51
|
Markovics JA, Araya J, Cambier S, Somanath S, Gline S, Jablons D, Hill A, Wolters PJ, Nishimura SL. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem 2011; 286:36864-74. [PMID: 21878622 DOI: 10.1074/jbc.m111.276790] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The integrin αvβ8 is a cell surface receptor for the latent domain (LAP) of the multifunctional cytokine TGF-β. Through its association with LAP, TGF-β is maintained in a latent form that must be activated to function. Binding to the integrin αvβ8 with subsequent metalloproteolytic cleavage of LAP represents a major mechanism of TGF-β activation in vivo. Altered expression of the integrin β8 subunit (ITGB8) is found in human chronic obstructive pulmonary disease, cancers, and brain vascular malformations. We have previously shown that the proinflammatory cytokine interleukin-1β (IL-1β) increases ITGB8 expression on lung fibroblasts, which increases αvβ8-mediated TGF-β activation in fibrosis and pathologic inflammation. Here we report the mechanism of increased ITGB8 expression by IL-1β. Our data support a model where the chromatin architecture of the ITGB8 core promoter is altered by nucleosomal repositioning that enhances the interaction of an AP1 complex (containing c-Jun and ATF2). This repositioning is caused by the dissociation of HDAC2 with the ITGB8 core promoter, leading to increased histone H4 acetylation and a loosening of nucleosomal-DNA interactions allowing "opening" of the chromatin structure and increased association of c-Jun and ATF-2. These changes are mediated through NFκB- and p38-dependent pathways. Ultimately, these events culminate in increasing ITGB8 transcription, αvβ8 surface expression, and αvβ8-mediated TGFβ activation.
Collapse
Affiliation(s)
- Jennifer A Markovics
- Department Pathology, School of Medicine, University of California, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Cho WC, Kwan CK, Yau S, So PP, Poon PC, Au JS. The role of inflammation in the pathogenesis of lung cancer. Expert Opin Ther Targets 2011; 15:1127-37. [PMID: 21751938 DOI: 10.1517/14728222.2011.599801] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION It is reported that cancer may arise in chronically inflamed tissue. There is mounting evidence suggesting that the connection between inflammation and lung cancer is not coincidental but may indeed be causal. The inflammatory molecules may be responsible for augmented macrophage recruitment, delayed neutrophil clearance and an increase in reactive oxygen species. The cytokines and growth factors unusually produced in chronic pulmonary disorders have been found to have harmful properties that pave the way for epithelial-to-mesenchymal transition and tumor microenvironment. However, the role of inflammation in lung cancer is not yet fully understood. AREAS COVERED The role of chronic inflammation in the pathogenesis of lung cancer and some of the possible mechanisms involved, with particular focus on inflammatory mediators, genetic and epigenetic alterations, inflammatory markers, tumor microenvironment and anti-inflammatory drugs are discussed. A framework for understanding the connection between inflammation and lung cancer is provided, which may afford the opportunity to intercede in specific inflammatory damage mediating lung carcinogenesis and therapeutic resistance. EXPERT OPINION Advances in tumor immunology support the clinical implementation of immunotherapies for lung cancer. Along with therapeutic benefits, immunotherapy presents the challenges of drug-related toxicities. Gene modification of immunocytokine may lower the associated toxic effects.
Collapse
Affiliation(s)
- William Cs Cho
- Queen Elizabeth Hospital, Department of Clinical Oncology, Kowloon, Hong Kong.
