenation of tissues, life ceases. As would be expected for such a vital function, breathing occurs automatically, without the requirement of conscious input. Breathing is subject to regulation by a variety of factors including circadian rhythms and vigilance state. Given the need for breathing to occur continuously with little tolerance for interruption, it is not surprising that breathing is subject to both circadian phase-dependent and vigilance-state-dependent regulation. Similarly, the information regarding respiratory state, including blood-gas concentrations, can affect circadian timing and sleep-wake state. The exact nature of the interactions between breathing, circadian phase, and vigilance state can vary depending upon the species studied and the methodologies employed. These interactions between breathing, circadian phase, and vigilance state may have important implications for a variety of human diseases, including sleep apnea, asthma, sudden unexpected death in epilepsy, and sudden infant death syndrome.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology, Yale University School of Medicine, New Haven, and Veteran's Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
85
|
Abstract
Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.
Collapse
|
86
|
Song N, Zhang G, Geng W, Liu Z, Jin W, Li L, Cao Y, Zhu D, Yu J, Shen L. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control. PLoS One 2012; 7:e39982. [PMID: 22792205 PMCID: PMC3391217 DOI: 10.1371/journal.pone.0039982] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/30/2012] [Indexed: 12/20/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.
Collapse
Affiliation(s)
- Nana Song
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guihong Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenye Geng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zibing Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weizhong Jin
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Li
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yinxiang Cao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jerry Yu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Linlin Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
87
|
Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol Rev 2012; 64:389-420. [PMID: 22759794 DOI: 10.1124/pr.111.005546] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Orexin signaling is essential for normal regulation of arousal and behavioral state control and represents an attractive target for therapeutics combating insomnia. Alternatively termed hypocretins, these neuropeptides were named to reflect sequence similarity to incretins and their potential to promote feeding. Current nomenclature reflects these molecular and biochemical discovery approaches in which HCRT, HCRTR1, and HCRTR2 genes encode prepro-orexin, the orexin 1 receptor (OX(1)) and the orexin 2 receptor (OX(2))-gene names designated by the Human Genome Organization and receptor names designated by the International Union of Basic and Clinical Pharmacology. Orexinergic neurons are most active during wakefulness and fall silent during inactive periods, a prolonged disruption in signaling most profoundly resulting in hypersomnia and narcolepsy. Hcrtr2 mutations underlie the etiology of canine narcolepsy, deficiencies in orexin-producing neurons are observed in the human disorder, and ablation of mouse orexin neurons or the Hcrt gene results in a narcolepsy-cataplexy phenotype. The development of orexin receptor antagonists and genetic models targeting components of the orexin pathway have elucidated the OX(2) receptor-specific role in histamine-mediated arousal and the contribution of both receptors in brainstem pathways involved in vigilance state gating. Orexin receptor antagonists of varying specificity uncovered additional roles beyond sleep and feeding that include addiction, depression, anxiety, and potential influences on peripheral physiology. Combined genetic and pharmacological approaches indicate that orexin signaling may represent a confluence of sleep, feeding, and reward pathways. Selective orexin receptor antagonism takes advantage of these properties toward the development of novel insomnia therapeutics.
Collapse
MESH Headings
- Animals
- Arousal/drug effects
- Arousal/genetics
- Clinical Trials as Topic
- Evolution, Molecular
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Hypnotics and Sedatives/therapeutic use
- International Agencies
- Ligands
- Models, Molecular
- Molecular Structure
- Narcolepsy/drug therapy
- Narcolepsy/genetics
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/pharmacology
- Neurotransmitter Agents/therapeutic use
- Orexin Receptors
- Protein Conformation
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/classification
- Receptors, Neuropeptide/genetics
- Sleep Initiation and Maintenance Disorders/drug therapy
- Sleep Initiation and Maintenance Disorders/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Anthony L Gotter
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004.
| | | | | | | | | |
Collapse
|
88
|
Sleep in anesthesiology – What can we learn about anesthesia from studying sleep? TRENDS IN ANAESTHESIA AND CRITICAL CARE 2012. [DOI: 10.1016/j.tacc.2011.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
90
|
Chen W, Ye J, Han D, Yin G, Wang B, Zhang Y. Association of prepro-orexin polymorphism with obstructive sleep apnea/hypopnea syndrome. Am J Otolaryngol 2012; 33:31-6. [PMID: 21371780 DOI: 10.1016/j.amjoto.2010.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/03/2010] [Accepted: 12/12/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Because of the potential role of orexin neuronal circuitry in the regulation of sleep and wakefulness and arousal and breathing, it seems reasonable to speculate that abnormalities in the prepro-orexin gene could be relevant to studies of obstructive sleep apnea/hypopnea syndrome (OSAHS); and it might be a candidate gene in the pathogenesis of OSAHS. OBJECTIVE The present study investigated whether single nucleotide polymorphisms (SNPs) in the human prepro-orexin gene are associated with OSAHS in Han Chinese people. METHODS A total of 394 subjects (217 cases and 177 control subjects) were recruited from China. Diagnostic polysomnography was performed in all patients and control subjects. SNPs in potentially functional regions of the gene were identified; and genotypes, determined by direct sequencing. RESULTS By sequencing the promoter, 2 exons, and the exon-intron junctions of the prepro-orexin gene, the g11182C>T SNP was identified. Statistical analysis showed that there were significant differences in the genotype distribution between patients with OSAHS and the control group (χ(2)(2) = 6.437, P = .04). Variant allele T of the g1182C>T polymorphism was more commonly found in patients with OSAHS as compared with control subjects (χ(2)(1) = 5.648, P = .017; odds ratio, 1.449; 95% confidence interval, 1.0466-1.968). CONCLUSIONS Our results suggest that the prepro-orexin gene polymorphism g1182C>T is associated with susceptibility to OSAHS in Han Chinese. This study provides insights into the genetic information for future studies regarding this gene in OSAHS.
