51
|
Abstract
The concepts of tailored therapy according to genetic profiling and response based on minimal residual disease evaluation during therapy are attracting increasing interest in modern clinical oncology. Children with acute lymphoblastic leukemia are being stratified to various treatment arms with different intensities according to the genetic characteristics of their leukemia and their response to therapy as measured by real-time polymerase chain reaction. Our ability to quickly identify patients with Ewing sarcoma who have a poor prognosis, and to offer them aggressive therapeutic modalities, such as stem cell transplantation, may result in an improved cure rate. Based on the knowledge gained by gene expression profiling and gene silencing techniques we can expect the emergence of new specific drugs that will target malignant cells without causing damage to normal tissue, resulting in improved cancer therapy.
Collapse
Affiliation(s)
- Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel Aviv University, Petah-Tikva, Israel.
| | | |
Collapse
|
52
|
Engström K, Willén H, Kåbjörn-Gustafsson C, Andersson C, Olsson M, Göransson M, Järnum S, Olofsson A, Warnhammar E, Aman P. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1642-53. [PMID: 16651630 PMCID: PMC1606602 DOI: 10.2353/ajpath.2006.050872] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxoid/round cell liposarcoma (MLS/RCLS) is the most common subtype of liposarcoma. Most MLS/RCLS carry a t(12;16) translocation, resulting in a FUS-DDIT3 fusion gene. We investigated the role of the FUS-DDIT3 fusion in the development of MLS/RCLS in FUS-DDIT3- and DDIT3-transfected human HT1080 sarcoma cells. Cells expressing FUS-DDIT3 and DDIT3 grew as liposarcomas in severe combined immunodeficient mice and exhibited a capillary network morphology that was similar to networks of MLS/RCLS. Microarray-based comparison of HT1080, the transfected cells, and an MLS/RCLS-derived cell line showed that the FUS-DDIT3- and DDIT3-transfected variants shifted toward an MLS/RCLS-like expression pattern. DDIT3-transfected cells responded in vitro to adipogenic factors by accumulation of fat and transformation to a lipoblast-like morphology. In conclusion, because the fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype when expressed in a primitive sarcoma cell line, MLS/RCLS may develop from cell types other than preadipocytes. This may explain the preferential occurrence of MLS/RCLS in nonadipose tissues. In addition, development of lipoblasts and the typical MLS/RCLS capillary network could be an effect of the DDIT3 transcription factor partner of the fusion oncogene.
Collapse
Affiliation(s)
- Katarina Engström
- Department of Oncology, Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kreppel M, Aryee DNT, Schaefer KL, Amann G, Kofler R, Poremba C, Kovar H. Suppression of KCMF1 by constitutive high CD99 expression is involved in the migratory ability of Ewing's sarcoma cells. Oncogene 2006; 25:2795-800. [PMID: 16314831 DOI: 10.1038/sj.onc.1209300] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High CD99 expression levels and rearrangements of the EWS gene with ETS transcription factor genes characterize the Ewing's sarcoma family of tumors (ESFT). CD99 is a cell surface glycoprotein whose engagement has been implicated in cell proliferation as well as upregulation and transport of several transmembrane proteins in hematopoietic cells. In ESFT, antibody ligation of CD99 induces fast homotypic cell aggregation and cell death although its functional role in these processes remains largely unknown. Here, using an RNAi approach, we studied for the first time the consequences of modulated CD99 expression in six different ESFT cell lines, representing the most frequent variant forms of EWS gene rearrangement. CD99 suppression resulted in growth inhibition and reduced migration of ESFT cells. Among genes whose expression changes in response to CD99 modulation, the potassium-channel modulatory factor KCMF1 was consistently upregulated. In a series of 22 primary ESFT, KCMF1 expression levels inversely correlated with CD99 abundancy. Cells forced to express ectopic KCMF1 showed a similar reduction in migratory ability as CD99 silenced ESFT cells. Our results suggest that in ESFT, high CD99 expression levels contribute to the malignant properties of ESFT by promoting growth and migration of tumor cells and identify KCMF1 as a potential metastasis suppressor gene downregulated by high constitutive CD99 expression in ESFT.
