51
|
Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z. Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803262. [PMID: 30307701 DOI: 10.1002/smll.201803262] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Indexed: 05/06/2023]
Abstract
Despite the promises of applying nano-photosensitizers (nano-PSs) for photodynamic therapy (PDT) against cancer, severe tumor hypoxia and limited tumor penetration of nano-PSs would lead to nonoptimized therapeutic outcomes of PDT. Therefore, herein a biocompatible nano-PS is prepared by using tamoxifen (TAM), an anti-estrogen compound, to induce self-assembly of chlorin e6 (Ce6) modified human serum albumin (HSA). The formed HSA-Ce6/TAM nanocomplexes, which are stable under neutral pH with a diameter of ≈130 nm, would be dissociated into individual HSA-Ce6 and TAM molecules under the acidic tumor microenvironment, owing to the pH responsive transition of TAM from hydrophobic to hydrophilic. Upon systemic administration, such HSA-Ce6/TAM nanoparticles exhibit prolonged blood circulation and high accumulation in the tumor, where it would undergo rapid pH responsive dissociation to enable obviously enhanced intratumoral penetration of HSA-Ce6. Furthermore, utilizing the ability of TAM in reducing the oxygen consumption of cancer cells, it is found that HSA-Ce6/TAM after systemic administration could efficiently attenuate the tumor hypoxia status. Those effects acting together lead to remarkably enhanced PDT treatment. This work presents a rather simple approach to fabricate smart nano-PSs with multiple functions integrated into a single system via self-assembly of all-biocompatible components, promising for the next generation cancer PDT.
Collapse
Affiliation(s)
- Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiawen Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
52
|
Davis RW, Snyder E, Miller J, Carter S, Houser C, Klampatsa A, Albelda SM, Cengel KA, Busch TM. Luminol Chemiluminescence Reports Photodynamic Therapy-Generated Neutrophil Activity In Vivo and Serves as a Biomarker of Therapeutic Efficacy. Photochem Photobiol 2018; 95:430-438. [PMID: 30357853 DOI: 10.1111/php.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 01/26/2023]
Abstract
Inflammatory cells, most especially neutrophils, can be a necessary component of the antitumor activity occurring after administration of photodynamic therapy. Generation of neutrophil responses has been suggested to be particularly important in instances when the delivered photodynamic therapy (PDT) dose is insufficient. In these cases, the release of neutrophil granules and engagement of antitumor immunity may play an important role in eliminating residual disease. Herein, we utilize in vivo imaging of luminol chemiluminescence to noninvasively monitor neutrophil activation after PDT administration. Studies were performed in the AB12 murine model of mesothelioma, treated with Photofrin-PDT. Luminol-generated chemiluminescence increased transiently 1 h after PDT, followed by a subsequent decrease at 4 h after PDT. The production of luminol signal was not associated with the influx of Ly6G+ cells, but was related to oxidative burst, as an indicator of neutrophil function. Most importantly, greater levels of luminol chemiluminescence 1 h after PDT were prognostic of a complete response at 90 days after PDT. Taken together, this research supports an important role for early activity by Ly6G+ cells in the generation of long-term PDT responses in mesothelioma, and it points to luminol chemiluminescence as a potentially useful approach for preclinical monitoring of neutrophil activation by PDT.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
53
|
Shafirstein G, Bellnier DA, Oakley E, Hamilton S, Habitzruther M, Tworek L, Hutson A, Spernyak JA, Sexton S, Curtin L, Turowski SG, Arshad H, Henderson B. Irradiance controls photodynamic efficacy and tissue heating in experimental tumours: implication for interstitial PDT of locally advanced cancer. Br J Cancer 2018; 119:1191-1199. [PMID: 30353043 PMCID: PMC6251027 DOI: 10.1038/s41416-018-0210-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
Background Currently delivered light dose (J/cm2) is the principal parameter guiding interstitial photodynamic therapy (I-PDT) of refractory locally advanced cancer. The aim of this study was to investigate the impact of light dose rate (irradiance, mW/cm2) and associated heating on tumour response and cure. Methods Finite-element modeling was used to compute intratumoural irradiance and dose to guide Photofrin® I-PDT in locally advanced SCCVII in C3H mice and large VX2 neck tumours in New Zealand White rabbits. Light-induced tissue heating in mice was studied with real-time magnetic resonance thermometry. Results In the mouse model, cure rates of 70–90% were obtained with I-PDT using 8.4–245 mW/cm2 and ≥45 J/cm2 in 100% of the SCCVII tumour. Increasing irradiance was associated with increase in tissue heating. I-PDT with Photofrin® resulted in significantly (p < 0.05) higher cure rate compared to light delivery alone at same irradiance and light dose. Local control and/or cures of VX2 were obtained using I-PDT with 16.5–398 mW/cm2 and ≥45 J/cm2 in 100% of the tumour. Conclusion In Photofrin®-mediated I-PDT, a selected range of irradiance prompts effective photoreaction with tissue heating in the treatment of locally advanced mouse tumour. These irradiances were translated for effective local control of large VX2 tumours.
Collapse
Affiliation(s)
- Gal Shafirstein
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA. .,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA.
| | - David A Bellnier
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| | - Emily Oakley
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| | - Sasheen Hamilton
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| | - Michael Habitzruther
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| | - Lawrence Tworek
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, NY, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA.,Translational Imaging Shared Resource, Roswell Park, Buffalo, NY, USA
| | - Sandra Sexton
- Laboratory Animals Shared Resources, Roswell Park, Buffalo, NY, USA
| | - Leslie Curtin
- Laboratory Animals Shared Resources, Roswell Park, Buffalo, NY, USA
| | - Steven G Turowski
- Translational Imaging Shared Resource, Roswell Park, Buffalo, NY, USA
| | - Hassan Arshad
- Department of Head and Neck Surgery, Roswell Park, Buffalo, NY, USA
| | - Barbara Henderson
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.,Department of Cell Stress Biology, Roswell Park, Buffalo, NY, USA
| |
Collapse
|
54
|
Pigula M, Huang HC, Mallidi S, Anbil S, Liu J, Mai Z, Hasan T. Size-dependent Tumor Response to Photodynamic Therapy and Irinotecan Monotherapies Revealed by Longitudinal Ultrasound Monitoring in an Orthotopic Pancreatic Cancer Model. Photochem Photobiol 2018; 95:378-386. [PMID: 30229942 DOI: 10.1111/php.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2023]
Abstract
Longitudinal monitoring of tumor size in vivo can provide important biological information about disease progression and treatment efficacy that is not captured by other modes of quantification. Ultrasound enables high-throughput evaluation of orthotopic mouse models via fast acquisition of three-dimensional tumor images and calculation of volume with a reasonable degree of accuracy. Herein, we compare orthotopic pancreatic tumor volume measurements determined by ultrasound with volume measured by calipers and tumor weight, and found strong correlations between the three modalities over a large range of tumor sizes, suggesting ultrasound can accurately quantify tumor volumes in this model. Furthermore, we demonstrate the unique ability of longitudinal treatment monitoring to reveal a tumor size-dependent response to Benzoporphyrin Derivative photodynamic therapy (BPD-PDT) and irinotecan. Small tumors (5-35 mm3 ) were found to respond well to a single round of PDT, while large tumors (35-65 mm3 ) showed no response to the same treatment. These results highlight the role that tumor size can play in preclinical interpretation of treatment response and more generally suggest that careful evaluation of subtle biological features such as this must be carefully considered in order to grant a more comprehensive understanding of disease biology in vivo.