Collapse
|
91
|
Shahid IZ, Rahman AA, Pilowsky PM. Orexin and Central Regulation of Cardiorespiratory System. SLEEP HORMONES 2012; 89:159-84. [DOI: 10.1016/b978-0-12-394623-2.00009-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
92
|
Abstract
Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.
Collapse
Affiliation(s)
- Eugene Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
93
|
Abstract
Orexin, a small neuropeptide released from neurons in the hypothalamus with widespread projections throughout the central nervous system, has broad biological roles including the modulation of breathing and autonomic function. That orexin activity is fundamentally dependent on sleep-wake state, and circadian cycle requires consideration of orexin function in physiological control systems in respect to these two state-related activity patterns. Both transgenic mouse studies and focal orexin receptor antagonism support a role for orexins in respiratory chemosensitivity to CO₂ predominantly in wakefulness, with further observations limiting this role to the dark period. In addition, orexin neurons participate in the regulation of sympathetic activity, including effects on blood pressure and thermoregulation. Orexin is also essential in physiological responses to stress. Orexin-mediated processes may operate at two levels: (1) in sleep-wake and circadian states and (2) in stress, for example, the defense or "fight-or-flight" response and panic-anxiety syndrome.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology and Neurobiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | | |
Collapse
|
94
|
Abstract
Stress increases cardiac function, ventilation, and body temperature and induces analgesia. These changes, which result in an increase in metabolic rate, oxygen supply, and the conduction velocity of nerve impulses, prepare the body for a fight-or-flight response. A part of the hypothalamus called the defense area has long been known to play a key role in these responses, but the precise mechanisms are largely unknown. Our recent findings suggest that orexin (hypocretin) neurons act as a master switch of the fight-or-flight response. In addition, our results, as well as those from other researchers, suggest that orexin neurons do not modulate specific behaviors such as the fight-or-flight responses but rather integrate the autonomic functions and behaviors in a broad sense or in a vigilance state-dependent manner. The orexin system seems to be a pivotal link between the subconscious and the conscious brain functions.
Collapse
Affiliation(s)
- Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima, Japan
| | | |
Collapse
|
95
|
Hernandez AB, Kirkness JP, Smith PL, Schneider H, Polotsky M, Richardson RA, Hernandez WC, Schwartz AR. Novel whole body plethysmography system for the continuous characterization of sleep and breathing in a mouse. J Appl Physiol (1985) 2011; 112:671-80. [PMID: 22134700 DOI: 10.1152/japplphysiol.00818.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sleep is associated with marked alterations in ventilatory control that lead to perturbations in respiratory timing, breathing pattern, ventilation, pharyngeal collapsibility, and sleep-related breathing disorders (SRBD). Mouse models offer powerful insight into the pathogenesis of SRBD; however, methods for obtaining the full complement of continuous, high-fidelity respiratory, electroencephalographic (EEG), and electromyographic (EMG) signals in unrestrained mice during sleep and wake have not been developed. We adapted whole body plethysmography to record EEG, EMG, and respiratory signals continuously in unrestrained, unanesthetized mice. Whole body plethysmography tidal volume and airflow signals and a novel noninvasive surrogate for respiratory effort (respiratory movement signal) were validated against simultaneously measured gold standard signals. Compared with the gold standard, we validated 1) tidal volume (correlation, R(2) = 0.87, P < 0.001; and agreement within 1%, P < 0.001); 2) inspiratory airflow (correlation, R(2) = 0.92, P < 0.001; agreement within 4%, P < 0.001); 3) expiratory airflow (correlation, R(2) = 0.83, P < 0.001); and 4) respiratory movement signal (correlation, R(2) = 0.79-0.84, P < 0.001). The expiratory airflow signal, however, demonstrated a decrease in amplitude compared with the gold standard. Integrating respiratory and EEG/EMG signals, we fully characterized sleep and breathing patterns in conscious, unrestrained mice and demonstrated inspiratory flow limitation in a New Zealand Obese mouse. Our approach will facilitate studies of SRBD mechanisms in inbred mouse strains and offer a powerful platform to investigate the effects of environmental and pharmacological exposures on breathing disturbances during sleep and wakefulness.