Collapse
Affiliation(s)
- M Kreppel
- Children's Cancer Research Institute, Kinderspitalgasse, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Ewing's sarcoma and related tumors (ESFT) are characterized by rearrangements of EWS with ets family genes. While detection of these gene fusions greatly facilitated diagnosis, it has not provided any clues about the tissue of origin. Immunological and gene expression profiling studies favour a neuroectodermal histogenesis. These investigations did not appreciate the impact of EWS-ets proteins on the tumor phenotype. Introduction of EWS-ets into different cellular models resulted in diverse outcomes ranging from the induction of cell cycle arrest or apoptosis to transformation and tumorigenicity, and from blocked differentiation to trans-differentiation. Thus, the molecular signature of EWS-ets proteins depends on the cell type. The hen or egg problem in ESFT, therefore, is whether ESFT reflect the phenotype of the tumor stem cell that is blocked in differentiation by the activity of the EWS-ets gene fusion or if the oncogene imposes an incomplete differentiation program on a pluripotent precursor cell. This article addresses the problem by considering the tissue distribution of FLI1 and ERG expression and by reviewing evidence for combinatorial control of EWS-ets activity.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria.
| |
Collapse
|
55
|
Uren A, Toretsky JA. Ewing's sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol 2006; 1:521-8. [PMID: 16556028 DOI: 10.2217/14796694.1.4.521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ewing's sarcoma family of tumors (ESFT) affect patients between the ages of 3 and 40 years, with most cases occurring in the second decade of life. ESFTs are characterized by a translocation that occurs in 95% of tumors. This translocation joins the Ewing's sarcoma gene (EWS) located on chromosome 22 to an ets family gene; either friend leukemia insertion (FLI)1 located on chromosome 11, t(11;22), or ets-related gene (ERG) located on chromosome 21, t(21;22). The EWS-FLI1 fusion transcript encodes a 68 kDa protein with two primary domains. The EWS domain is a potent transcriptional activator, while the FLI1 domain contains a highly conserved ets DNA binding domain. ESFT presents a clinical challenge, especially in patients with metastatic disease in which dose-intensifying chemotherapy with bone-marrow transplantation does not improve survival. EWS-FLI1 is only present in ESFT cells and does not exist in any normal cell of the body. Experiments using ESFT cell lines or animal xenograft models have proven that EWS-FLI1 is required for tumor survival. Therefore, ESFT contains a unique protein generated by a tumor-specific translocation that has great potential as a molecular target for therapy. However, therapeutic applications directed towards eliminating or inactivating EWS-FLI1 have not reached the clinic. EWS-FLI1 has been a very difficult molecule to directly analyze in vitro due to poor solubility. Recent advances in generating recombinant EWS-FLI1 and novel data on the cellular functions of EWS-FLI1 should enhance progress towards understanding and application.
Collapse
Affiliation(s)
- Aykut Uren
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, 3970 Reservoir Road North West, New Research Building, Room W316, Washington DC, WA 20057, USA.
| | | |
Collapse
|
56
|
Mendiola M, Carrillo J, García E, Lalli E, Hernández T, de Alava E, Tirode F, Delattre O, García-Miguel P, López-Barea F, Pestaña A, Alonso J. The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer 2006; 118:1381-1389. [PMID: 16206264 DOI: 10.1002/ijc.21578] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Ewing family of tumors harbors chromosomal translocations that join the N-terminal region of the EWS gene with the C-terminal region of several transcription factors of the ETS family, mainly FLI1, resulting in chimeric transcription factors that play a pivotal role in the pathogenesis of Ewing tumors. To identify downstream targets of the EWS/FLI1 fusion protein, we established 293 cells expressing constitutively either the chimeric EWS/FLI1 or wild type FLI1 proteins and used cDNA arrays to identify genes differentially regulated by EWS/FLI1. DAX1 (NR0B1), an unusual orphan nuclear receptor involved in gonadal development, sex determination and steroidogenesis, showed a consistent up-regulation by EWS/FLI1 oncoprotein, but not by wild type FLI1. Specific induction of DAX1 by EWS/FLI1 was confirmed in two independent cell systems with inducible expression of EWS/FLI1. We also analyzed the expression of DAX1 in Ewing tumors and derived cell lines, as well as in other nonrelated small round cell tumors. DAX1 was expressed in all Ewing tumor specimens analyzed, and in seven out of eight Ewing tumor cell lines, but not in any neuroblastoma or embryonal rhabdomyosarcoma. Furthermore, silencing of EWS/FLI1 by RNA interference in a Ewing tumor cell line markedly reduced the levels of DAX1 mRNA and protein, confirming that DAX1 up-regulation is dependent upon EWS/FLI1 expression. The high levels of DAX1 found in Ewing tumors and its potent transcriptional repressor activity suggest that the oncogenic effect of EWS/FLI1 may be mediated, at least in part, by the up-regulation of DAX1 expression.