| | | | | | | | | | | |
Collapse
|
53
|
Blocking NF-κB and Akt by Hsp90 inhibition sensitizes Smac mimetic compound 3-induced extrinsic apoptosis pathway and results in synergistic cancer cell death. Apoptosis 2011; 16:45-54. [PMID: 20862547 DOI: 10.1007/s10495-010-0542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NF-κB and Akt are two main cell survival pathways that attenuate the anticancer efficacy of therapeutics. Our previous studies demonstrated that the Smac mimetic compound 3 (SMC3) specifically suppresses c-IAP1 and induces TNF-α autocrine to kill cancer cells. However, SMC3 also induces a cell survival signal through NF-κB activation. In this report, we further found that SMC3 potently activates Akt, which inhibits SMC3-induced cancer cell death. Strikingly, concurrent blocking NF-κB and Akt resulted in a significantly potentiated cytotoxicity. Because heat shock protein 90 (Hsp90) plays an important role in maintaining the integrity of both the NF-κB and Akt pathways in cancer cells, we examined if suppression of Hsp90 is able to potentiate SMC3-induced cancer cell death. The results show that targeting Hsp90 does not interfere with SMC3-induced c-IAP1 degradation and TNF-α autocrine, the key processes for SMC3-induced cancer cell apoptosis. However, Hsp90 inhibitors effectively blocked SMC3-induced NF-κB activation through degradation of RIP1 and IKKβ, two key components of the NF-κB activation pathway, and reduced both the constitutive and SMC3-induced Akt activity through degradation of the Akt protein. Consistently, with the co-treatment of SMC3 and Hsp90 inhibitors, apoptosis was markedly sensitized and a synergistic cytotoxicity was observed. The results suggest that concurrent targeting c-IAP1 and Hsp90 by combination of SMC3 and Hsp90 inhibitors is an effective approach for improving the anticancer value of SMC3.
Collapse
|
54
|
Yang L, Zheng XL, Sun H, Zhong YJ, Wang Q, He HN, Shi XW, Zhou B, Li JK, Lin Y, Zhang L, Wang X. Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Sci 2011; 102:870-6. [PMID: 21244577 DOI: 10.1111/j.1349-7006.2011.01874.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tremendous effort has been made to improve the anticancer value of tumor necrosis factor (TNF). In this study, we show that wogonin, a flavonoid isolated from Huang-Qin (Scutellaria baicalensis), synergistically sensitizes cancer cells derived from the cervix, ovary and lung to TNF-induced apoptosis, which was associated with inhibition of catalase activity and an increase of cellular hydrogen peroxide (H(2)O(2)). Wogonin-induced reactive oxygen species block TNF-induced NF-κB activation through inhibiting phosphorylation on the NF-κB p65 subunit and consequently the DNA binding of NF-κB. In addition, wogonin suppressed the expression of the antiapoptotic factor c-FLIP, which is accompanied with potentiation of TNF-induced caspase 8 activation that initiates apoptosis. Importantly, wogonin did not sensitize normal bronchial epithelial cells to TNF-induced cell death, which was associated with the defect in induction of H(2)O(2). Thus, wogonin specifically sensitizes cancer cells to TNF-induced cytotoxicity through H(2)O(2)-mediated NF-κB suppression and apoptosis activation. Our data provide important insights into the molecular mechanism underlying wogonin's anticancer activity, and suggest this common flavonoid could be used as a TNF adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Lan Yang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed) 2011; 16:1172-85. [PMID: 21196225 DOI: 10.2741/3782] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell's resistance to chemo- and radio-therapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting NF-kappa signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR SE, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
56
|
Wang Q, Zheng XL, Yang L, Shi F, Gao LB, Zhong YJ, Sun H, He F, Lin Y, Wang X. Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:159. [PMID: 21143894 PMCID: PMC3006358 DOI: 10.1186/1756-9966-29-159] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
Background Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of combination of saikosaponins with chemotherapeutic drugs has never been addressed. Thus, we investigated whether these two saikosaponins have chemosensitization effect on cisplatin-induced cancer cell cytotoxicity. Methods Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH) using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death. Results Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS) accumulation. The dead cells showed typical apoptotic morphologies. Both early apoptotic and late apoptotic cells detected by flow cytometry were increased in saikosaponins and cisplatin cotreated cells, accompanied by activation of the caspase pathway. The pan-caspase inhibitor z-VAD and ROS scanvengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) dramatically suppressed the potentiated cytotoxicity achieved by combination of saikosaponin-a or -d and cisplatin. Conclusions These results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Qiu X, Du Y, Lou B, Zuo Y, Shao W, Huo Y, Huang J, Yu Y, Zhou B, Du J, Fu H, Bu X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J Med Chem 2010; 53:8260-73. [PMID: 21070043 DOI: 10.1021/jm1004545] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of curcumin analogues including new 4-arylidene curcumin analogues (4-arylidene-1,7-bisarylhepta-1,6-diene-3,5-diones) were synthesized. Cell growth inhibition assays revealed that most 4-arylidene curcumin analogues can effectively decrease the growth of a panel of lung cancer cells at submicromolar and low micromolar concentrations. High content analysis technology coupled with biochemical studies showed that this new class of 4-arylidene curcumin analogues exhibits significantly improved NF-κB inhibition activity over the parent compound curcumin, at least in part by inhibiting IκB phosphorylation and degradation via IKK blockage; selected 4-arylidene curcumin analogues also reduced the tumorigenic potential of cancer cells in a clonogenic assay.
