51
|
Park SE, Song JH, Hong C, Kim DE, Sul JW, Kim TY, Seo BR, So I, Kim SY, Bae DJ, Park MH, Lim HM, Baek IJ, Riccio A, Lee JY, Shim WH, Park B, Koh JY, Hwang JJ. Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Mol Neurobiol 2018; 56:2822-2835. [PMID: 30062674 PMCID: PMC6459797 DOI: 10.1007/s12035-018-1258-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 11/29/2022]
Abstract
Oxidative stress is a key mediator of neuronal death in acute brain injuries, such as epilepsy, trauma, and stroke. Although it is accompanied by diverse cellular changes, increases in levels of intracellular zinc ion (Zn2+) and calcium ion (Ca2+) may play a critical causative role in oxidative neuronal death. However, the mechanistic link between Zn2+ and Ca2+ dyshomeostasis in neurons during oxidative stress is not well-understood. Here, we show that the exposure of cortical neurons to H2O2 led to a zinc-triggered calcium influx, which resulted in neuronal death. The cyclin-dependent kinase inhibitor, NU6027, inhibited H2O2-induced Ca2+ increases and subsequent cell death in cortical neurons, without affecting the early increase in Zn2+. Therefore, we attempted to identify the zinc-regulated Ca2+ pathway that was inhibited by NU6027. The expression profile in cortical neurons identified transient receptor potential cation channel 5 (TRPC5) as a candidate that is known to involve in the generation of epileptiform burst firing and epileptic neuronal death (Phelan KD et al. 2012a; Phelan KD et al. 2013b). NU6027 inhibited basal and zinc-augmented TRPC5 currents in TRPC5-overexpressing HEK293 cells. Consistently, cortical neurons from TRPC5 knockout mice were highly resistant to H2O2-induced death. Moreover, NU6027 is neuroprotective in kainate-treated epileptic rats. Our results demonstrate that TRPC5 is a novel therapeutic target against oxidative neuronal injury in prolonged seizures and that NU6027 is a potent inhibitor of TRPC5.
Collapse
Affiliation(s)
- Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Ji Hoon Song
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, South Korea
| | - Dong Eun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jee-Won Sul
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Tae-Youn Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Bo-Ra Seo
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Insuk So
- Department of Physiology and Institute of Dermatological Science, Seoul National University College of Medicine, Seoul, 110-799, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Mi-Ha Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hye Min Lim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Antonio Riccio
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Woo Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Bumwoo Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.,Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, 05505, South Korea. .,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
52
|
Robson JP, Wagner B, Glitzner E, Heppner FL, Steinkellner T, Khan D, Petritsch C, Pollak DD, Sitte HH, Sibilia M. Impaired neural stem cell expansion and hypersensitivity to epileptic seizures in mice lacking the EGFR in the brain. FEBS J 2018; 285:3175-3196. [PMID: 30028091 PMCID: PMC6174950 DOI: 10.1111/febs.14603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Mice lacking the epidermal growth factor receptor (EGFR) develop an early postnatal degeneration of the frontal cortex and olfactory bulbs and show increased cortical astrocyte apoptosis. The poor health and early lethality of EGFR−/− mice prevented the analysis of mechanisms responsible for the neurodegeneration and function of the EGFR in the adult brain. Here, we show that postnatal EGFR‐deficient neural stem cells are impaired in their self‐renewal potential and lack clonal expansion capacity in vitro. Mice lacking the EGFR in the brain (EGFRΔbrain) show low penetrance of cortical degeneration compared to EGFR−/− mice despite genetic recombination of the conditional allele. Adult EGFRΔ mice establish a proper blood–brain barrier and perform reactive astrogliosis in response to mechanical and infectious brain injury, but are more sensitive to Kainic acid‐induced epileptic seizures. EGFR‐deficient cortical astrocytes, but not midbrain astrocytes, have reduced expression of glutamate transporters Glt1 and Glast, and show reduced glutamate uptake in vitro, illustrating an excitotoxic mechanism to explain the hypersensitivity to Kainic acid and region‐specific neurodegeneration observed in EGFR‐deficient brains.
Collapse
Affiliation(s)
- Jonathan P Robson
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bettina Wagner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Frank L Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Steinkellner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudia Petritsch
- Department of Neurological Surgery, UCSF Broad Institute of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Daniela D Pollak
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
53
|
Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. Sci Rep 2018; 8:4641. [PMID: 29545615 PMCID: PMC5854579 DOI: 10.1038/s41598-018-22848-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 01/15/2023] Open
Abstract
Excitotoxicity leads to the activation of a cytotoxic cascade that causes neuronal death. In the retina, retinal ganglion cells (RGCs) die after an excitotoxic insult. Multiple pathways have been proposed to contribute to RGC death after an excitotoxic insult, including TNF signaling, JNK activation, and ER stress. To test the importance of these pathways in RGC death after excitotoxic injury, the excitotoxin N-methyl-D-aspartate (NMDA) was intravitreally injected into mice deficient in components of these pathways. Absence of Tnf or its canonical downstream mediator, Bid, did not confer short- or long-term protection to RGCs. Despite known activation in RGCs and a prominent role in mediating RGC death after other insults, attenuating JNK signaling did not prevent RGC death after excitotoxic insult. Additionally, deficiency of the ER stress protein DDIT3 (CHOP), which has been shown to be involved in RGC death, did not lessen NMDA induced RGC death. Furthermore, absence of both Jun (JNK’s canonical target) and Ddit3, which together provide robust, long-term protection to RGC somas after axonal insult, did not lessen RGC death. Collectively, these results indicate that the drivers of excitotoxic injury remain to be identified and/or multiple cell death pathways are activated in response to injury.
Collapse
Affiliation(s)
- Berkeley K Fahrenthold
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kimberly A Fernandes
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,The Center for Visual Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
54
|
Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic Potential of Ursolic Acid to Manage Neurodegenerative and Psychiatric Diseases. CNS Drugs 2017; 31:1029-1041. [PMID: 29098660 DOI: 10.1007/s40263-017-0474-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
55
|
Ghasemi-Kasman M, Baharvand H, Javan M. Enhanced neurogenesis in degenerated hippocampi following pretreatment with miR-302/367 expressing lentiviral vector in mice. Biomed Pharmacother 2017; 96:1222-1229. [PMID: 29174574 DOI: 10.1016/j.biopha.2017.11.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022] Open
Abstract
Astrogliosis is the main landmark of neurodegenerative diseases. In vivo reprogramming of reactive astrocytes to functional neurons opened a new horizon in regenerative medicine. However there is little evidence that show possible application of in vivo reprogramming approaches for enhancement of neurogenesis. Cluster miR-302/367 showed high capability in cell reprogramming. Here we show that application of lentiviral particles expressing cluster miR-302/367 along with systemic valproate (VPA) enhanced the capability of mice brains for neurogenesis in CA3 area following kainic acid (KA) induced hippocampal neurodegeneration. Following pretreatment with miR-302/367 expressing viral particles and VPA, transduced cells showed neuroblast and mature neuron markers when neuronal loss was induced by KA. Comparing the neuron counts in CA3 region also showed that neurogenesis was increased in CA3 region in animals which were pretreated with miR-302/367 vector and VPA, only in injected side of the brain. Our data suggest that targeted application of miR-302/367 expressing vector may enhance the capacity of hippocampus and other brain structures for regeneration following neuronal loss.