Collapse
Affiliation(s)
- Michael Pigula
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Huang-Chiao Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,The University of Texas School of Medicine at San Antonio, San Antonio, TX
| | - Joyce Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
55
|
James NS, Cheruku RR, Missert JR, Sunar U, Pandey RK. Measurement of Cyanine Dye Photobleaching in Photosensitizer Cyanine Dye Conjugates Could Help in Optimizing Light Dosimetry for Improved Photodynamic Therapy of Cancer. Molecules 2018; 23:molecules23081842. [PMID: 30042350 PMCID: PMC6222364 DOI: 10.3390/molecules23081842] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer is dependent on three primary components: photosensitizer (PS), light and oxygen. Because these components are interdependent and vary during the dynamic process of PDT, assessing PDT efficacy may not be trivial. Therefore, it has become necessary to develop pre-treatment planning, on-line monitoring and dosimetry strategies during PDT, which become more critical for two or more chromophore systems, for example, PS-CD (Photosensitizer-Cyanine dye) conjugates developed in our laboratory for fluorescence-imaging and PDT of cancer. In this study, we observed a significant impact of variable light dosimetry; (i) high light fluence and fluence rate (light dose: 135 J/cm2, fluence rate: 75 mW/cm2) and (ii) low light fluence and fluence rate (128 J/cm2 and 14 mW/cm2 and 128 J/cm2 and 7 mW/cm2) in photobleaching of the individual chromophores of PS-CD conjugates and their long-term tumor response. The fluorescence at the near-infrared (NIR) region of the PS-NIR fluorophore conjugate was assessed intermittently via fluorescence imaging. The loss of fluorescence, photobleaching, caused by singlet oxygen from the PS was mapped continuously during PDT. The tumor responses (BALB/c mice bearing Colon26 tumors) were assessed after PDT by measuring tumor sizes daily. Our results showed distinctive photobleaching kinetics rates between the PS and CD. Interestingly, compared to higher light fluence, the tumors exposed at low light fluence showed reduced photobleaching and enhanced long-term PDT efficacy. The presence of NIR fluorophore in PS-CD conjugates provides an opportunity of fluorescence imaging and monitoring the photobleaching rate of the CD moiety for large and deeply seated tumors and assessing PDT tumor response in real-time.
Collapse
Affiliation(s)
- Nadine S James
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Ravindra R Cheruku
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Joseph R Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Ulas Sunar
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA.
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
56
|
Reboredo-Rodríguez P, González-Barreiro C, Cancho-Grande B, Simal-Gándara J, Giampieri F, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Manna PP, Varela-López A, Ojeda-Amador RM, Fregapane G, Desamparados Salvador M, Battino M. Effect of pistachio kernel extracts in MCF-7 breast cancer cells: Inhibition of cell proliferation, induction of ROS production, modulation of glycolysis and of mitochondrial respiration. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
57
|
Hu D, Chen L, Qu Y, Peng J, Chu B, Shi K, Hao Y, Zhong L, Wang M, Qian Z. Oxygen-generating Hybrid Polymeric Nanoparticles with Encapsulated Doxorubicin and Chlorin e6 for Trimodal Imaging-Guided Combined Chemo-Photodynamic Therapy. Theranostics 2018; 8:1558-1574. [PMID: 29556341 PMCID: PMC5858167 DOI: 10.7150/thno.22989] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
The combination of chemotherapy with photodynamic therapy (PDT) has attracted broad attention as it can overcome limitations of conventional chemo-treatment by using different modes of action. However, the efficacy of PDT to treat solid tumors is severely affected by hypoxia in tumors. Methods: In this study, we developed oxygen-generating theranostic nanoparticles (CDM NPs) by hierarchically assembling doxorubicin (DOX), chlorin e6 (Ce6) and colloidal manganese dioxide (MnO2) with poly (ε-caprolactone-co-lactide)-b-poly (ethylene glycol)-b-poly (ε-caprolactone-co-lactide) for treating breast cancer. The in vitro and in vivo antitumor efficacy and imaging performance were investigated. Results: The theranostic nanoparticles showed high stability and biocompatibility both in vitro and in vivo. MnO2 within the nanoparticles could trigger decomposition of excessive endogenous H2O2 in the tumor microenvironment to generate oxygen in-situ to relieve tumor hypoxia. With enhanced oxygen generation, the PDT effect was significantly improved under laser-irradiation. More importantly, this effect together with that of DOX was able to dramatically promote the combined chemotherapy-PDT efficacy of CDM NPs in an MCF-7 tumor-bearing mouse model. Furthermore, the real-time tumor accumulation of the nanocomposites could be monitored by fluorescence imaging, photoacoustic (PA) imaging and magnetic resonance imaging (MRI). Conclusion: The designed CDM NPs are expected to provide an alternative way of improving antitumor efficacy by combined chemo-PDT further enhanced by oxygen generation, and would have broad applications in cancer theranostics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center. Chengdu 610041, PR China
| |
Collapse
|
58
|
Norum OJ, Fremstedal ASV, Weyergang A, Golab J, Berg K. Photochemical delivery of bleomycin induces T-cell activation of importance for curative effect and systemic anti-tumor immunity. J Control Release 2017; 268:120-127. [PMID: 29042319 DOI: 10.1016/j.jconrel.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Photochemical internalization (PCI) is a technology to enhance intracellular drug delivery by light-induced translocation of endocytosed therapeutics into the cytosol. The aim of this study was to explore the efficacy of PCI-based delivery of bleomycin and the impact on systemic anti-tumor immunity. Mouse colon carcinoma cells (CT26.CL25), stably expressing the bacterial β-galactosidase, were inoculated into the legs of athymic or immuno-competent BALB/c mice strains. The mice were injected with the photosensitizer AlPcS2a and bleomycin (BLM) prior to tumor light exposure from a 670nm diode laser. Photochemical activation of BLM was found to induce synergistic inhibition of tumor growth as compared to the sum of the individual treatments. However, a curative effect was not observed in the athymic mice exposed to 30J/cm2 of light while >90% of the thymic mice were cured after exposure to only 15J/cm2 light. Cured thymic mice, re-challenged with CT26.CL25 tumor cells on the contralateral leg, rejected 57-100% of the tumor cells inoculated immediately and up to 2months after the photochemical treatment. T-cells from the spleen of PCI-treated mice were found to inhibit the growth of CT26.CL25 cells in naïve thymic mice with a 60% rejection rate. The results show that treatment of CT26.CL25 tumors in thymic mice by PCI of BLM induces a systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Ole-Jacob Norum
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway; Division of Orthopaedic Surgery, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Anette Weyergang
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 1A Banacha Str, F building, 02-097 Warsaw, Poland
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
59
|