Collapse
Affiliation(s)
- Xu Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B. Fisetin, a Dietary Flavonoid, Induces Cell Cycle Arrest and Apoptosis through Activation of p53 and Inhibition of NF-Kappa B Pathways in Bladder Cancer Cells. Basic Clin Pharmacol Toxicol 2010; 108:84-93. [DOI: 10.1111/j.1742-7843.2010.00613.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
59
|
Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR, Ravula S, Spicer JE, Oelrich JL, Thornquist A, Pan CM, McAlpine SR. Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 2010; 18:6822-56. [PMID: 20708938 PMCID: PMC2933939 DOI: 10.1016/j.bmc.2010.07.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 01/10/2023]
Abstract
Utilizing the structure-activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90's binding with client proteins. Finally, we demonstrate that we have integrated good ADME properties into a new derivative.
Collapse
Affiliation(s)
- Robert P. Sellers
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Leslie D. Alexander
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Victoria A. Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chun-Chieh Lin
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jeremiah Savage
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Ricardo Corral
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jason Moss
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Tim S. Slugocki
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Erinprit K. Singh
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Melinda R. Davis
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Suchitra Ravula
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jamie E. Spicer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jenna L. Oelrich
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Andrea Thornquist
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chung-Mao Pan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Shelli R. McAlpine
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| |
Collapse
|
60
|
Bai L, Chen W, Wang X, Ju W, Xu S, Lin Y. Attenuating Smac mimetic compound 3-induced NF-kappaB activation by luteolin leads to synergistic cytotoxicity in cancer cells. J Cell Biochem 2010; 108:1125-31. [PMID: 19739098 DOI: 10.1002/jcb.22346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Smac mimetics are potential anticancer therapeutics selectively killing cancer cells through autocrine tumor necrosis factor (TNF)-mediated apoptosis pathway. Our recent study reveal that the Smac mimetic compound 3 (SMC3)-activated NF-kappaB protects cancer cells against apoptosis, thus blunting SMC3's anticancer activity. Based on our previous observations that the nutrient flavonoid luteolin potently blocks TNF-induced NF-kappaB activation in cancer cells, we investigated if the combination of SMC3 and luteolin would achieve a synergistic anticancer activity. The results show that luteolin had no effect on autocrine TNF but it effectively blocked SMC3-induced nuclear factor kappa B (NF-kappaB) activation and expression of anti-apoptotic NF-kappaB targets. When SMC3 and luteolin were combined in treating cancer cells derived from lung and liver tumors, the activation of TNF-dependent apoptosis was markedly sensitized and a synergistic cytotoxic effect was achieved. In addition, the SMC3 and luteolin co-treatment had marginal effect on immortalized normal human bronchial epithelial cells. The results suggest that combination of SMC3 and luteolin is an effective approach for improving the anticancer value of SMC3, which has implications in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lang Bai
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
61
|
Concurrent blockade of the NF-kappaB and Akt pathways potently sensitizes cancer cells to chemotherapeutic-induced cytotoxicity. Cancer Lett 2010; 295:38-43. [PMID: 20207071 DOI: 10.1016/j.canlet.2010.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/22/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) and Akt are two major cell survival pathways that are often constitutively activated and can be further stimulated by chemotherpeutics in cancer cells. Although individually targeting the NF-kappaB or Akt has been reported to sensitize caner therapy, the effectiveness of concurrent blocking these two pathways for chemosensitizing of cancer cells to genotoxic therapeutics has not been investigated. In the present study, we investigate the activation of the NF-kappaB and Akt pathways by two frontline anticancer drugs cisplatin and etopside in a variety of cancer cell lines. The effects of blocking these two survival pathways individually or concurrently on cisplatin- or etopside-induced cytotoxicity were detected. The results show that cisplatin and etopside activate both NF-kappaB and Akt in cancer cells. Blockade of either of these pathways with chemical inhibitors or siRNA moderately sensitized cancer cells to cisplatin- or etopside-induced cytotoxicity. Strikingly, much more effective potentiation of cytotoxicity to these anticancer drugs was achieved when NF-kappaB and Akt were concurrently blocked. These data suggest that NF-kappaB and Akt cooperatively attenuate therapeutic-induced cytotoxicity and concurrently blocking these pathways is an effective strategy for improving the anticancer efficacy of therapeutics.