Collapse
Affiliation(s)
- Maryam Ghasemi-Kasman
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
56
|
Martinez-Moreno CG, Fleming T, Carranza M, Ávila-Mendoza J, Luna M, Harvey S, Arámburo C. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp Eye Res 2017; 166:1-12. [PMID: 29030174 DOI: 10.1016/j.exer.2017.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 10/08/2017] [Indexed: 01/20/2023]
Abstract
There is increasing evidence to suggest a beneficial neuroprotective effect of growth hormone (GH) in the nervous system. While our previous studies have largely focused on retinal ganglion cells (RGCs), we have also found conclusive evidence of a pro-survival effect of GH in cells of the inner nuclear layer (INL) as well as a protective effect on the dendritic trees of the inner plexiform layer (IPL) in the retina. The administration of GH in primary neuroretinal cell cultures protected and induced neural outgrowths. Our results, both in vitro (embryo) and in vivo (postnatal), showed neuroprotective actions of GH against kainic acid (KA)-induced excitotoxicity in the chicken neuroretina. Intravitreal injections of GH restored brain derived neurotrophic factor (BDNF) expression in retinas treated with KA. In addition, we demonstrated that GH over-expression and exogenous administration increased BDNF and neurotrophin-3 (NT3) gene expression in embryonic neuroretinal cells. Thus, GH neuroprotective actions in neural tissues may be mediated by a complex cascade of neurotrophins and growth factors which have been classically related to damage prevention and neuroretinal tissue repair.
Collapse
Affiliation(s)
- C G Martinez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - T Fleming
- Department of Physiology, University of Alberta, Edmonton, T6G 2H7, Canada
| | - M Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - J Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - M Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - S Harvey
- Department of Physiology, University of Alberta, Edmonton, T6G 2H7, Canada
| | - C Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
57
|
Zhao Y, Zhang M, Liu H, Wang J. Signaling by growth/differentiation factor 5 through the bone morphogenetic protein receptor type IB protects neurons against kainic acid-induced neurodegeneration. Neurosci Lett 2017; 651:36-42. [PMID: 28458020 DOI: 10.1016/j.neulet.2017.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta (TGF-β) superfamily, has been shown to protect rat dopaminergic neurons against insult both in embryonic neuronal culture and in Parkinson's disease models. However, whether GDF-5 exerts neuroprotective effects in hippocampal neurons is unclear. Here, we show that both mRNA levels and protein levels of GDF-5 are decreased in the mouse hippocampus upon kainic acid (KA) treatment. KA induced dramatic neuronal loss specifically in the cornu ammonis 1 (CA1) and CA3 areas of the mouse hippocampus, while intracerebral infusion of GDF-5 prevented this neuronal loss. The neuroprotective effects of GDF-5 were recapitulated by constitutively active bone morphogenetic protein type IB receptor (BMPRIB-CA) and could be blocked by BMPRI kinase inhibitor LDN-193189. Furthermore, the neuroprotective effects of GDF-5 were mediated through the prevention of apoptosis, which was indicated by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining and reduced cleaved caspase 3 expression level. Thus, we conclude that GDF-5 protects hippocampal neurons against KA-induced neurodegeneration by signaling through BMPRIB, suggesting a therapeutic potential for GDF-5 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuanzheng Zhao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Min Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Hengfang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
58
|
TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. J Neurosci 2017; 37:1772-1784. [PMID: 28077724 DOI: 10.1523/jneurosci.2459-16.2017] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/26/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022] Open
Abstract
Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which is expressed on myeloid cells including microglia in the CNS, has recently been identified as a risk factor for Alzheimer's disease (AD). TREM2 transmits intracellular signals through its transmembrane binding partner DNAX-activating protein 12 (DAP12). Homozygous mutations inactivating TREM2 or DAP12 lead to Nasu-Hakola disease; however, how AD risk-conferring variants increase AD risk is not clear. To elucidate the signaling pathways underlying reduced TREM2 expression or loss of function in microglia, we respectively knocked down and knocked out the expression of TREM2 in in vitro and in vivo models. We found that TREM2 deficiency reduced the viability and proliferation of primary microglia, reduced microgliosis in Trem2-/- mouse brains, induced cell cycle arrest at the G1/S checkpoint, and decreased the stability of β-catenin, a key component of the canonical Wnt signaling pathway responsible for maintaining many biological processes, including cell survival. TREM2 stabilized β-catenin by inhibiting its degradation via the Akt/GSK3β signaling pathway. More importantly, treatment with Wnt3a, LiCl, or TDZD-8, which activates the β-catenin-mediated Wnt signaling pathway, rescued microglia survival and microgliosis in Trem2-/- microglia and/or in Trem2-/- mouse brain. Together, our studies demonstrate a critical role of TREM2-mediated Wnt/β-catenin pathway in microglial viability and suggest that modulating this pathway therapeutically may help to combat the impaired microglial survival and microgliosis associated with AD.SIGNIFICANCE STATEMENT Mutations in the TREM2 (Triggering Receptor Expressed on Myeloid cells 2) gene are associated with increased risk for Alzheimer's disease (AD) with effective sizes comparable to that of the apolipoprotein E (APOE) ε4 allele, making it imperative to understand the molecular pathway(s) underlying TREM2 function in microglia. Our findings shed new light on the relationship between TREM2/DNAX-activating protein 12 (DAP12) signaling and Wnt/β-catenin signaling and provide clues as to how reduced TREM2 function might impair microglial survival in AD pathogenesis. We demonstrate that TREM2 promotes microglial survival by activating the Wnt/β-catenin signaling pathway and that it is possible to restore Wnt/β-catenin signaling when TREM2 activity is disrupted or reduced. Therefore, we demonstrate the potential for manipulating the TREM2/β-catenin signaling pathway for the treatment of AD.