Kim JW, Jacobsen B, Zolfaghari E, Ferrario A, Chevez-Barrios P, Berry JL, Lee DK, Rico G, Madi I, Rao N, Stachelek K, Wang LC, Gomer C. Rabbit model of ocular indirect photodynamic therapy using a retinoblastoma xenograft. Graefes Arch Clin Exp Ophthalmol 2017; 255:2363-2373. [DOI: 10.1007/s00417-017-3805-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 11/28/2022] Open
|
60
|
Cavin S, Wang X, Zellweger M, Gonzalez M, Bensimon M, Wagnières G, Krueger T, Ris HB, Gronchi F, Perentes JY. Interstitial fluid pressure: A novel biomarker to monitor photo-induced drug uptake in tumor and normal tissues. Lasers Surg Med 2017; 49:773-780. [PMID: 28544068 DOI: 10.1002/lsm.22687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Low-dose photodynamic therapy PDT (photoinduction) can modulate tumor vessels and enhance the uptake of liposomal cisplatin (Lipoplatin®) in pleural malignancies. However, the photo-induction conditions must be tightly controlled as overtreatment shuts down tumor vessels and enhances normal tissue drug uptake. MATERIAL AND METHODS In a pleural sarcoma and adenocarcinoma rat model (n = 12/group), we applied photoinduction (0.0625 mg/kg Visudyne®, 10 J/cm2 ) followed by intravenous Lipoplatin® (5 mg/kg) administration. Tumor and normal tissue IFP were assessed before and up to 1 hour following photoinduction. Lipoplatin® uptake was determined 60 minutes following photoinduction. We then treated the pleura of tumor-free minipigs with high dose photodynamic therapy (PDT) (0.0625 mg/kg Visudyne®, 30 J/cm2 , n = 5) followed by Lipoplatin (5 mg/kg) administration. RESULTS In rodents, photoinduction resulted in a significant decrease of IFP (P < 0.05) in both tumor types but not in the surrounding normal lung, equally exposed to light. Also, photoinduction resulted in a significant increase of Lipoplatin® uptake in both tumor types (P < 0.05) but not in normal lung. Tumor IFP variation and Lipoplatin® uptake fitted an inverted parabola. In minipigs, high dose photodynamic treatment resulted in pleural IFP increase of some animals which predicted higher Lipoplatin® uptake levels. CONCLUSION Normal and tumor vasculatures react differently to PDT. Continuous IFP monitoring in normal and tumor tissues is a promising biomarker of vessel photoinduction. Moderate drop in tumor with no change in normal tissue IFP are predictive of specific Lipoplatin® uptake by cancer following PDT. Lasers Surg. Med. 49:773-780, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina Cavin
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Xingyu Wang
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Matthieu Zellweger
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Michaël Bensimon
- Central Environmental Laboratory, Swiss Federal Institute of Technology, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Georges Wagnières
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Thorsten Krueger
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Hans-Beat Ris
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Fabrizio Gronchi
- Division of Anesthesiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| | - Jean Y Perentes
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
| |
Collapse
|
61
|
Kawczyk-Krupka A, Latos W, Czuba Z, Mertas A, Kwiatek S, Kwiatek B, Król W, Sieroń A. The influence of ala-mediated photodynamic therapy on secretion of selected growth factors and S100 protein (S100) by colon cancer cells in vitro. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
62
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
63
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
64
|
Ogawara KI, Higaki K. Nanoparticle-Based Photodynamic Therapy: Current Status and Future Application to Improve Outcomes of Cancer Treatment. Chem Pharm Bull (Tokyo) 2017; 65:637-641. [DOI: 10.1248/cpb.c17-00063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ken-ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
65
|
Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J Control Release 2016; 243:303-322. [DOI: 10.1016/j.jconrel.2016.10.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
|
66
|
Song X, Feng L, Liang C, Yang K, Liu Z. Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies. NANO LETTERS 2016; 16:6145-6153. [PMID: 27622835 DOI: 10.1021/acs.nanolett.6b02365] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Tumor hypoxia is known to be one of critical reasons that limit the efficacy of cancer therapies, particularly photodynamic therapy (PDT) and radiotherapy (RT) in which oxygen is needed in the process of cancer cell destruction. Herein, taking advantages of the great biocompatibility and high oxygen dissolving ability of perfluorocarbon (PFC), we develop an innovative strategy to modulate the tumor hypoxic microenvironment using nano-PFC as an oxygen shuttle for ultrasound triggered tumor-specific delivery of oxygen. In our experiment, nanodroplets of PFC stabilized by albumin are intravenously injected into tumor-bearing mice under hyperoxic breathing. With a low-power clinically adapted ultrasound transducer applied on their tumor, PFC nanodroplets that adsorb oxygen in the lung would rapidly release oxygen in the tumor under ultrasound stimulation, and then circulate back into the lung for reoxygenation. Such repeated cycles would result in dramatically enhanced tumor oxygenation and thus remarkably improved therapeutic outcomes in both PDT and RT treatment of tumors. Importantly, our strategy may be applied for different types of tumor models. Hence, this work presents a simple strategy to promote tumor oxygenation with great efficiency using agents and instruments readily available in the clinic, so as to overcome the hypoxia-associated resistance in cancer treatment.
Collapse
Affiliation(s)
- Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University , Suzhou, Jiangsu 21513, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou 215123, China
| |
Collapse
|
67
|
Boosting Tumor-Specific Immunity Using PDT. Cancers (Basel) 2016; 8:cancers8100091. [PMID: 27782066 PMCID: PMC5082381 DOI: 10.3390/cancers8100091] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity.
Collapse
|
68
|
Tong X, Srivatsan A, Jacobson O, Wang Y, Wang Z, Yang X, Niu G, Kiesewetter DO, Zheng H, Chen X. Monitoring Tumor Hypoxia Using (18)F-FMISO PET and Pharmacokinetics Modeling after Photodynamic Therapy. Sci Rep 2016; 6:31551. [PMID: 27546160 PMCID: PMC4992876 DOI: 10.1038/srep31551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/13/2016] [Indexed: 11/09/2022] Open
Abstract
Photodynamic therapy (PDT) is an efficacious treatment for some types of cancers. However, PDT-induced tumor hypoxia as a result of oxygen consumption and vascular damage can reduce the efficacy of this therapy. Measuring and monitoring intrinsic and PDT-induced tumor hypoxia in vivo during PDT is of high interest for prognostic and treatment evaluation. In the present study, static and dynamic (18)F-FMISO PET were performed with mice bearing either U87MG or MDA-MB-435 tumor xenografts immediately before and after PDT at different time points. Significant difference in tumor hypoxia in response to PDT over time was found between the U87MG and MDA-MB-435 tumors in both static and dynamic PET. Dynamic PET with pharmacokinetics modeling further monitored the kinetics of (18)F-FMISO retention to hypoxic sites after treatment. The Ki and k3 parametric analysis provided information on tumor hypoxia by distinction of the specific tracer retention in hypoxic sites from its non-specific distribution in tumor. Dynamic (18)F-FMISO PET with pharmacokinetics modeling, complementary to static PET analysis, provides a potential imaging tool for more detailed and more accurate quantification of tumor hypoxia during PDT.