Collapse
|
62
|
Chen W, Bai L, Wang X, Xu S, Belinsky SA, Lin Y. Acquired activation of the Akt/cyclooxygenase-2/Mcl-1 pathway renders lung cancer cells resistant to apoptosis. Mol Pharmacol 2010; 77:416-23. [PMID: 19933775 PMCID: PMC2835422 DOI: 10.1124/mol.109.061226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/23/2009] [Indexed: 01/06/2023] Open
Abstract
Acquired apoptosis resistance plays an important role in acquired chemoresistance in cancer cells during chemotherapy. Our previous observations demonstrated that acquired tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells was associated with Akt-mediated stabilization of cellular FLICE-like inhibitory protein (c-FLIP) and Mcl-1. In this report, we determined that these cells also have acquired resistance to apoptosis induced by chemotherapeutics such as cisplatin and doxorubicin (Adriamycin), which was detected in vitro in cell cultures and in vivo in xenografted tumors. We further found that cyclooxygenase-2 (COX-2) is dramatically overexpressed in cells with acquired apoptosis resistance. COX-2 seems to be a crucial mediator in acquired apoptosis resistance because suppressing COX-2 activity with a chemical inhibitor or reducing COX-2 protein expression level with COX-2 small interfering RNA dramatically alleviated resistance to therapeutic-induced apoptosis. Inhibiting Akt markedly suppressed COX-2 expression, suggesting COX-2 is a downstream effector of this cell survival kinase-mediated apoptosis resistance. Furthermore, the expression of Mcl-1 but not c-FLIP was significantly reduced when COX-2 was suppressed, and knockdown of Mcl-1 substantially sensitized the cells to apoptosis. Our results establish a novel pathway that consists of Akt, COX-2, and Mcl-1 for acquired apoptosis resistance, which could be a molecular target for circumventing acquired chemoresistance in lung cancer.
Collapse
Affiliation(s)
- Wenjie Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | |
Collapse
|
63
|
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 2010; 14:45-55. [PMID: 20001209 DOI: 10.1517/14728220903431069] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Nuclear factor kappa B (NF-kappaB) is activated by a variety of cancer-promoting agents. The reciprocal activation between NF-kappaB and inflammatory cytokines makes NF-kappaB important for inflammation-associated cancer development. Both the constitutive and anticancer therapeutic-induced NF-kappaB activation blunts the anticancer activities of the therapy. Elucidating the roles of NF-kappaB in cancer facilitates developing approaches for cancer prevention and therapy. AREAS COVERED IN THIS REVIEW By searching PubMed, we summarize the progress of studies on NF-kappaB in carcinogenesis and cancer cells' drug resistance in recent 10 years. WHAT THE READER WILL GAIN The mechanisms by which NF-kappaB activation pathways are activated; the roles and mechanisms of NF-kappaB in cell survival and proliferation, and in carcinogenesis and cancer cells' response to therapy; recent development of NF-kappaB-modulating means and their application in cancer prevention and therapy. TAKE HOME MESSAGE NF-kappaB is involved in cancer development, modulating NF-kappaB activation pathways has important implications in cancer prevention and therapy. Due to the complexity of NF-kappaB roles in different cancers, careful evaluation of NF-kappaB's in each cancer type is crucial in this regard. More cancer cell-specific NF-kappaB inhibiting means are desired for improving anticancer efficacy and reducing systemic toxicity.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
64
|
Song L, Dong W, Gao M, Li J, Hu M, Guo N, Huang C. A novel role of IKKalpha in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:323-32. [PMID: 20080131 PMCID: PMC2850076 DOI: 10.1016/j.bbamcr.2010.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet B (UVB) irradiation (290-320nm wavelength) from sunlight induces a variety of medical problems, including sunburn, immunosuppression and skin cancers. However, the molecular mechanisms related to UVB-induced cell damage and/or mutagenic effects have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IkappaB kinase complex (IKK), IKKalpha, plays a critical role in mediation of the UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. Notably, IKKa-dependent Cyclin D1 regulation is unrelated to IKKbeta/NF-kappaB activity. We further show that IKKalpha-dependent downregulation of Cyclin D1 expression in the UVB response results from the reduction of ERK1/2-dependent Cyclin D1 transcription coupled with an increase of p38 kinase-dependent Cyclin D1 proteolysis. Thus, our results have identified the novel role of IKKalpha in regulating cell cycle progression during the cellular UVB response. Targeting IKKalpha might be promising for the prevention of UVB-induced cell damage and tumorigenic effects.