Collapse
|
59
|
Kim J, Lee S, Kang S, Kim SH, Kim JC, Yang M, Moon C. Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration. Neural Regen Res 2017; 12:1733-1741. [PMID: 29171440 PMCID: PMC5696856 DOI: 10.4103/1673-5374.217353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotoxicity induced by stress, radiation, chemicals, or metabolic diseases, is commonly associated with excitotoxicity, oxidative stress, and neuroinflammation. The pathological process of neurotoxicity induces neuronal death, interrupts synaptic plasticity in the brain, and is similar to that of diverse neurodegenerative diseases. Animal models of neurotoxicity have revealed that clinical symptoms and brain lesions can recover over time via neuroregenerative processes. Specifically, brain-derived neurotropic factor (BDNF) and gamma-aminobutyric acid (GABA)-ergic transmission are related to both neurodegeneration and neuroregeneration. This review summarizes the accumulating evidences that suggest a pathogenic role of BDNF and GABAergic transmission, their underlying mechanisms, and the relationship between BDNF and GABA in neurodegeneration and neuroregeneration. This review will provide a comprehensive overview of the underlying mechanisms of neuroregeneration that may help in developing potential strategies for pharmacotherapeutic approaches to treat neurotoxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
60
|
Keller B, García-Sevilla JA. Inhibitory effects of imidazoline receptor ligands on basal and kainic acid-induced neurotoxic signalling in mice. J Psychopharmacol 2016; 30:875-86. [PMID: 27302941 DOI: 10.1177/0269881116652579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This in vivo study assessed the potential of the imidazoline receptor (IR) ligands moxonidine (selective I1-IR), BU224 (selective I2-IR) and LSL61122 (mixed I1/I2-IR) to dampen excitotoxic signalling induced by kainic acid (KA; 45 mg/kg) in the mouse brain (hippocampus and cerebral cortex). KA triggered a strong behavioural syndrome (seizures; maximal at 60-90 minutes) and sustained stimulation (at 72 hours with otherwise normal mouse behaviour) of pro-apoptotic c-Jun-N-terminal kinases (JNK) and calpain with increased cleavage of p35 into neurotoxic p25 (cyclin-dependent kinase 5 [Cdk5] activators) in mouse hippocampus. Pretreatment (five days) with LSL61122 (10 mg/kg), but not moxonidine (1 mg/kg) or BU224 (20 mg/kg), attenuated the KA-induced behavioural syndrome, and all three IR ligands inhibited JNK and calpain activation, as well as p35/p25 cleavage after KA in the hippocampus (effects also observed after acute IR drug treatments). Efaroxan (I1-IR, 10 mg/kg) and idazoxan (I2-IR, 10 mg/kg), postulated IR antagonists, did not antagonise the effects of moxonidine and LSL61122 on KA targets (these IR ligands showed agonistic properties inhibiting pro-apoptotic JNK). Brain subcellular preparations revealed reduced synaptosomal postsynaptic density-95 protein contents (a mediator of JNK activation) and indicated increased p35/Cdk5 complexes (with pro-survival functions) after treatment with moxonidine, BU224 and LSL61122. These results showed that I1- and I2-IR ligands (moxonidine and BU224), and especially the mixed I1/I2-IR ligand LSL61122, are partly neuroprotective against KA-induced excitotoxic signalling. These findings suggest a therapeutic potential of IR drugs in disorders associated with glutamate-mediated neurodegeneration.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS-IdISPa, University of the Balearic Islands (UIB), Palma de Mallorca, Spain Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
61
|
Reyes-Mendoza J, Morales T. Post-treatment with prolactin protects hippocampal CA1 neurons of the ovariectomized female rat against kainic acid-induced neurodegeneration. Neuroscience 2016; 328:58-68. [DOI: 10.1016/j.neuroscience.2016.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
62
|
Lin TY, Lu CW, Wang SJ. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats. Neurotoxicology 2016; 55:48-57. [DOI: 10.1016/j.neuro.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
63
|
Li F, Liu L. SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2. Front Cell Neurosci 2016; 10:171. [PMID: 27445698 PMCID: PMC4922023 DOI: 10.3389/fncel.2016.00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and serious neurological disorder characterized by occurrence of recurrent spontaneous seizures, and emerging evidences support the association of mitochondrial dysfunction with epilepsy. Sirtuin 5 (SIRT5), localized in mitochondrial matrix, has been considered as an important functional modulator of mitochondria that contributes to ageing and neurological diseases. Our data shows that SIRT5 deficiency strikingly increased mortality rate and severity of response to epileptic seizures, dramatically exacerbated hippocampal neuronal loss and degeneration in mice exposed to Kainate (KA), and triggered more severe reactive astrogliosis. We found that the expression of mitochondrial SIRT5 of injured hippocampus was relatively up-regulated, indicating its potential contribution to the comparably increased survival of these cells and its possible neuroprotective role. Unexpectedly, SIRT5 seems not to apparently alter the decline of antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase (GPx) in hippocampus caused by KA exposure in our paradigm, which indicates the protective role of SIRT5 on seizures and cellular degeneration might through different regulatory mechanism that would be explored in the future. In the present study, we provided strong evidences for the first time to demonstrate the association between SIRT5 and epilepsy, which offers a new understanding of the roles of SIRT5 in mitochondrial functional regulation. The neuroprotection of SIRT5 in KA-induced epileptic seizure and neurodegeneration will improve our current knowledge of the nature of SIRT5 in central nervous system (CNS) and neurological diseases.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pharmacy, Linyi Tumor Hospital Linyi, Shandong, China
| | - Lei Liu
- Department of Anesthesiology, University of FloridaGainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesville, FL, USA
| |
Collapse
|
64
|
Najyb O, Do Carmo S, Alikashani A, Rassart E. Apolipoprotein D Overexpression Protects Against Kainate-Induced Neurotoxicity in Mice. Mol Neurobiol 2016; 54:3948-3963. [PMID: 27271124 PMCID: PMC7091089 DOI: 10.1007/s12035-016-9920-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/03/2016] [Indexed: 01/23/2023]
Abstract
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer's and Parkinson's. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-D-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Sonia Do Carmo
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Azadeh Alikashani
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC, H3C-3P8, Canada.