Collapse
Affiliation(s)
- Xiao Tong
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States.,Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
69
|
Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy. PHOTONICS 2016. [DOI: 10.3390/photonics3030048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Pacheco PAF, Ferreira LBG, Mendonça L, Ferreira DNM, Salles JP, Faria RX, Teixeira PCN, Alves LA. P2X7 receptor as a novel drug delivery system to increase the entrance of hydrophilic drugs into cells during photodynamic therapy. J Bioenerg Biomembr 2016; 48:397-411. [PMID: 27422545 DOI: 10.1007/s10863-016-9668-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/24/2016] [Indexed: 11/28/2022]
Abstract
The second-generation photosensitizer methylene blue (MB) exhibits photochemical and photophysical properties suitable for photodynamic therapy (PDT)-based cancer treatment. However, the clinical application of MB is limited because of its high hydrophilicity, which hinders its penetration into tumor tissues. Therefore, new methods to improve the entry of MB into the cytoplasm of target cells are necessary. Because MB has a mass of 319 Da, transient pores on the plasma membrane, such as the pore induced by the P2X7 receptor (P2X7R) that allows the passage of molecules up to 900 Da, could be used. Using MTT viability assays, flow cytometry experiments, and fluorescence microscopy, we evaluated the toxicity and phototoxicity of MB and potentiation effects of ATP and MB on cell death processes in the J774 cell line (via a P2X7-associated pore). We observed that treatment with 5 μM MB for 15 min promoted the rate of entry of MB into the cytoplasm to 4.7 %. However, treatment with 5 μM MB and 1 mM ATP for the same amount of time increased this rate to 90.2 %. However, this effect was inhibited by pretreatment with a P2X7 antagonist. We used peritoneal macrophages and a cell line that does not express P2X7R as controls. These cells were more resistant to PDT with MB under the same experimental conditions. Taken together, these results suggest the use of the pore associated with P2X7R as a drug delivery system to increase the passage of hydrophilic drugs into cells that express this receptor, thus facilitating PDT.
Collapse
Affiliation(s)
| | | | - Leonardo Mendonça
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Dinarte Neto M Ferreira
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Juliana Pimenta Salles
- Laboratório de Toxoplasmose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365 Manguinhos - CEP, :21045-900, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365 Manguinhos - CEP, :21045-900, Rio de Janeiro, RJ, Brasil.
| | | | - Luiz Anastacio Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| |
Collapse
|
71
|
Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, Huang WC, Qin Y, Atilla-Gokcumen GE, Lovell JF. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3039-47. [PMID: 27121003 PMCID: PMC4899298 DOI: 10.1002/smll.201503966] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/29/2016] [Indexed: 05/09/2023]
Abstract
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light-triggered doxorubicin release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser-induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light-triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg(-1) doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Nasi Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yueling Qin
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
72
|
Gabrysiak M, Wachowska M, Barankiewicz J, Pilch Z, Ratajska A, Skrzypek E, Winiarska M, Domagala A, Rygiel TP, Jozkowicz A, Boon L, Golab J, Firczuk M. Low dose of GRP78-targeting subtilase cytotoxin improves the efficacy of photodynamic therapy in vivo. Oncol Rep 2016; 35:3151-8. [PMID: 27035643 PMCID: PMC4872279 DOI: 10.3892/or.2016.4723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) exerts direct cytotoxic effects on tumor cells, destroys tumor blood and lymphatic vessels and induces local inflammation. Although PDT triggers the release of immunogenic antigens from tumor cells, the degree of immune stimulation is regimen-dependent. The highest immunogenicity is achieved at sub-lethal doses, which at the same time trigger cytoprotective responses, that include increased expression of glucose-regulated protein 78 (GRP78). To mitigate the cytoprotective effects of GRP78 and preserve the immunoregulatory activity of PDT, we investigated the in vivo efficacy of PDT in combination with EGF-SubA cytotoxin that was shown to potentiate in vitro PDT cytotoxicity by inactivating GRP78. Treatment of immunocompetent BALB/c mice with EGF-SubA improved the efficacy of PDT but only when mice were treated with a dose of EGF-SubA that exerted less pronounced effects on the number of T and B lymphocytes as well as dendritic cells in mouse spleens. The observed antitumor effects were critically dependent on CD8+ T cells and were completely abrogated in immunodeficient SCID mice. All these results suggest that GRP78 targeting improves in vivo PDT efficacy provided intact T-cell immune system.
Collapse
Affiliation(s)
- Magdalena Gabrysiak
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Malgorzata Wachowska
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Joanna Barankiewicz
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Zofia Pilch
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ewa Skrzypek
- Department of Pathology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Antoni Domagala
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Tomasz P Rygiel
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kracow, Poland
| | - Louis Boon
- EPIRUS Biopharmaceuticals Netherlands BV, 3584 CM Utrecht, The Netherlands
| | - Jakub Golab
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Malgorzata Firczuk
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| |
Collapse
|
73
|
Interstitial 5-ALA photodynamic therapy and glioblastoma: Preclinical model development and preliminary results. Photodiagnosis Photodyn Ther 2016. [DOI: 10.1016/j.pdpdt.2015.07.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
74
|
Klimenko VV, Knyazev NA, Moiseenko FV, Rusanov AA, Bogdanov AA, Dubina MV. Pulse mode of laser photodynamic treatment induced cell apoptosis. Photodiagnosis Photodyn Ther 2016; 13:101-107. [DOI: 10.1016/j.pdpdt.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022]
|
75
|
Jia HR, Wang HY, Yu ZW, Chen Z, Wu FG. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy. Bioconjug Chem 2016; 27:782-9. [PMID: 26829525 DOI: 10.1021/acs.bioconjchem.6b00003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| |
Collapse
|
76
|
Grossman CE, Carter SL, Czupryna J, Wang L, Putt ME, Busch TM. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 2016; 17:ijms17010101. [PMID: 26784170 PMCID: PMC4730343 DOI: 10.3390/ijms17010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shirron L Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Julie Czupryna
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Le Wang
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mary E Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
77
|
Rohrbach DJ, Rigual N, Arshad H, Tracy EC, Cooper MT, Shafirstein G, Wilding G, Merzianu M, Baumann H, Henderson BW, Sunar U. Intraoperative optical assessment of photodynamic therapy response of superficial oral squamous cell carcinoma. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:18002. [PMID: 26780226 PMCID: PMC5996863 DOI: 10.1117/1.jbo.21.1.018002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
This study investigated whether diffuse optical spectroscopy (DOS) measurements could assess clinical response to photodynamic therapy (PDT) in patients with head and neck squamous cell carcinoma (HNSCC). In addition, the correlation between parameters measured with DOS and the crosslinking of signal transducer and activator of transcription 3 (STAT3), a molecular marker for PDT-induced photoreaction, was investigated. Thirteen patients with early stage HNSCC received the photosensitizer 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) and DOS measurements were performed before and after PDT in the operating room (OR). In addition, biopsies were acquired after PDT to assess the STAT3 crosslinking. Parameters measured with DOS, including blood volume fraction, blood oxygen saturation (StO2), HPPH concentration (cHPPH), HPPH fluorescence, and blood flow index (BFI), were compared to the pathologic response and the STAT3 crosslinking. The best individual predictor of pathological response was a change in cHPPH (sensitivity=60%, specificity=100%), while discrimination analysis using a two-parameter classifier (change in cHPPH and change in StO2) classified pathological response with 100% sensitivity and 100% specificity. BFI showed the best correlation with the crosslinking of STAT3. These results indicate that DOS-derived parameters can assess the clinical response in the OR, allowing for earlier reintervention if needed.