Collapse
Affiliation(s)
- Lun Song
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Wen Dong
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Ming Gao
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Meiru Hu
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Ning Guo
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
65
|
Palacios C, López-Pérez AI, López-Rivas A. Down-regulation of RIP expression by 17-dimethylaminoethylamino-17-demethoxygeldanamycin promotes TRAIL-induced apoptosis in breast tumor cells. Cancer Lett 2010; 287:207-15. [DOI: 10.1016/j.canlet.2009.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/28/2009] [Accepted: 06/13/2009] [Indexed: 11/30/2022]
|
66
|
MKP1 repression is required for the chemosensitizing effects of NF-κB and PI3K inhibitors to cisplatin in non-small cell lung cancer. Cancer Lett 2009; 286:206-16. [DOI: 10.1016/j.canlet.2009.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/21/2009] [Accepted: 05/25/2009] [Indexed: 11/17/2022]
|
67
|
Xu J, Xu F, Wang R, Seagrave J, Lin Y, March TH. CIGARETTE SMOKE-INDUCED HYPERCAPNIC EMPHYSEMA IN C3H MICE IS ASSOCIATED WITH INCREASES OF MACROPHAGE METALLOELASTASE AND SUBSTANCE P IN THE LUNGS. Exp Lung Res 2009; 33:197-215. [PMID: 17620183 DOI: 10.1080/01902140701459514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The authors tested whether macrophage metalloelastase (MMP-12) and substance P (SP) were increased in the cigarette smoke (CS)-exposed female C3H/HeN mice with hypercapnic emphysema. The authors found that as compared to control (filtered air), 16 weeks of CS exposure significantly up-regulated mRNA and protein levels of MMP-12, the ratio of MMP-12/tissue inhibitor of matrix metalloproteinase-1, and SP/preprotachykinin-A (a precursor to SP) in the lungs. Importantly, a significant correlation was found between MMP-12 and SP, and between MMP-12/SP and the degrees of hypoxemia/hypercapnia denoted in CS-exposed mice. These data suggest a possible involvement of SP and MMP-12 in the pathogenesis of severe COPD.
Collapse
Affiliation(s)
- J Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
68
|
Taiyab A, Sreedhar AS, Rao CM. Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 2009; 78:142-52. [DOI: 10.1016/j.bcp.2009.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 11/30/2022]
|
69
|
Scott BR, Belinsky SA, Leng S, Lin Y, Wilder JA, Damiani LA. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose Response 2009; 7:104-31. [PMID: 19543479 DOI: 10.2203/dose-response.08-016.scott] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Humans are continuously exposed to low-level ionizing radiation from natural sources. However, harsher radiation environments persisted during our planet's early years and mammals survived via an evolutionary gift--a system of radiation-induced natural protective measures (adaptive protection). This system includes antioxidants, DNA repair, apoptosis of severely damaged cells, epigenetically regulated apoptosis (epiapoptosis) pathways that selectively remove precancerous and other aberrant cells, and immunity against cancer. We propose a novel model in which the protective system is regulated at least in part via radiation-stress-stimulated epigenetic reprogramming (epireprogramming) of adaptive-response genes. High-dose radiation can promote epigenetically silencing of adaptive-response genes (episilencing), for example via promoter-associated DNA and/or histone methylation and/or histone deacetylation. Evidence is provided for low linear-energy-transfer (LET) radiation-activated natural protection (ANP) against high-LET alpha-radiation-induced lung cancer in plutonium-239 exposed rats and radon-progeny-exposed humans. Using a revised hormetic relative risk model for cancer induction that accounts for both epigenetic activation (epiactivation) and episilencing of genes, we demonstrate that, on average, >80% of alpha-radiation-induced rat lung cancers were prevented by chronic, low-rate gamma-ray ANP. Interestingly, lifetime exposure to residential radon at the Environmental Protection Agency's action level of 4 pCi L(-1) appears to be associated with on average a > 60% reduction in lung cancer cases, rather than an increase. We have used underlined italics to indicate newly introduced terminology.