| |
Collapse
|
65
|
Ghadimkhani M, Saboory E, Roshan-Milani S, Mohammdi S, Rasmi Y. Effect of magnesium sulfate on hyperthermia and pentylen-tetrazol-induced seizure in developing rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:608-14. [PMID: 27482341 PMCID: PMC4951599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVES Febrile seizures (FS) are the most common type of convulsive events among children. Its prevalence has been estimated to be 2-5% in children between 3 months and 5 years old. Also, blood and CSF magnesium levels have been demonstrated to be reduced in children with FS. This study investigates the effect of MgSo4 pretreatment on the behaviors caused by hyperthermia (HT) and effect of these two on pentylen-tetrazol (PTZ)-induced seizure later in life. MATERIALS AND METHODS Thirty two Wistar rats were assigned to 2 groups: saline-hyperthermia-pentylentetrazol (SHP) and magnesium-hyperthermia-pentylentetrazol (MHP). In both groups, HT was induced at the age of 18-19 days old. Before the HT, MHP group received MgSo4 and SHP group received normal saline intraperitoneally (IP). Behaviors of the rats were recorded during the HT. Then, in half of each group (n=8) at the age of 25-26 days old and in other half at the age of 78-79 days, seizure was induced by PTZ. RESULTS The HT successfully caused convulsive behaviors in the rats and pretreatment with MgSo4 before HT attenuated HT-induced convulsive behaviors. PTZ-induced seizures a week later was more severe than those of 2 months later. CONCLUSION It can be concluded that pretreatment with MgSO4 inhibits HT-induced seizure and, in a long run, this intervention reduced PTZ-induced seizure later in life.
Collapse
Affiliation(s)
- Maryam Ghadimkhani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran,Corresponding author: Ehsan Saboory. Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. Tel: +98-443-2770698; Fax: +98-443-2780801; ;
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sedra Mohammdi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
66
|
Shamir C, Venugopal C, Dhanushkodi A. Dental pulp stem cells for treating neurodegenerative diseases. Neural Regen Res 2016; 10:1910-1. [PMID: 26889163 PMCID: PMC4730799 DOI: 10.4103/1673-5374.169629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Christopher Shamir
- School of Regenerative Medicine, Manipal University, Bangalore Campus, Bangalore, India
| | - Chaitra Venugopal
- School of Regenerative Medicine, Manipal University, Bangalore Campus, Bangalore, India
| | - Anandh Dhanushkodi
- School of Regenerative Medicine, Manipal University, Bangalore Campus, Bangalore, India
| |
Collapse
|
67
|
Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972623. [PMID: 26793262 PMCID: PMC4697086 DOI: 10.1155/2015/972623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
Collapse
|
68
|
Ambers A, Turnbough M, Benjamin R, Gill-King H, King J, Sajantila A, Budowle B. Modified DOP-PCR for improved STR typing of degraded DNA from human skeletal remains and bloodstains. Leg Med (Tokyo) 2015; 18:7-12. [PMID: 26832369 DOI: 10.1016/j.legalmed.2015.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors.
Collapse
Affiliation(s)
- Angie Ambers
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, USA; Department of Biological Sciences, University of North Texas, 1511 W. Sycamore, Denton, TX, USA.
| | - Meredith Turnbough
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, USA
| | - Robert Benjamin
- Department of Biological Sciences, University of North Texas, 1511 W. Sycamore, Denton, TX, USA
| | - Harrell Gill-King
- Department of Biological Sciences, University of North Texas, 1511 W. Sycamore, Denton, TX, USA; Laboratory of Forensic Anthropology, Center for Human Identification, University of North Texas, Department of Biological Sciences, 1511 W. Sycamore, Denton, TX, USA
| | - Jonathan King
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, USA
| | - Antti Sajantila
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, USA; Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Institute of Applied Genetics, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, USA; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
69
|
Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicology 2015; 50:157-69. [PMID: 26342684 DOI: 10.1016/j.neuro.2015.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Abstract
The citrus flavonoid hesperidin exerts neuroprotective effects and could cross the blood-brain barrier. Given the involvement of glutamate neurotoxicity in the pathogenesis of neurodegenerative disorders, this study was conducted to evaluate the potential role of hesperidin in glutamate release and glutamate neurotoxicity in the hippocampus of rats. In rat hippocampal nerve terminals (synaptosomes), hesperidin inhibited the release of glutamate and elevation of cytosolic free Ca(2+) concentration evoked by 4-aminopyridine (4-AP), but did not alter 4-AP-mediated depolarization. The inhibitory effect of hesperidin on evoked glutamate release was prevented by chelating the extracellular Ca(2+) ions and blocking the activity of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels or protein kinase C. In hippocampal slice preparations, whole-cell patch clamp experiments showed that hesperidin reduced the frequency of spontaneous excitatory postsynaptic currents without affecting their amplitude, indicating the involvement of a presynaptic mechanism. In addition, intraperitoneal (i.p.) injection of kainic acid (KA, 15 mg/kg) elevated the extracellular glutamate levels and caused considerable neuronal loss in the hippocampal CA3 area. These KA-induced alterations were attenuated by pretreatment with hesperidin (10 or 50 mg/kg, i.p.) before administering the KA. These results demonstrate that hesperidin inhibits evoked glutamate release in vitro and attenuates in vivo KA-induced neuronal death in the hippocampus. Our findings indicate that hesperidin may be a promising candidate for preventing or treating glutamate excitotoxicity related brain disorders such as neurodegenerative diseases.
Collapse
|
70
|
Lobanovskaya N, Zharkovsky T, Jaako K, Jürgenson M, Aonurm-Helm A, Zharkovsky A. PSA modification of NCAM supports the survival of injured retinal ganglion cells in adulthood. Brain Res 2015; 1625:9-17. [PMID: 26319680 DOI: 10.1016/j.brainres.2015.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/25/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022]
Abstract
Neural cell adhesion molecule (NCAM) is known as the cell surface glycoprotein, and it belongs to the immunoglobulin superfamily of adhesion molecules. Polysialic acid (PSA) is a carbohydrate attached to NCAM via either of two specific sialyltransferases: ST8SiaII and ST8SiaIV. Polysialylated neural cell adhesion molecule (PSA-NCAM) mediates cell interactions, plays a role in axon growth, migration, synaptic plasticity during development and cell regeneration. Some evidence has shown that PSA-NCAM supports the survival of neurons. It was demonstrated that PSA-NCAM is present in abundance in the retina during development and in adulthood. The aim of this study was to investigate whether PSA-NCAM promotes retinal ganglion cell (RGC) survival in transgenic mice with deficiencies in sialyltransferases or NCAM or after the administration of endoneuraminidase (Endo-N). RGC injury was induced by intravitreal administration of kainic acid (KA). These studies showed that injection of Endo-N after 14 days enhances the toxicity of KA to RGCs in wild-type (WT) mice by 18%. In contrast, in knockout mice (ST8SiaII-/-, ST8SiaIV-/-, NCAM-/-), survival of RGCs after KA injury did not change. Deficiencies of either ST8SiaII or ST8SiaIV did not influence the level of PSA-NCAM in the adult retina, however, in neonatal animals, decreased levels of PSA-NCAM were observed. In knockout ST8SiaII-/- adults, a reduced number of RGCs was detected, whereas in contrast, increased numbers of RGCs were noted in NCAM-/- mice. In conclusion, these data demonstrate that PSA-NCAM supports the survival of injured RGCs in adulthood. However, the role of PSA-NCAM in the adult retina requires further clarification.