Collapse
MESH Headings
- Cell Line
- Cell Line, Tumor
- Cluster Analysis
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Immunohistochemistry
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Protein EWS
- Receptors, Retinoic Acid/analysis
- Receptors, Retinoic Acid/genetics
- Repressor Proteins/analysis
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Marta Mendiola
- Departamento de Biología Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kitlinska J. Neuropeptide Y in neural crest-derived tumors: effect on growth and vascularization. Cancer Lett 2006; 245:293-302. [PMID: 16513255 DOI: 10.1016/j.canlet.2006.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/14/2006] [Accepted: 01/16/2006] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) is a sympathetic neurotransmitter recently found to be a potent growth and angiogenic factor. The peptide and its receptors are abundant in neural crest-derived tumors, such as sympathetic neuroblastomas and pheochromocytomas, as well as parasympathetic Ewing's sarcoma family of tumors. NPY regulates their growth directly, by an autocrine activation of tumor cell proliferation or apoptosis, and indirectly, by its angiogenic activity. The overall effect of the peptide on tumor growth depends on a balance between these processes and the type of receptors expressed in the tumor cells. Thus, NPY and its receptors may become targets for the treatment of neural tumors, directed against both tumor cell proliferation and angiogenesis.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Humans
- Models, Biological
- Neoplasms, Nerve Tissue/metabolism
- Neoplasms, Nerve Tissue/pathology
- Neoplasms, Nerve Tissue/physiopathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Neural Crest/metabolism
- Neural Crest/pathology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/physiopathology
- Neuropeptide Y/biosynthesis
- Neuropeptide Y/physiology
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Sarcoma, Ewing/physiopathology
Collapse
Affiliation(s)
- Joanna Kitlinska
- Department of Physiology and Biophysics, Georgetown Universitty Medical Center, Basic Science Building Rm. 234, Washington, DC 20057.
| |
Collapse
|
58
|
Matsunobu T, Tanaka K, Nakamura T, Nakatani F, Sakimura R, Hanada M, Li X, Okada T, Oda Y, Tsuneyoshi M, Iwamoto Y. The possible role of EWS-Fli1 in evasion of senescence in Ewing family tumors. Cancer Res 2006; 66:803-11. [PMID: 16424012 DOI: 10.1158/0008-5472.can-05-1972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chromosomal translocation t(11;22) yields the EWS-Fli1 fusion gene and is associated with oncogenesis of Ewing family tumors (EFT). In this study, using the RNA interference method, we show that EWS-Fli1-targeting small interfering RNAs (siRNA) depleted EWS-Fli1 protein and caused growth inhibition in EFT cells with the accumulation of p27 protein and the down-regulation of Skp2 protein in dose-dependent, time-dependent, and sequence-specific manners. Depletion of EWS-Fli1 subacutely elicited a senescence-like phenotype, but not apoptosis, in EFT cells. Furthermore, not only the knockdown of p27, but also the forced expression of Skp2, reduced the expression levels of p27 protein and partially rescued senescence-like phenotype caused by EWS-Fli1-targeting siRNAs. The accumulation of p27 protein in EWS-Fli1-depleted cells inhibited cdk2 kinase activity and was related to the stability of p27 protein, which resulted from a decrease in Skp2 protein. Immunohistochemical analysis of p27 and Skp2 proteins in EFT samples revealed that there was an inverse relationship between the expression profiles of p27 and Skp2 proteins. These findings indicate an important role of EWS-Fli1 in the prevention of senescence, leading to the unlimited growth and oncogenesis of EFT cells through a decrease in the stability of p27 protein due to increased action of Skp2-mediated 26S proteasome degradation.
Collapse
Affiliation(s)
- Tomoya Matsunobu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Ewing tumors, which comprise Ewing's sarcoma and peripheral primitive neuroectodermal tumors, are highly aggressive and mostly affect children and adolescents. Their molecular signature is a chromosomal translocation leading to the generation of EWS-ETS (or very rarely FUS-ETS) fusion proteins that are capable of transforming cells. These oncoproteins act as aberrant transcription factors due to the fusion of an ETS DNA binding domain to a highly potent EWS (or FUS) transactivation domain. Accordingly, many EWS-ETS target genes have been identified whose dysregulation could contribute to the development of tumor formation. Furthermore, EWS-ETS oncoproteins may impact on RNA splicing or affect other proteins through disturbing their ability to form functional complexes. The molecular knowledge gained so far from studying EWS-ETS oncoproteins has not only broadened our understanding of Ewing tumors but also improved the diagnosis of these highly undifferentiated tumors. In addition, several potential prognostic markers have been uncovered and novel therapies are suggested that may improve the still dismal survival rate of Ewing tumor patients.