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Bai L, Chen W, Chen W, Wang X, Tang H, Lin Y. IKKbeta-mediated nuclear factor-kappaB activation attenuates smac mimetic-induced apoptosis in cancer cells. Mol Cancer Ther 2009; 8:1636-45. [PMID: 19509265 DOI: 10.1158/1535-7163.mct-09-0068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smac mimetics (SM) have been recently reported to kill cancer cells through the extrinsic apoptosis pathway mediated by autocrine tumor necrosis factor (TNF). SM also activates nuclear factor-kappaB (NF-kappaB). However, how SM induces NF-kappaB and the role of NF-kappaB in SM-induced cancer cell death has not been well elucidated. We found that effective blockage of NF-kappaB had no detectable effect on SM compound 3 (SMC3)-induced TNF secretion, suggesting that the induction of TNF by SMC3 is independent of NF-kappaB. Conversely, SMC3-induced NF-kappaB activation was found to be mediated by autocrine TNF because this effect of SMC3 was effectively inhibited when TNF was blocked with either a TNF neutralizing antibody or TNF small interfering RNA. In addition, although SMC3 dramatically reduced c-IAP1 level, it had marginal effect on c-IAP2 expression, TNF-induced RIP modification, NF-kappaB activation, and downstream antiapoptosis NF-kappaB target expression. Furthermore, blocking NF-kappaB by targeting IKKbeta or RelA substantially potentiated SMC3-induced cytotoxicity, suggesting that the NF-kappaB pathway inhibits SMC3-induced apoptosis in cancer cells. Our results show that through TNF autocrine, SM induces an IKKbeta-mediated NF-kappaB activation pathway that protects cancer cells against SM-induced apoptosis, and thus, NF-kappaB blockage could be an effective approach for improving the anticancer value of SM.
Collapse
Affiliation(s)
- Lang Bai
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, NM 87108, USA
| | | | | | | | | | | |
Collapse
|
71
|
Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma 2009; 2009:794901. [PMID: 19325926 PMCID: PMC2659882 DOI: 10.1155/2009/794901] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/02/2009] [Accepted: 01/18/2009] [Indexed: 12/02/2022] Open
Abstract
Current systemic therapies have little curative benefit for synovial sarcoma. Histone deacetylase (HDAC) inhibitors and the heat shock protein 90 (Hsp90) inhibitor 17-AAG have recently been shown to inhibit synovial sarcoma in preclinical models. We tested combinations of
17-AAG with the HDAC inhibitor MS-275 for synergism by proliferation and apoptosis assays. The combination was found to be synergistic at multiple time points in two synovial sarcoma cell lines. Previous studies have shown that HDAC inhibitors not only induce cell death but also activate the survival pathway NF-κB, potentially limiting therapeutic benefit. As 17-AAG inhibits activators of NF-κB, we tested if 17-AAG synergizes with MS-275 through abrogating NF-κB activation. In our assays, adding 17-AAG blocks NF-κB activation by MS-275 and siRNA directed against histone deacetylase 3 (HDAC3) recapitulates the effects of MS-275. Additionally, we find that the NF-κB inhibitor BAY 11-7085 synergizes with MS-275. We conclude that agents inhibiting NF-κB synergize with HDAC inhibitors against synovial sarcoma.
Collapse
|
72
|
Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM, Hall SE. Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 58:3765-75. [PMID: 19035474 DOI: 10.1002/art.24047] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the ability of SNX-7081, a novel small molecule inhibitor of Hsp90, to block components of inflammation, including cytokine production, protein kinase activity, and angiogenic signaling. A close analog was evaluated in preclinical in vivo models of rheumatoid arthritis (RA). METHODS SNX-7081 binding to Hsp90 was characterized in Jurkat cells and RA synovial fibroblasts (RASFs). Inhibition of NF-kappaB nuclear translocation was evaluated in cellular systems, using lipopolysaccharide (LPS), tumor necrosis factor alpha, or interleukin-1beta stimulation. Suppression of cytokine production in THP-1 cells, human umbilical vein endothelial cells, and RASFs was studied. Disruption of MAPK signaling cascades by SNX-7081 following growth factor stimulation was assessed. SNX-7081 was tested in 2 relevant angiogenesis assays: platelet-derived growth factor activation of fibroblasts and LPS-induced nitric oxide (NO) release in J774 macrophages. A close analog, SNX-4414, was evaluated in rat collagen-induced arthritis and adjuvant-induced arthritis, following oral treatment. RESULTS SNX-7081 showed strong binding affinity to Hsp90 and expected induction of Hsp70. NF-kappaB nuclear translocation was blocked by SNX-7081 at nanomolar concentrations, and cytokine production was potently inhibited. Growth factor activation of ERK and JNK signaling was significantly reduced by SNX-7081. NO production was also sharply inhibited. In animal models, SNX-4414 fully inhibited paw swelling and improved body weight. Scores for inflammation, pannus formation, cartilage damage, and bone resorption returned to normal. CONCLUSION The present results demonstrate that a small molecule Hsp90 inhibitor can impact inflammatory disease processes. The strong in vivo efficacy observed with SNX-4414 provides preclinical validation for consideration of Hsp90 inhibitors in the treatment of RA.