Collapse
Affiliation(s)
- Natalia Lobanovskaya
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Tamara Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| |
Collapse
|
71
|
Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry. PLoS One 2015; 10:e0131705. [PMID: 26161754 PMCID: PMC4498886 DOI: 10.1371/journal.pone.0131705] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
The C57BL/6J mouse as a model of seizure/epilepsy is challenging due to high mortality and huge variability in response to kainate. We have recently demonstrated that repeated administration of a low dose of kainate by intraperitoneal route can induce severe status epilepticus (SE) with 94% survival rate. In the present study, based on continuous video-EEG recording for 4-18 weeks from epidurally implanted electrodes on the cortex, we demonstrate that this method also induces immediate epileptogenesis (<1-5 days post-SE). This finding was based on identification of two types of spontaneous recurrent seizures; behavioral convulsive seizures (CS) and electrographic nonconvulsive seizures (NCS). The identification of the spontaneous CS, stage 3-5 types, was based on the behaviors (video) that were associated with the EEG characteristics (stage 3-5 epileptiform spikes), the power spectrum, and the activity counts. The electrographic NCS identification was based on the stage 1-2 epileptiform spike clusters on the EEG and their associated power spectrum. Severe SE induced immediate epileptogenesis in all the mice. The maximum numbers of spontaneous CS were observed during the first 4-6 weeks of the SE and they decreased thereafter. Mild SE also induced immediate epileptogenesis in some mice but the CS were less frequent. In both the severe and the mild SE groups, the spontaneous electrographic NCS persisted throughout the 18 weeks observation period, and therefore this could serve as a chronic model for complex seizures. However, unlike rat kainate models, the C57BL/6J mouse kainate model is a unique regressive CS model of epilepsy. Further studies are required to understand the mechanism of recovery from spontaneous CS in this model, which could reveal novel therapeutic targets for epilepsy.
Collapse
|
72
|
Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:354326. [PMID: 26124853 PMCID: PMC4466392 DOI: 10.1155/2015/354326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 01/21/2023]
Abstract
Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α (TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampus in vivo.
Collapse
|
73
|
Jaeger C, Glaab E, Michelucci A, Binz TM, Koeglsberger S, Garcia P, Trezzi JP, Ghelfi J, Balling R, Buttini M. The mouse brain metabolome: region-specific signatures and response to excitotoxic neuronal injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1699-712. [PMID: 25934215 DOI: 10.1016/j.ajpath.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies.
Collapse
Affiliation(s)
- Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tina M Binz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sandra Koeglsberger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Pierre Trezzi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
74
|
Minutoli L, Marini H, Rinaldi M, Bitto A, Irrera N, Pizzino G, Pallio G, Calò M, Adamo EB, Trichilo V, Interdonato M, Galfo F, Squadrito F, Altavilla D. A Dual Inhibitor of Cyclooxygenase and 5-Lipoxygenase Protects Against Kainic Acid-Induced Brain Injury. Neuromolecular Med 2015; 17:192-201. [PMID: 25893744 DOI: 10.1007/s12017-015-8351-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
75
|
Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One 2015; 10:e0120554. [PMID: 25789768 PMCID: PMC4366112 DOI: 10.1371/journal.pone.0120554] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. METHODOLOGY/PRINCIPAL FINDINGS We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. CONCLUSION Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.
Collapse
Affiliation(s)
- Navjot Shah
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Rumani Singh
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Upasana Sarangi
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Nishant Saxena
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Anupama Chaudhary
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sunil C. Kaul
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
- * E-mail: (RW); (SCK)
| | - Renu Wadhwa
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
- * E-mail: (RW); (SCK)
| |
Collapse
|
76
|
Castro-Torres RD, Chaparro-Huerta V, Flores-Soto ME, Jave-Suárez L, Camins A, Armendáriz-Borunda J, Beas-Zárate C, Mena-Munguía S. Pirfenidone Attenuates Microglial Reactivity and Reduces Inducible Nitric Oxide Synthase mRNA Expression After Kainic Acid-Mediated Excitotoxicity in Pubescent Rat Hippocampus. J Mol Neurosci 2015; 56:245-54. [DOI: 10.1007/s12031-015-0509-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022]
|
77
|
Fukuda M, Hino H, Suzuki Y, Takahashi H, Morimoto T, Ishii E. Postnatal interleukin-1β enhances adulthood seizure susceptibility and neuronal cell death after prolonged experimental febrile seizures in infantile rats. Acta Neurol Belg 2014; 114:179-85. [PMID: 24002650 DOI: 10.1007/s13760-013-0246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/14/2013] [Indexed: 12/30/2022]
Abstract
Febrile seizures (FS) are recognized as an antecedent to the development of temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), but it is unclear whether prolonged FS are a direct cause of TLE-HS. Here, we used a rat model of infantile FS to study the effects of inflammatory cytokines on seizure susceptibility and neuronal death in adults. Prolonged hyperthermia-induced seizures (pHS) were induced in male Lewis rats at post natal day (P) 10. Cytokines were administered twice intranasally, once immediately after pHS and once the following day. The effects of intranasal interleukin (IL)-1β or tumor necrosis factor (TNF) α were tested in rats undergoing a single episode of pHS (P10) and in rats undergoing repeated pHS (P10 and P12). Seizure susceptibility was tested at P70-73 by quantifying the seizure onset time (SOT) after kainic acid administration, and neuronal cell injury and gliosis in adulthood. SOT significantly reduced in rats receiving IL-1β together with repeated pHS, whereas no significant effects were seen in rats receiving IL-1β after a single pHS episode, or in rats receiving TNFα. Hippocampal neuronal cell loss was observed in the CA3 region of rats receiving IL-1β together with repeated pHS; however, there was no significant change in gliosis among each group. Our results are consistent with the hypothesis that excessive production of IL-1β after repeated prolonged FS can enhance adult seizure susceptibility and neuronal cell death, and might contribute to the development of TLE-HS.