Collapse
Affiliation(s)
- Daniel J. Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
- Wright State University, Department of Biomedical, Industrial and Human Factors Engineering, 207 Russ Center, Dayton, Ohio 45435, United States
| | - Nestor Rigual
- Roswell Park Cancer Institute, Department of Head and Neck Surgery, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Hassan Arshad
- Roswell Park Cancer Institute, Department of Head and Neck Surgery, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Erin C. Tracy
- Roswell Park Cancer Institute, Department of Cellular and Molecular Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Michelle T. Cooper
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Gal Shafirstein
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Gregory Wilding
- Roswell Park Cancer Institute, Department of Biostatistics and Bioinformatics, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Mihai Merzianu
- Roswell Park Cancer Institute, Department of Pathology and Laboratory Medicine, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Heinz Baumann
- Roswell Park Cancer Institute, Department of Cellular and Molecular Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Barbara W. Henderson
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, New York 14263, United States
- Wright State University, Department of Biomedical, Industrial and Human Factors Engineering, 207 Russ Center, Dayton, Ohio 45435, United States
- State University of New York at Buffalo, Department of Biomedical Engineering, 332 Bonner Hall, Buffalo, New York 14228, United States
| |
Collapse
|
78
|
Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L, Zhang Z. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater 2016; 29:282-297. [PMID: 26485168 DOI: 10.1016/j.actbio.2015.10.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Taking advantages of fullerene (C60) and gold nanoparticles (AuNPs) for potentials in photodynamic therapy (PDT), drug delivery and radio frequency thermal therapy (RTT), a C60@Au hybrid nanocomposite was synthesized by chemical deposition of Au nanoparticles onto C60, and functionalized by PEG5000 via a pH cleavable hydrazone bond, making C60@Au-PEG keep the PEG on the surface of drug delivery system during circulation but dissociate PEG from the system after accumulation in tumor tissue, then doxorubicin (DOX) was loaded onto C60@Au-PEG with a very high drug loading efficiency. The release profiles of DOX from C60@Au-PEG/DOX showed strong dependences on radio frequency (RF). For the drug delivery, C60@Au-PEG/DOX afforded much higher antitumor efficacy owing to 8.6-fold higher DOX uptake of tumor than DOX. Besides, in this work, C60@Au-PEG/DOX not only served as a powerful RTT agent for RF-thermal ablation of tumor and a strong photosensitizer (PS) for PDT, but also as an X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, C60@Au-PEG/DOX showed excellent chemo-RF thermal-photodynamic therapeutic efficacy, RF-controlled drug releasing function, tumor targeting property, tumoral acid PEG dissociating character and X-ray imaging ability, demonstrating that there is a great potential of C60@Au-PEG/DOX for simultaneous diagnosis and therapy in cancer treatment. STATEMENT OF SIGNIFICANCE A significant challenge in cancer therapy is to maximize the therapeutic efficacy and minimize the side effects. In the past decade, a lot of nanoparticles have been used as the carriers for efficient drug delivery. However, the design of drug delivery system (DDS) with stimuli-responsive controlled-release property, simultaneous diagnosis and therapy functions is still a challenge. Herein, we developed a new drug delivery system (C60@Au-PEG/DOX), and explored its applications in tumor therapy. The in vitro and in vivo results showed C60@Au-PEG/DOX could significantly improve the therapeutic efficacy and reduce the systemic toxicity through X-ray imaging guided locatable DOX release, photodynamic and photothermal therapies. These results are of interest as they demonstrate a multi-functional DDS for tumor theranostic applications.
Collapse
|
79
|
Wawrzyniec K, Kawczyk-Krupka A, Czuba ZP, Król W, Sieroń A. The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro. Photodiagnosis Photodyn Ther 2015; 12:598-611. [DOI: 10.1016/j.pdpdt.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
|
80
|
Marczynska J, Banas M, Guzik K, Koltun M, Majewski P, Cichy J, Krzykawska-Serda M, Makarska A, Kwitniewski M. Chlorin e6-mediated photodynamic effect diminishes therapeutic potential of 5-aza-2'-deoxycytidine-based whole-tumour-cell vaccine in mice bearing squamous cell carcinoma SCCVII. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:455-62. [PMID: 26569454 DOI: 10.1016/j.jphotobiol.2015.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
After years of setbacks, therapeutic cancer vaccines have become an alternative treatment option. Among the diversity of targeted tumour associated antigens (TAA), cancer-testis antigens (CTAs) are promising targets for cancer immunotherapy because they are highly immunogenic; meanwhile, they are expressed in human tumours of different histological origin but not in adult somatic tissues. Epigenetic modifications, such as DNA methylation, regulate CTAs expression both in normal and cancer cells. 5-Aza-2'-deoxycytidine (5-AZA-CdR), a DNA hypomethylating drug, induces the expression of CTAs in neoplastic cells. In these studies, we used 5-AZA-CdR-mediated up-regulation of CTAs and chlorin e6-mediated photodynamic effect in the production of a whole-tumour-cell vaccine against murine squamous cell carcinoma SCCVII in C3H/HeN mice. The results show that 5-AZA-CdR can be used to elevate levels of diverse CTAs in SCCVII cells. The 5-AZA-CdR-based vaccine, combined with the systemic administration of 5-AZA-CdR, delayed tumour growth. However, the treatment had no effect on survival in mice, most likely because of the toxicity of systemic treatment with 5-AZA-CdR. The photodynamic effect diminished therapeutic potential of 5-AZA-CdR-based vaccine. Chemo-immunotherapy with 5-AZA-CdR and therapeutic cancer vaccines may be an alternative approach to cancer therapy. However, further studies are needed to optimize treatment and vaccine preparation protocols.
Collapse
Affiliation(s)
- Joanna Marczynska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Magdalena Banas
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Michal Koltun
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Martyna Krzykawska-Serda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland; Department of Radiation and Cellular Oncology, University of Chicago, MC 0085, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | - Anna Makarska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, Krakow 30-387, Poland.
| |
Collapse
|
81
|
Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens. Eur J Cancer 2015; 51:1822-30. [DOI: 10.1016/j.ejca.2015.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/09/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
|
82
|
Anzengruber F, Avci P, de Freitas LF, Hamblin MR. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem Photobiol Sci 2015; 14:1492-1509. [PMID: 26062987 PMCID: PMC4547550 DOI: 10.1039/c4pp00455h] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients.