Collapse
Affiliation(s)
- Ralf Janknecht
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
60
|
Xia SJ, Barr FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005; 41:2513-27. [PMID: 16213703 DOI: 10.1016/j.ejca.2005.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A subset of sarcomas is characterised by recurrent chromosome translocations that generate novel fusion oncoproteins. One or both of the genes involved in these translocations often encode transcription factors, and the resulting fusion proteins have aberrant transcriptional function compared to their wild-type counterparts. These fusion transcription factors disrupt multiple biological pathways by altering expression of target genes, and thereby result in a variety of altered cellular properties that contribute to the tumourigenic process. However, experimental data indicate that the fusion gene alone is not sufficient for transformation in primary cells (EWS-FLI1) or tumourigenesis in the mouse (PAX3-FKHR, FUS-CHOP), suggesting that additional collaborating genetic alterations are required. In addition to improving our understanding of the etiology of these tumours, this accumulating knowledge of the oncogenic properties of these fusion proteins, their downstream targets, and cooperating genetic alterations will permit the development of a variety of novel approaches to improve the therapy of these cancers.
Collapse
Affiliation(s)
- Shujuan J Xia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 505C Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
61
|
Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res 2005; 65:4633-44. [PMID: 15930281 DOI: 10.1158/0008-5472.can-04-2857] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-specific translocations are common in tumors of mesenchymal origin. Whether the translocation determines the phenotype, or vice versa, is debatable. Ewing's family tumors (EFT) are consistently associated with an EWS-FLI1 translocation and a primitive neural phenotype. Histogenesis and classification are therefore uncertain. To test whether EWS-FLI1 fusion gene expression is responsible for the primitive neuroectodermal phenotype of EFT, we established a tetracycline-inducible EWS-FLI1 expression system in a rhabdomyosarcoma cell line RD. Cell morphology changed after EWS-FLI1 expression, resembling cultured EFT cells. Xenografts showed typical EFT features, distinct from tumors formed by parental RD. Neuron-specific microtubule gene MAPT, parasympathetic marker cholecystokinin, and epithelial marker keratin 18 were up-regulated. Conversely, myogenesis was diminished. Comparison of the up-regulated genes in RD-EF with the Ewing's signature genes identified important EWS-FLI1 downstream genes, many involved in neural crest differentiation. These results were validated by real-time reverse transcription-PCR analysis and RNA interference technology using small interfering RNA against EWS-FLI1 breakpoint. The present study shows that the neural phenotype of Ewing's tumors is attributable to the EWS-FLI1 expression and the resultant phenotype resembles developing neural crest. Such tumors have a limited neural phenotype regardless of tissue of origin. These findings challenge traditional views of histogenesis and tumor origin.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Line, Tumor
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Mice
- Mice, SCID
- Neoplasm Transplantation
- Neural Crest/embryology
- Neural Crest/metabolism
- Neural Crest/physiology
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Transcription Factors/genetics
- Transfection
- Transplantation, Heterologous
- Up-Regulation
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
62
|
Siligan C, Ban J, Bachmaier R, Spahn L, Kreppel M, Schaefer KL, Poremba C, Aryee DNT, Kovar H. EWS-FLI1 target genes recovered from Ewing's sarcoma chromatin. Oncogene 2005; 24:2512-24. [PMID: 15735734 DOI: 10.1038/sj.onc.1208455] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In all, 85% of Ewing's sarcoma family tumors (ESFT), a neoplasm of unknown histogenesis, express EWS-FLI1 transcription factor gene fusions. To characterize direct target genes avoiding artificial model systems, we cloned genomic DNA from ESFT chromatin precipitating with EWS-FLI1. We now present a comprehensive list of 99 putative transcription factor targets identified, for the first time, by a hypothesis-free approach based on physical interaction. Gene-derived chromatin fragments co-precipitating with EWS-FLI1 were nonrandomly distributed over the human genome and localized predominantly to the upstream region and the first two introns of the genes. At least 20% of putative direct EWS-FLI1 targets were neural genes. One-third of genes recovered showed a significant ESFT-specific expression pattern and were found to be altered upon RNAi-mediated knockdown of EWS-FLI1. Among them, MK-STYX, encoding a MAP kinase phosphatase-like protein, was consistently expressed in ESFT. EWS-FLI1 was found to drive MK-STYX expression by binding to a single ETS binding motif within the first gene intron. MK-STYX serves as precedence for successful recovery of direct EWS-FLI1 targets from the authentic ESFT cellular context, the most relevant system to study oncogenic mechanisms for the discovery of new therapeutic targets in this disease.