Collapse
Affiliation(s)
- Mitsumasa Fukuda
- Department of Pediatrics, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan,
| | | | | | | | | | | |
Collapse
|
78
|
Swamy M, Suhaili D, Sirajudeen KNS, Mustapha Z, Govindasamy C. Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:48-53. [PMID: 25395704 DOI: 10.4314/ajtcam.v11i5.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA). MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant. RESULTS The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA. CONCLUSION Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mummedy Swamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Dian Suhaili
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - K N S Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zulkarnain Mustapha
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chandran Govindasamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
79
|
Xu K, Zhang Y, Wang Y, Ling P, Xie X, Jiang C, Zhang Z, Lian XY. Ginseng Rb fraction protects glia, neurons and cognitive function in a rat model of neurodegeneration. PLoS One 2014; 9:e101077. [PMID: 24971630 PMCID: PMC4074135 DOI: 10.1371/journal.pone.0101077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
The loss and injury of neurons play an important role in the onset of various neurodegenerative diseases, while both microgliosis and astrocyte loss or dysfunction are significant causes of neuronal degeneration. Previous studies have suggested that an extract enriched panaxadiol saponins from ginseng has more neuroprotective potential than the total saponins of ginseng. The present study investigated whether a fraction of highly purified panaxadiol saponins (termed as Rb fraction) was protective for both glia and neurons, especially GABAergic interneurons, against kainic acid (KA)-induced excitotoxicity in rats. Rats received Rb fraction at 30 mg/kg (i.p.), 40 mg/kg (i.p. or saline followed 40 min later by an intracerebroventricular injection of KA. Acute hippocampal injury was determined at 48 h after KA, and impairment of hippocampus-dependent learning and memory as well as delayed neuronal injury was determined 16 to 21 days later. KA injection produced significant acute hippocampal injuries, including GAD67-positive GABAergic interneuron loss in CA1, paralbumin (PV)-positive GABAergic interneuron loss, pyramidal neuron degeneration and astrocyte damage accompanied with reactive microglia in both CA1 and CA3 regions of the hippocampus. There was also a delayed loss of GAD67-positive interneurons in CA1, CA3, hilus and dentate gyrus. Microgliosis also became more severe 21 days later. Accordingly, KA injection resulted in hippocampus-dependent spatial memory impairment. Interestingly, the pretreatment with Rb fraction at 30 or 40 mg/kg significantly protected the pyramidal neurons and GABAergic interneurons against KA-induced acute excitotoxicity and delayed injury. Rb fraction also prevented memory impairments and protected astrocytes from KA-induced acute excitotoxicity. Additionally, microglial activation, especially the delayed microgliosis, was inhibited by Rb fraction. Overall, this study demonstrated that Rb fraction protected both astrocytes and neurons, especially GABAergic interneurons, and maintained microglial homeostasis against KA-induced excitotoxicity. Therefore, Rb fraction has the potential to prevent and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangning Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yufen Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peng Ling
- Anhui University of Chinese Medicine, Hefei, China
| | - Xin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenyao Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhizhen Zhang
- Ocean College, Zhejiang University, Hangzhou, China
- * E-mail: (XYL); (ZZZ)
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XYL); (ZZZ)
| |
Collapse
|
80
|
Pitter KL, Tamagno I, Feng X, Ghosal K, Amankulor N, Holland EC, Hambardzumyan D. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia 2014; 62:1595-607. [PMID: 24895267 DOI: 10.1002/glia.22702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/29/2022]
Abstract
In response to neurodegeneration, the adult mammalian brain activates a cellular cascade that results in reactive astrogliosis and microgliosis. The mechanism through which astrocytes become reactive and the physiological consequences of their activation in response to neurodegeneration is complex. While the activation and proliferation of astrocytes has been shown to occur during massive neuronal cell death, the functional relationship between these two events has not been clearly elucidated. Here we show that in response to kainic acid- (KA) induced neurodegeneration, the mitogen sonic hedgehog (SHH) is upregulated in reactive astrocytes. SHH activity peaks at 7 days and is accompanied by increased Gli activity and elevated proliferation in several cell types. To determine the functional role of SHH-Gli signaling following KA lesions, we used a pharmacological approach to show that SHH secreted by astrocytes drives the activation and proliferation of astrocytes and microglia. The consequences of SHH-Gli signaling in KA-induced lesions appear to be independent of the severity of neurodegeneration.
Collapse
Affiliation(s)
- Kenneth L Pitter
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York; The Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | |
Collapse
|
81
|
Advantages of repeated low dose against single high dose of kainate in C57BL/6J mouse model of status epilepticus: behavioral and electroencephalographic studies. PLoS One 2014; 9:e96622. [PMID: 24802808 PMCID: PMC4011859 DOI: 10.1371/journal.pone.0096622] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
A refined kainate (KA) C57BL/6J mouse model of status epilepticus (SE) using a repeated low dose (RLD) of KA (5 mg/kg, intraperitoneal; at 30 min intervals) was compared with the established single high dose (SHD) of KA (20 mg/kg, intraperitoneal) model. In the RLD group, increased duration of convulsive motor seizures (CMS, Racine scale stage ≥3) with a significant reduction in mortality from 21% to 6% and decreased variability in seizure severity between animals/batches were observed when compared to the SHD group. There was a significant increase in the percentage of animals that reached stage-5 seizures (65% versus 96%) in the RLD group. Integrated real-time video-EEG analysis of both groups, using NeuroScore software, revealed stage-specific spikes and power spectral density characteristics. When the seizures progressed from non-convulsive seizures (NCS, stage 1-2) to CMS (stage 3-5), the delta power decreased which was followed by an increase in gamma and beta power. A transient increase in alpha and sigma power marked the transition from NCS to CMS with characteristic 'high frequency trigger' spikes on the EEG, which had no behavioral expression. During SE the spike rate was higher in the RLD group than in the SHD group. Overall these results confirm that RLD of KA is a more robust and consistent mouse model of SE than the SHD of KA mouse model.
Collapse
|
82
|
Bolea I, Colivicchi MA, Ballini C, Marco-Contelles J, Tipton KF, Unzeta M, Della Corte L. Neuroprotective effects of the MAO-B inhibitor, PF9601N, in an in vivo model of excitotoxicity. CNS Neurosci Ther 2014; 20:641-50. [PMID: 24767579 DOI: 10.1111/cns.12271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/18/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND PF9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is an inhibitor of monoamine oxidase B (MAO-B), which has shown to possess neuroprotective properties in several in vitro and in vivo models of Parkinson's disease (PD). As there is evidence that excitotoxicity may be implicated in the pathophysiology of several neurodegenerative diseases, the aim of the present work was to investigate the effects of PF9601N in an acute in vivo model of excitotoxicity induced by the local administration of kainic acid during striatal microdialysis in adult rats. METHODS The basal and evoked release of neurotransmitters was monitored by HPLC analysis of microdialysate samples and tissue damage was evaluated histologically "ex vivo." RESULTS PF9601N (40 mg/kg, single i.p. administration) reduced the kainate-evoked release of glutamate and aspartate and increased taurine release, but it had no effect on the release of dopamine, DOPAC, and HVA. PF9601N pretreatment also resulted in a significant reduction in the kainate-induced astrocytosis, microgliosis, and apoptosis. CONCLUSIONS The results suggest PF9601N to be a good candidate for the treatment of neurodegenerative diseases mediated by excitotoxicity.