Collapse
Affiliation(s)
- Florian Anzengruber
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Lucas Freitas de Freitas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Programa de Pos Graduacao Interunidades Bioengenharia – USP – Sao Carlos, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Correspondence to: Michael R Hamblin, PhD, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
83
|
Boppana NB, Kodiha M, Stochaj U, Lin HS, Haimovitz-Friedman A, Bielawska A, Bielawski J, Divine GW, Boyd JA, Korbelik M, Separovic D. Ceramide synthase inhibitor fumonisin B1 inhibits apoptotic cell death in SCC17B human head and neck squamous carcinoma cells after Pc4 photosensitization. Photochem Photobiol Sci 2015; 13:1621-7. [PMID: 25266739 DOI: 10.1039/c4pp00292j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sphingolipid ceramide modulates stress-induced cell death and apoptosis. We have shown that ceramide generated via de novo sphingolipid biosynthesis is required to initiate apoptosis after photodynamic therapy (PDT). The objective of this study was to define the role of ceramide synthase (CERS) in PDT-induced cell death and apoptosis using fumonisin B1 (FB), a CERS inhibitor. We used the silicon phthalocyanine Pc4 for PDT, and SCC17B cells, as a clinically-relevant model of human head and neck squamous carcinoma. zVAD-fmk, a pan-caspase inhibitor, as well as FB, protected cells from death after PDT. In contrast, ABT199, an inhibitor of the anti-apoptotic protein Bcl2, enhanced cell killing after PDT. PDT-induced accumulation of ceramide in the endoplasmic reticulum and mitochondria was inhibited by FB. PDT-induced Bax translocation to the mitochondria and cytochrome c release were also inhibited by FB. These novel data suggest that PDT-induced cell death via apoptosis is CERS/ceramide-dependent.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Cerman E, Çekiç O. Clinical use of photodynamic therapy in ocular tumors. Surv Ophthalmol 2015; 60:557-74. [PMID: 26079736 DOI: 10.1016/j.survophthal.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Although the introduction of intravitreal anti-vascular endothelial growth factor drugs reduced the indications for photodynamic therapy in ophthalmology, it may still be used in various ocular tumors. Although many studies have shown that photodynamic therapy is effective in ocular tumors, the literature consists of case reports and series. In this review, we systematically performed a meta-analysis for the use of photodynamic therapy in circumscribed choroidal hemangioma, diffuse choroidal hemangioma, retinal capillary hemangioma, von Hippel-Lindau angiomatosis, choroidal melanoma, retinal astrocytoma, retinoblastoma, eyelid tumors, conjunctival tumors, and choroidal metastasis.
Collapse
Affiliation(s)
- Eren Cerman
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Osman Çekiç
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
85
|
Bastian A, Thorpe JE, Disch BC, Bailey-Downs LC, Gangjee A, Devambatla RKV, Henthorn J, Humphries KM, Vadvalkar SS, Ihnat MA. A small molecule with anticancer and antimetastatic activities induces rapid mitochondrial-associated necrosis in breast cancer. J Pharmacol Exp Ther 2015; 353:392-404. [PMID: 25720766 PMCID: PMC4407723 DOI: 10.1124/jpet.114.220335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Therapy for treatment-resistant breast cancer provides limited options and the response rates are low. Therefore, the development of therapies with alternative chemotherapeutic strategies is necessary. AG311 (5-[(4-methylphenyl)thio]-9H-pyrimido[4,5-b]indole-2,4-diamine), a small molecule, is being investigated in preclinical and mechanistic studies for treatment of resistant breast cancer through necrosis, an alternative cell death mechanism. In vitro, AG311 induces rapid necrosis in numerous cancer cell lines as evidenced by loss of membrane integrity, ATP depletion, HMGB1 (high-mobility group protein B1) translocation, nuclear swelling, and stable membrane blebbing in breast cancer cells. Within minutes, exposure to AG311 also results in mitochondrial depolarization, superoxide production, and increased intracellular calcium levels. Additionally, upregulation of mitochondrial oxidative phosphorylation results in sensitization to AG311. This AG311-induced cell death can be partially prevented by treatment with the mitochondrial calcium uniporter inhibitor, Ru360 [(μ)[(HCO2)(NH3)4Ru]2OCl3], or an antioxidant, lipoic acid. Additionally, AG311 does not increase apoptotic markers such as cleavage of poly (ADP-ribose) polymerase (PARP) or caspase-3 and -7 activity. Importantly, in vivo studies in two orthotopic breast cancer mouse models (xenograft and allograft) demonstrate that AG311 retards tumor growth and reduces lung metastases better than clinically used agents and has no gross or histopathological toxicity. Together, these data suggest that AG311 is a first-in-class antitumor and antimetastatic agent inducing necrosis in breast cancer tumors, likely through the mitochondria.
Collapse
Affiliation(s)
- Anja Bastian
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Jessica E Thorpe
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Bryan C Disch
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Lora C Bailey-Downs
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Aleem Gangjee
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Ravi K V Devambatla
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Jim Henthorn
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Kenneth M Humphries
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Shraddha S Vadvalkar
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences (A.B., J.E.T., B.C.D., M.A.I.), Department of Physiology (A.B.), Flow Cytometry and Imaging Laboratory (J.H.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; DormaTarg, Inc., Oklahoma City, Oklahoma (B.C.D., L.C.B.D., M.A.I.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (A.G., R.K.V.D.); and Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (K.M.H., S.S.V.)
| |
Collapse
|
86
|
Rohrbach DJ, Zeitouni NC, Muffoletto D, Saager R, Tromberg BJ, Sunar U. Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:1761-6. [PMID: 26137378 PMCID: PMC4467704 DOI: 10.1364/boe.6.001761] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 05/03/2023]
Abstract
The dosimetry of light-based therapies critically depends on both optical and vascular parameters. We utilized spatial frequency domain imaging to quantify optical and vascular parameters, as well as estimated light penetration depth from 17 nonmelanoma skin cancer patients. Our data indicates that there exist substantial spatial variations in these parameters. Characterization of these parameters may inform understanding and optimization of the clinical response of light-based therapies.