Collapse
Affiliation(s)
- Christine Siligan
- Children's Cancer Research Institute (CCRI), St Anna Kinderspital, Kinderspitalgasse 6, Vienna A1090, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Amsellem V, Kryszke MH, Hervy M, Subra F, Athman R, Leh H, Brachet-Ducos C, Auclair C. The actin cytoskeleton-associated protein zyxin acts as a tumor suppressor in Ewing tumor cells. Exp Cell Res 2005; 304:443-56. [PMID: 15748890 DOI: 10.1016/j.yexcr.2004.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 09/22/2004] [Accepted: 10/30/2004] [Indexed: 01/09/2023]
Abstract
Changes in cell architecture, essentially linked to profound cytoskeleton rearrangements, are common features accompanying cell transformation. Supporting the involvement of the microfilament network in tumor cell behavior, several actin-binding proteins, including zyxin, a potential regulator of actin polymerization, may play a role in oncogenesis. In this work, we investigate the status of zyxin in Ewing tumors, a family of pediatric malignancies of bone and soft tissues, which are mainly associated with a t(11;22) chromosomal translocation encoding the EWS-FLI1 oncoprotein. We observe that EWS-FLI1-transformed murine fibroblasts, as well as human Ewing tumor-derived SK-N-MC cells, exhibit a complete disruption of their actin cytoskeleton, retaining very few stress fibers, focal adhesions and cell-to-cell contacts. We show that within these cells, zyxin is expressed at very low levels and remains diffusely distributed throughout the cytoplasm, instead of concentrating in actin-rich dynamic structures. We demonstrate that zyxin gene transfer into EWS-FLI1-transformed fibroblasts elicits reconstitution of zyxin-rich focal adhesions and intercellular junctions, dramatic reorganization of the actin cytoskeleton, decreased cell motility, inhibition of anchorage-independent growth and impairment of tumor formation in athymic mice. We observe similar phenotypic changes after zyxin gene transfer in SK-N-MC cells, suggesting that zyxin has tumor suppressor activity in Ewing tumor cells.
Collapse
Affiliation(s)
- Valérie Amsellem
- Laboratoire de Biotechnologie et Pharmacologie génétique appliquée, CNRS UMR 8113, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94230 Cachan, France.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SEG. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 2005; 64:8213-21. [PMID: 15548687 DOI: 10.1158/0008-5472.can-03-4059] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ewing family tumors (EFTs) are small round blue cell tumors that show features of neuroectodermal differentiation. However, the histogenetic origin of EFTs is still a matter of debate. We used high-density DNA microarrays for the identification of EFT-specific gene expression profiles in comparison with normal tissues of diverse origin. We identified 37 genes that are up-regulated in EFTs compared with normal tissues and validated expression of these genes in EFTs by both conventional and quantitative reverse transcription-polymerase chain reaction. The expression pattern of EFT-associated genes in normal tissues indicated a high similarity between EFTs and fetal and neuronal as well as endothelial tissues and supports the concept that a primitive neural crest-derived progenitor at the transition to mesenchymal and endothelial differentiation is transformed in EFTs. EFT-associated genes could be used for molecular discrimination between EFTs and other small round blue cell tumors and clearly identified a cell line (SK-N-MC) that was initially established as neuroblastoma as being an EFT. Ectopic expression of the EFT-specific EWS-FLI1 fusion protein in human embryonic kidney (HEK293) cells was not sufficient to induce the complete EFT-specific gene expression signature, suggesting that the EFT-specific gene expression profile is not just a consequence of EWS-FLI1 expression but depends on the histogenetic background of the EFT stem cell.
Collapse
Affiliation(s)
- Martin S Staege
- Children's Cancer Research Center, Division of Pediatric Hematology and Oncology and BioCenter, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Rorie CJ, Weissman BE. The Ews/Fli-1 Fusion Gene Changes the Status of p53 in Neuroblastoma Tumor Cell Lines. Cancer Res 2004; 64:7288-95. [PMID: 15492248 DOI: 10.1158/0008-5472.can-04-1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.
Collapse
Affiliation(s)
- Checo J Rorie
- Curriculum in Toxicology and Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|