Collapse
Affiliation(s)
- Irene Bolea
- Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Dipartimento di Neuroscienze, Psicologia Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
83
|
Koncz I, Szász BK, Szabó SI, Kiss JP, Mike A, Lendvai B, Sylvester Vizi E, Zelles T. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Res Bull 2014; 104:42-51. [PMID: 24742525 DOI: 10.1016/j.brainresbull.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- István Koncz
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Bernadett K Szász
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd I Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Arpád Mike
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Hungary
| | - E Sylvester Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
84
|
Marques R, Maia CJ, Vaz C, Correia S, Socorro S. The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cell Mol Life Sci 2014; 71:93-111. [PMID: 23519827 PMCID: PMC11113322 DOI: 10.1007/s00018-013-1323-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023]
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein widely expressed in vertebrate and invertebrate species, which is also known as senescence marker protein 30, due to its molecular weight (33 kDa) and a characteristically diminished expression with the aging process. RGN regulates intracellular Ca(2+) homeostasis and the activity of several proteins involved in intracellular signalling pathways, namely, kinases, phosphatases, phosphodiesterase, nitric oxide synthase and proteases, which highlights its importance in cell biology. In addition, RGN has cytoprotective effects reducing intracellular levels of oxidative stress, also playing a role in the control of cell survival and apoptosis. Multiple factors have been identified regulating the cell levels of RGN transcripts and protein, and an altered expression pattern of this interesting protein has been found in cases of reproductive disorders, neurodegenerative diseases and cancer. Moreover, RGN is a serum-secreted protein, and its levels have been correlated with the stage of disease, which strongly suggests the usefulness of this protein as a potential biomarker for monitoring disease onset and progression. The present review aims to discuss the available information concerning RGN expression and function in distinct cell types and tissues, integrating cellular and molecular mechanisms in the context of normal and pathological conditions. Insight into the cellular actions of RGN will be a key step towards deepening the knowledge of the biology of several human diseases.
Collapse
Affiliation(s)
- Ricardo Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia Vaz
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sara Correia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
85
|
A Single Dose of Pirfenidone Attenuates Neuronal Loss and Reduces Lipid Peroxidation after Kainic Acid-Induced Excitotoxicity in the Pubescent Rat Hippocampus. J Mol Neurosci 2013; 52:193-201. [DOI: 10.1007/s12031-013-0121-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023]
|
86
|
Proregenerative properties of ECM molecules. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981695. [PMID: 24195084 PMCID: PMC3782155 DOI: 10.1155/2013/981695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
After traumatic injuries to the nervous system, regrowing axons encounter a complex microenvironment where mechanisms that promote regeneration compete with inhibitory processes. Sprouting and axonal regrowth are key components of functional recovery but are often counteracted by inhibitory molecules. This review covers extracellular matrix molecules that support neuron axonal outgrowth.
Collapse
|
87
|
Park J, Kwon K, Kim SH, Yi MH, Zhang E, Kong G, Kim DW, Park J. Astrocytic phosphorylation of PDK1 on Tyr9 following an excitotoxic lesion in the mouse hippocampus. Brain Res 2013; 1533:37-43. [PMID: 23973607 DOI: 10.1016/j.brainres.2013.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
3-phosphoinositide-dependent kinase-1 (PDK1) is suggested to play important roles in the regulation of synaptic plasticity and neuronal cell survival in the mature CNS. Although few studies have investigated the roles of PDK1, little is known about PDK1 changes in glial cells under neuropathological conditions. In current report, phosphorylation of PDK1 was monitored specially on tyrosine residues, following the induction of an excitotoxic lesion in rat brain by using kainic acid administration. In injured hippocampal CA3 region, Tyr9 phosphorylation of PDK1 was increased from 4h until 3 day post-injection. Double immunohistochemistry further evaluated that these phosphorylated forms of PDK1 were localized in astrocytes not other cells. Overexpression of unphosphorylatable mutant, PDK1-Y9F leads to inhibit Protein kinase B (PKB/Akt) activation and cAMP responsive element binding protein (CREB) phosphorylation. In conclusion, our results suggested for the first time that tyrosine phosphorylation of PDK1 is required for PKB and CREB activation in KA-mediated excitotoxic lesion in mouse brain.
Collapse
Affiliation(s)
- Jisoo Park
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, 301-747, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Harhausen D, Sudmann V, Khojasteh U, Müller J, Zille M, Graham K, Thiele A, Dyrks T, Dirnagl U, Wunder A. Specific imaging of inflammation with the 18 kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One 2013; 8:e69529. [PMID: 23936336 PMCID: PMC3732268 DOI: 10.1371/journal.pone.0069529] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Inflammation is a pathophysiological hallmark of many diseases of the brain. Specific imaging of cells and molecules that contribute to cerebral inflammation is therefore highly desirable, both for research and in clinical application. The 18 kDa translocator protein (TSPO) has been established as a suitable target for the detection of activated microglia/macrophages. A number of novel TSPO ligands have been developed recently. Here, we evaluated the high affinity TSPO ligand DPA-714 as a marker of brain inflammation in two independent animal models. For the first time, the specificity of radiolabeled DPA-714 for activated microglia/macrophages was studied in a rat model of epilepsy (induced using Kainic acid) and in a mouse model of stroke (transient middle cerebral artery occlusion, tMCAO) using high-resolution autoradiography and immunohistochemistry. Additionally, cold-compound blocking experiments were performed and changes in blood-brain barrier (BBB) permeability were determined. Target-to-background ratios of 2 and 3 were achieved in lesioned vs. unaffected brain tissue in the epilepsy and tMCAO models, respectively. In both models, ligand uptake into the lesion corresponded well with the extent of Ox42- or Iba1-immunoreactive activated microglia/macrophages. In the epilepsy model, ligand uptake was almost completely blocked by pre-injection of DPA-714 and FEDAA1106, another high-affinity TSPO ligand. Ligand uptake was independent of the degree of BBB opening and lesion size in the stroke model. We provide further strong evidence that DPA-714 is a specific ligand to image activated microglia/macrophages in experimental models of brain inflammation.