Collapse
Affiliation(s)
- Daniel J. Rohrbach
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY,
USA
| | | | - Daniel Muffoletto
- Department of Electrical Engineering, University at Buffalo, Buffalo, NY,
USA
| | - Rolf Saager
- Beckman Laser Institute, University of California Irvine, Irvine, CA,
USA
| | - Bruce J. Tromberg
- Beckman Laser Institute, University of California Irvine, Irvine, CA,
USA
| | - Ulas Sunar
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY,
USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY,
USA
| |
Collapse
|
87
|
Boppana NB, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D. Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. Int J Oncol 2015; 46:2003-10. [PMID: 25739041 PMCID: PMC4383026 DOI: 10.3892/ijo.2015.2909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/05/2015] [Indexed: 02/05/2023] Open
Abstract
Because photodynamic therapy (PDT) alone is not always effective as an anticancer treatment, PDT is combined with other anticancer agents for improved efficacy. The clinically-relevant fenretinide [N-(4-hydroxyphenyl) retinamide; 4HPR], was combined with the silicon phthalocyanine photosensitizer Pc4-mediated PDT to test for their potential to enhance killing of SCC17B cells, a clinically-relevant model of human head and neck squamous cell carcinoma. Because each of these treatments induces apoptosis and regulates the de novo sphingolipid (SL) biosynthesis pathway, the role of ceramide synthase, the pathway-associated enzyme, in PDT+4HPR-induced apoptotic cell death was determined using the ceramide synthase inhibitor fumonisin B1 (FB). PDT+4HPR enhanced loss of clonogenicity. zVAD-fmk, a pan-caspase inhibitor, and FB, protected cells from death post-PDT+4HPR. In contrast, the anti-apoptotic protein Bcl2 inhibitor ABT199 enhanced cell killing after PDT+4HPR. Combining PDT with 4HPR led to FB-sensitive, enhanced Bax associated with mitochondria and cytochrome c redistribution. Mass spectrometry data showed that the accumulation of C16-dihydroceramide, a precursor of ceramide in the de novo SL biosynthesis pathway, was enhanced after PDT+4HPR. Using quantitative confocal microscopy, we found that PDT+4HPR enhanced dihydroceramide/ceramide accumulation in the ER, which was inhibited by FB. The results suggest that SCC17B cells are sensitized to PDT by 4HPR via the de novo SL biosynthesis pathway and apoptosis, and imply potential clinical relevance of the combination for cancer treatment.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1YC, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, QC H3G 1YC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
88
|
Araki T, Ogawara KI, Suzuki H, Kawai R, Watanabe TI, Ono T, Higaki K. Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature. J Control Release 2015; 200:106-14. [DOI: 10.1016/j.jconrel.2014.12.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
|
89
|
Wang Y, Wang X, Le Bitoux MA, Wagnieres G, Vandenbergh H, Gonzalez M, Ris HB, Perentes JY, Krueger T. Fluence plays a critical role on the subsequent distribution of chemotherapy and tumor growth delay in murine mesothelioma xenografts pre-treated by photodynamic therapy. Lasers Surg Med 2015; 47:323-30. [DOI: 10.1002/lsm.22329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Yabo Wang
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Xingyu Wang
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Marie-Aude Le Bitoux
- Department of Pathology; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Georges Wagnieres
- Department of Chemistry; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Hubert Vandenbergh
- Department of Chemistry; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Michel Gonzalez
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Hans-Beat Ris
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Jean Y Perentes
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| | - Thorsten Krueger
- Department of Thoracic and Vascular Surgery; Centre Hospitalier Universitaire Vaudois; Ecole Polytechnique Federale de Lausanne; Lausanne Switzerland
| |
Collapse
|
90
|
Boppana NB, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D. C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:163-8. [PMID: 25635908 DOI: 10.1016/j.jphotobiol.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 11/17/2022]
Abstract
Combining photodynamic therapy (PDT) with another anticancer treatment modality is an important strategy for improved efficacy. PDT with Pc4, a silicon phthalocyanine photosensitizer, was combined with C6-pyridinium ceramide (LCL29) to determine their potential to promote death of SCC17B human head and neck squamous cell carcinoma cells. PDT+LCL29-induced enhanced cell death was inhibited by zVAD-fmk, a pan-caspase inhibitor, and fumonisin B1 (FB), a ceramide synthase inhibitor. Quantitative confocal microscopy showed that combining PDT with LCL29 enhanced FB-sensitive ceramide accumulation in the mitochondria. Furthermore, PDT+LCL29 induced enhanced FB-sensitive redistribution of cytochrome c and caspase-3 activation. Overall, the data indicate that PDT+LCL29 enhanced cell death via FB-sensitive, mitochondrial ceramide accumulation and apoptosis.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | - Ursula Stochaj
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Mladen Korbelik
- British Columbia Cancer Agency, 675 West 10th Ave., Vancouver, BC V5Z 1L3, Canada
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA; Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, MI 48201, USA.
| |
Collapse
|
91
|
Marchal S, Dolivet G, Lassalle HP, Guillemin F, Bezdetnaya L. Targeted photodynamic therapy in head and neck squamous cell carcinoma: heading into the future. Lasers Med Sci 2015; 30:2381-7. [PMID: 25563461 DOI: 10.1007/s10103-014-1703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
The aim of this article is to give an insight into the future of photodynamic therapy (PDT) in head and neck squamous cell carcinoma (HNSCC). Through the combination of a photosensitizing agent with light and oxygen, PDT produces highly cytotoxic reactive oxygen species leading to selective tumor eradication. PDT is an attractive treatment for focal therapy of localized tumors, especially in the case of unresectable tumors. In HNSCC, over 1500 patients have been treated by PDT, and the majority of them responded quite favorably to this treatment. However, the non-negligible photosensitization of healthy tissue is a major limitation for the clinical application of PDT. Improvement in tumor selectivity is the main challenge that can be taken up by the use of a new generation of photosensitizing nanoparticles. Passive targeting, by using functionalised nanocarriers to target to overexpressed transmembrane receptors afford attractive solutions. To this day, epidermal growth factor receptor (EGFR) remains the only validated molecular target for HNSCC, and photosensitizer immunoconjugates to EGFR have been developed for the intracellular delivery of photosensitizing agents. Depending on coordinated research between biomarkers, specific ligands, and photosensitizers, similar approaches could be rapidly developed. In addition, some photosensitizers hold high fluorescence yield and therefore could emerge as theranostic agents.
Collapse
Affiliation(s)
- Sophie Marchal
- Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy Cedex, France. .,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, 54506, Vandoeuvre-lès-Nancy Cedex, France. .,Research Unit, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy Cedex, France.
| | - Gilles Dolivet
- Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, 54506, Vandoeuvre-lès-Nancy Cedex, France.,Surgery Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, 54506, Vandoeuvre-lès-Nancy Cedex, France.,Research Unit, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - François Guillemin
- Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, 54506, Vandoeuvre-lès-Nancy Cedex, France.,Surgery Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, 54506, Vandoeuvre-lès-Nancy Cedex, France.,Research Unit, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
92
|
Basic and Clinical Aspects of Photodynamic Therapy. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
94
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
95
|
Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol Immunother 2014; 64:287-97. [PMID: 25384911 PMCID: PMC4341021 DOI: 10.1007/s00262-014-1633-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
Effective therapy for advanced cancer often requires treatment of both primary tumors and systemic disease that may not be apparent at initial diagnosis. Numerous studies have shown that stimulation of the host immune system can result in the generation of anti-tumor immune responses capable of controlling metastatic tumor growth. Thus, there is interest in the development of combination therapies that both control primary tumor growth and stimulate anti-tumor immunity for control of metastatic disease and subsequent tumor growth. Photodynamic therapy (PDT) is an FDA-approved anticancer modality that has been shown to enhance anti-tumor immunity. Augmentation of anti-tumor immunity by PDT is regimen dependent, and PDT regimens that enhance anti-tumor immunity have been defined. Unfortunately, these regimens have limited ability to control primary tumor growth. Therefore, a two-step combination therapy was devised in which a tumor-controlling PDT regimen was combined with an immune-enhancing PDT regimen. To determine whether the two-step combination therapy enhanced anti-tumor immunity, resistance to subsequent tumor challenge and T cell activation and function was measured. The ability to control distant disease was also determined. The results showed that the novel combination therapy stimulated anti-tumor immunity while retaining the ability to inhibit primary tumor growth of both murine colon (Colon26-HA) and mammary (4T1) carcinomas. The combination therapy resulted in enhanced tumor-specific T cell activation and controlled metastatic tumor growth. These results suggest that PDT may be an effective adjuvant for therapies that fail to stimulate the host anti-tumor immune response.