Collapse
Affiliation(s)
- A B Hernandez
- Sleep Disorders Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Spirovski D, Li Q, Pilowsky PM. Brainstem galanin-synthesizing neurons are differentially activated by chemoreceptor stimuli and represent a subpopulation of respiratory neurons. J Comp Neurol 2011; 520:154-73. [DOI: 10.1002/cne.22723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Golbidi S, Badran M, Ayas N, Laher I. Cardiovascular consequences of sleep apnea. Lung 2011; 190:113-32. [PMID: 22048845 DOI: 10.1007/s00408-011-9340-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Sleep apnea is a common health concern that is characterized by repetitive episodes of asphyxia. This condition has been linked to serious long-term adverse effects such as hypertension, metabolic dysregulation, and cardiovascular disease. Although the mechanism for the initiation and aggravation of cardiovascular disease has not been fully elucidated, oxidative stress and subsequent endothelial dysfunction play major roles. Animal models, which have the advantage of being free of comorbidities and/or behavioral variables (that commonly occur in humans), allow invasive measurements under well-controlled experimental conditions, and as such are useful tools in the study of the pathophysiological mechanisms of sleep apnea. This review summarizes currently available information on the cardiovascular consequences of sleep apnea and briefly describes common experimental approaches useful to sleep apnea in different animal models.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
98
|
Liu ZB, Song NN, Geng WY, Jin WZ, Li L, Cao YX, Qian Y, Zhu DN, Shen LL. Orexin-A and respiration in a rat model of smoke-induced chronic obstructive pulmonary disease. Clin Exp Pharmacol Physiol 2011; 37:963-8. [PMID: 20528981 DOI: 10.1111/j.1440-1681.2010.05411.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Orexins are neuropeptides synthesized in the hypothalamus that regulate many physiological functions, including energy homeostasis, stress responses, sleep/wake states etc. It is now emerging that orexins may also regulate breathing, but little is known as to how they do this, particularly in chronic obstructive pulmonary disease (COPD). In the present study, we used a rat model of cigarette smoke-induced COPD to investigate orexin-A expression in the hypothalamus and medulla and its effect on respiration. 2. Sprague-Dawley rats were exposed to cigarette smoke (1 h twice daily) for 12 weeks. Lung function and pathological changes associated with inflammation and emphysema were determined to confirm the validity of the COPD model. 3. Hypothalamic and medullary orexin-A levels, as determined by radioimmunoassay, were higher in smoke-exposed than control rats. Furthermore, the expression of prepro-orexin (PPO) mRNA in the hypothalamus and orexin OX(1) receptor mRNA in the medulla, as determined by real-time quantitative polymerase chain reaction, was higher in smoke-exposed than control rats. 4. The number of orexin-A-positive neurons in the hypothalamus and OX(1) and OX(2) receptor-positive neurons in the ventrolateral medulla was higher in smoke-exposed than control rats. 5. Microinjection of orexin-A (1 μmol/L, 0.1 μL) into the pre-Bötzinger complex enhanced phrenic nerve discharge to a greater extent in smoke-exposed compared with control rats (61% vs 36%, respectively). 6. The findings of the present study demonstrate that the increased respiratory activity in smoke-exposed rats is due to an increase in orexin-A as well as upregulation of orexin receptors in the ventrolateral medulla.
Collapse
Affiliation(s)
- Zi-Bing Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Teppema LJ, Baby S. Anesthetics and control of breathing. Respir Physiol Neurobiol 2011; 177:80-92. [PMID: 21514403 DOI: 10.1016/j.resp.2011.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 12/18/2022]
Abstract
An important side effect of general anesthetics is respiratory depression. Anesthetics have multiple membrane targets of which ionotropic receptors such as gamma-aminobutyric acid-A (GABA(A)), glycine, N-methyl-D-aspartate and nicotinic acetylcholinergic (nACh) receptors are important members. GABA, glutamate and ACh are crucial neurotransmitters in the respiratory neuronal network, and the ability of anesthetics to modulate their release and interact with their receptors implies complex effects on respiration. Metabotropic receptors and intracellular proteins are other important targets for anesthetics suggesting complex effects on intracellular signaling pathways. Here we briefly overview the effects of general anesthetics on protein targets as far as these are relevant for respiratory control. Subsequently, we describe some methods with which the overall effect of anesthetics on the control of breathing can be measured, as well as some promising in vivo approaches to study their synaptic effects. Finally, we summarize the most important respiratory effects of volatile anesthetics in humans and animals and those of some intravenous anesthetics in animals.
Collapse
Affiliation(s)
- Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
100
|
|