Collapse
Affiliation(s)
- Denise Harhausen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Magnesium Lithospermate B Protects Neurons from N-Methyl-d-Aspartic Acid Injury and Attenuates Kainic Acid-Induced Neurodegeration in FVB Mice. J Mol Neurosci 2013; 51:550-7. [DOI: 10.1007/s12031-013-0023-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
|
90
|
Gosselin D, Bellavance MA, Rivest S. IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults. Front Cell Neurosci 2013; 7:9. [PMID: 23423359 PMCID: PMC3573345 DOI: 10.3389/fncel.2013.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/28/2013] [Indexed: 01/11/2023] Open
Abstract
Excitotoxicity is a major component of neurodegenerative diseases and is typically accompanied by an inflammatory response. Cytokines IL-1alpha and IL-1beta are key regulators of this inflammatory response and modulate the activity of numerous cell types, including neurons. IL-1RAcPb is an isoform of IL-1RAcP expressed specifically in neurons and promotes their survival during acute inflammation. Here, we investigated in vivo whether IL-1RAcPb also promotes neuronal survival in a model of excitotoxicity. Intrastriatal injection of kainic acid (KA) in mice caused a strong induction of IL-1 cytokines mRNA in the brain. The stress response of cortical neurons at 12 h post-injection, as measured by expression of Atf3, FoxO3a, and Bdnf mRNAs, was similar in WT and AcPb-deficient mice. Importantly however, a delayed upregulation in the transcription of calpastatin was significantly higher in WT than in AcPb-deficient mice. Finally, although absence of AcPb signaling had no effect on damage to neurons in the cortex at early time points, it significantly impaired their long-term survival. These data suggest that in a context of excitotoxicity, stimulation of IL-1RAcPb signaling may promote the activity of a key neuroprotective mechanism.
Collapse
Affiliation(s)
- David Gosselin
- Faculty of Medicine, Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Laval University Quebec City, QC, Canada
| | | | | |
Collapse
|
91
|
Szaroma W, Dziubek K, Greń A, Kreczmer B, Kapusta E. Influence of the kainic acid on antioxidant status in the brain, liver and kidneys of the mouse. ACTA ACUST UNITED AC 2012; 99:447-59. [DOI: 10.1556/aphysiol.99.2012.4.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
92
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|
93
|
Glushakova OY, Jeromin A, Martinez J, Johnson D, Denslow N, Streeter J, Hayes RL, Mondello S. Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats. Toxicol Sci 2012; 130:158-67. [PMID: 22790971 DOI: 10.1093/toxsci/kfs224] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Glutamate excitotoxicity plays a key role in the etiology of a variety of neurological, psychiatric, and neurodegenerative disorders. The goal of this study was to investigate spatiotemporal distribution in the brain and cerebrospinal fluid (CSF) concentrations of ubiquitin C-terminal hydrolase-1 (UCH-L1), glial fibrillary acidic protein (GFAP), αII-spectrin breakdown products (SBDP150, SBDP145, and SBDP120), and their relationship to neuropathology in an animal model of kainic acid (KA) excitotoxicity. Triple fluorescent labeling and Fluoro-Jade C staining revealed a reactive gliosis in brain and specific localization of degenerating neurons in hippocampus and entorhinal cortex of KA-treated rats. Immunohistochemistry showed upregulation of GFAP expression in hippocampus and cortex beginning 24h post KA injection and peaking at 48h. At these time points concurrent with extensive neurodegeneration all SBDPs were observed throughout the brain. At 24h post KA injection, a loss of structural integrity was observed in cellular distribution of UCH-L1 that correlated with an increase in immunopositive material in the extracellular matrix. CSF levels of UCH-L1, GFAP, and SBDPs were significantly increased in KA-treated animals compared with controls. The temporal increase in CSF biomarkers correlated with brain tissue distribution and neurodegeneration. This study provided evidence supporting the use of CSF levels of glial and neuronal protein biomarkers to assess neurotoxic damage in preclinical animal models that could prove potentially translational to the clinic. The molecular nature of these biomarkers can provide critical information on the underlying mechanisms of neurotoxicity that might facilitate the development of novel drugs and allow physicians to monitor drug safety.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Banyan Biomarkers. Inc., 13400 Progress Blvd, Alachua, Florida 32615, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Jhaveri DJ, Taylor CJ, Bartlett PF. Activation of different neural precursor populations in the adult hippocampus: Does this lead to new neurons with discrete functions? Dev Neurobiol 2012; 72:1044-58. [DOI: 10.1002/dneu.22027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
95
|
Deprez F, Zattoni M, Mura ML, Frei K, Fritschy JM. Adoptive transfer of T lymphocytes in immunodeficient mice influences epileptogenesis and neurodegeneration in a model of temporal lobe epilepsy. Neurobiol Dis 2011; 44:174-84. [PMID: 21757006 DOI: 10.1016/j.nbd.2011.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022] Open
Abstract
Intra-hippocampal injection of kainic acid (KA) in adult mice causes a focal lesion in the CA1 area and hilus of the dentate gyrus, as well as pronounced granule cell hypertrophy and dispersion. The lesion results in chronic focal seizures, with a two-week delay following KA-induced status epilepticus. Furthermore, seizures are preceded by infiltration of T lymphocytes into the lesioned tissue and of macrophage-like cells, strongly immunopositive for the monocyte marker F4/80, into the dentate gyrus, where they regulate granule cell dispersion and survival. Unexpectedly, depletion of CD4(+) and/or CD8(+) T lymphocytes by targeted gene deletion results in a marked shortening of the delay prior to seizure onset, suggesting a role of adaptive immunity in epileptogenesis (Zattoni et al. 2011, J. Neurosci. 31, 4037). Here, we investigated the specific role of adaptive immunity in this TLE model by adoptive i.v. transfer of immunopurified T cells in mutant mice lacking either CD4(+) T cells (MHCII-knockout), CD8(+) T cells (β2-microglobulin-knockout), or both populations (RAG1-knockout mice). EEG analysis in mutants mice injected with KA two days after the T cell transfer revealed that grafting of the missing T cell population had no influence on seizure onset, but strongly influenced F4/80(+) macrophage-like cell infiltration in the dentate gyrus. Specifically, CD8(+) T cells in β2-microgloblin-knockout mice enhanced macrophage recruitment, whereas CD4(+) T cells transferred in MHCII-knockout and in RAG1-knockout mice blocked macrophage infiltration, leading to reduced granule cell dispersion and survival, thereby worsening the KA-induced lesion. These results suggest that intact adaptive immunity is required for delayed seizure onset in this mouse model of TLE and unravel complex interactions between T cells and mononuclear phagocytes for the control of neuronal integrity and survival in the lesioned brain.
Collapse
Affiliation(s)
- Francine Deprez
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
96
|
Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 2011; 58:729-38. [DOI: 10.1016/j.neuint.2011.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/02/2011] [Accepted: 03/08/2011] [Indexed: 12/29/2022]
|