Collapse
|
96
|
Wiegell S, Petersen B, Wulf H. Topical corticosteroid reduces inflammation without compromising the efficacy of photodynamic therapy for actinic keratoses: a randomized clinical trial. Br J Dermatol 2014; 171:1487-92. [DOI: 10.1111/bjd.13284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- S.R. Wiegell
- Department of Dermatology D92; Bispebjerg Hospital; Bispebjerg Bakke 23 2400 Copenhagen NV Denmark
| | - B. Petersen
- Department of Dermatology D92; Bispebjerg Hospital; Bispebjerg Bakke 23 2400 Copenhagen NV Denmark
| | - H.C. Wulf
- Department of Dermatology D92; Bispebjerg Hospital; Bispebjerg Bakke 23 2400 Copenhagen NV Denmark
| |
Collapse
|
97
|
Usacheva M, Swaminathan SK, Kirtane AR, Panyam J. Enhanced Photodynamic Therapy and Effective Elimination of Cancer Stem Cells Using Surfactant–Polymer Nanoparticles. Mol Pharm 2014; 11:3186-95. [DOI: 10.1021/mp5003619] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marina Usacheva
- Department of Pharmaceutics, ‡Masonic Cancer Center, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Suresh Kumar Swaminathan
- Department of Pharmaceutics, ‡Masonic Cancer Center, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Ameya R. Kirtane
- Department of Pharmaceutics, ‡Masonic Cancer Center, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Jayanth Panyam
- Department of Pharmaceutics, ‡Masonic Cancer Center, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
98
|
Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 2014; 11:319-30. [PMID: 24905843 DOI: 10.1016/j.pdpdt.2014.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) consists of a laser light exposure of tumor cells photosensitized by general or local administration of a pharmacological agent. Nowadays, PDT is a clinically established modality for treatment of many cancers. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) has proven its rational in fluoro-guided resection of malignant gliomas due to a selective tumor uptake and minimal skin sensitization. Moreover, the relatively specific accumulation of photosensitizing PPIX within the tumor cells has gained interest in the PDT of malignant gliomas. Several experimental and clinical studies have then established ALA-PDT as a valuable adjuvant therapy in the management of malignant gliomas. However, the procedure still requires optimizations in the fields of tissue oxygenation status, photosensitizer concentration or scheme of laser light illumination. In this extensive review, we focused on the methods and results of ALA-PDT for treating malignant gliomas in experimental conditions. The biological mechanisms, the effects on tumor and normal brain tissue, and finally the critical issues to optimize the efficacy of ALA-PDT were discussed.
Collapse
Affiliation(s)
- Marie-Charlotte Tetard
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| | - Maximilien Vermandel
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France.
| | | | - Jean-Paul Lejeune
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| | - Nicolas Reyns
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| |
Collapse
|
99
|
In vitro and in vivo effects of photodynamic therapy on metastatic breast cancer cells pre-treated with zoledronic acid. Photodiagnosis Photodyn Ther 2014; 11:426-33. [PMID: 25176573 DOI: 10.1016/j.pdpdt.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT), a non-ionizing, minimally invasive drug-light treatment, has recently been shown to successfully ablate tumor within rat vertebrae with concurrent improvements in bone strength and architecture. The bisphosphonate zoledronic acid (zol), a current drug for patients with skeletal metastases, primarily works by inhibiting osteoclast activity, but direct anti-tumor effects have also been reported. However, it is unknown if or how pre-treatment with zol may alter the tumorcidal effect of PDT. The aim of this study was to evaluate the effect of PDT, both in vitro and in vivo, on zol-pretreated cancer cells. MATERIALS AND METHODS Human metastatic breast cancer cells (MT-1) were cultured in vitro and treated with zol (10μM) for 24h, followed by PDT treatment. Cell viability was assessed by fluorescence microscopy and flow cytometry. In vivo, MT-1 cells were injected (intracardiac) into athymic rats. On day 7, zol (60μg/kg) was administered subcutaneously. On day 14, PDT was applied (1mg/kg verteporfin; 75J; 690nm) to lumbar vertebrae. Histomorphometric assessment of tumor burden was evaluated on day 21. RESULTS The cell viability measured in vitro after PDT treatment decreased in cells pre-incubated with zol up to 20% compared to treatment with PDT alone. Zol alone had no influence on the MT-1 cell viability. In vivo, all treatments, either alone or combined, had a tumorcidal effect. CONCLUSIONS Pre-treatment with zol in vivo did not yield a synergistic effect on tumor ablation in contrast to the in vitro results, but neither did it abrogate the positive tumorcidal effect of PDT, so that those therapies may be applied in combination.
Collapse
|
100
|
Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, Ma R, Liu R, Zhang Z. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater 2014; 10:1280-91. [PMID: 24211343 DOI: 10.1016/j.actbio.2013.10.037] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/08/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Fullerene has shown great potential both in drug delivery and photodynamic therapy. Herein, we developed a doxorubicin (DOX)-loaded poly(ethyleneimine) (PEI) derivatized fullerene (C60-PEI-DOX) to facilitate combined chemotherapy and photodynamic therapy in one system, and DOX was covalently conjugated onto C60-PEI by the pH-sensitive hydrazone linkage. The release profiles of DOX from C60-PEI-DOX showed a strong dependence on the environmental pH value. The biodistributions of C60-PEI-DOX were investigated by injecting CdSe/ZnS (Qds) labeled conjugates (C60-PEI-DOX/Qds) into tumor-bearing mice. C60-PEI-DOX/Qds showed a higher tumor targeting efficiency compared with Qds alone. Compared with free DOX in an in vivo murine tumor model, C60-PEI-DOX afforded higher antitumor efficacy without obvious toxic effects to normal organs owing to its good tumor targeting efficacy and the 2.4-fold greater amount of DOX released in the tumor than in the normal tissues. C60-PEI-DOX also showed high antitumor efficacy during photodynamic therapy. The ability of C60-PEI-DOX nanoparticles to combine local specific chemotherapy with external photodynamic therapy significantly improved the therapeutic efficacy of the cancer treatment, the combined treatment demonstrating a synergistic effect. These results suggest that C60-PEI-DOX may be promising for high treatment efficacy with minimal side effects in future therapy.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Yan Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Jun Gao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Xiaoyuan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Rou Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Ruiyuan Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|