Collapse
Affiliation(s)
- John W Rice
- Serenex Inc., Durham, North Carolina 27701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Chen W, Wang X, Bai L, Liang X, Zhuang J, Lin Y. Blockage of NF-kappaB by IKKbeta- or RelA-siRNA rather than the NF-kappaB super-suppressor IkappaBalpha mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells. J Cell Biochem 2009; 105:554-61. [PMID: 18636537 DOI: 10.1002/jcb.21856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ambiguous roles of genotoxic anticancer therapeutic-induced NF-kappaB activation in regulating gene expression (activation or suppression) and apoptosis (anti- or pro-apoptosis) have recently been suggested. In order to clarify this controversy and determine the usefulness of NF-kappaB blockage for sensitizing anticancer therapy, we have systematically investigated the effect of distinct NF-kappaB-blocking approaches on lung cancer cells' responses to Adriamycin-induced cytotoxicity. The results show that Adriamycin-induced NF-kappaB activation functions as a transcriptional activator triggering the expression of anti-apoptotic genes. Blocking NF-kappaB with IKKbeta- or RelA siRNA substantially sensitized Adriamycin-induced cytotoxicity, suggesting that the NF-kappaB pathway could be a target for sensitizing lung cancer cells to Adriamycin's anticancer effect. Surprisingly, although it effectively blocks NF-kappaB activation, the IkappaBalpha super-suppressor (IkappaBalphaAA) antagonized Adriamycin-induced cell death. Additionally, the induction of death receptor 5 (DR5), which contributes to Adriamycin-induced cytotoxicity, was not affected by NF-kappaB blockage. Thus, our results suggest that Adriamycin-induced NF-kappaB is a transcriptional activator that protects lung cancer cells against apoptosis, and IKKbeta- or RelA siRNA rather than IkappaBalphaAA is an appropriate NF-kappaB blocking approach for sensitizing lung cancer cells to Adriamycin-induced cytotoxicity.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
74
|
Siegelin MD, Habel A, Gaiser T. 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis. Neurobiol Dis 2008; 33:243-9. [PMID: 19027068 DOI: 10.1016/j.nbd.2008.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/29/2008] [Accepted: 10/17/2008] [Indexed: 01/09/2023] Open
Abstract
17-AAG is a selective HSP90-inhibitor that exhibited therapeutic activity in cancer. In this study three glioblastoma cell lines (U87, LN229 and U251) were treated with 17-AAG, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Treatment with subtoxic doses of 17-AAG in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces rapid apoptosis in TRAIL-resistant glioma cells, suggesting that this combined treatment may offer an attractive strategy for treating gliomas. 17-AAG treatment down-regulated survivin through proteasomal degradation. In addition, over-expression of survivin attenuated cytotoxicity induced by the combination of 17-AAG and TRAIL. In summary, survivin is a key regulator of TRAIL-17-AAG mediated cell death in malignant glioma.
Collapse
Affiliation(s)
- Markus David Siegelin
- Department of Neuropathology, University Hospital Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
75
|
Abstract
Tumor necrosis factor (TNF) is a multifunctional cytokine that plays important roles in diverse cellular events such as cell survival, proliferation, differentiation, and death. As a pro-inflammatory cytokine, TNF is secreted by inflammatory cells, which may be involved in inflammation-associated carcinogenesis. TNF exerts its biological functions through activating distinct signaling pathways such as nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK). NF-kappaB is a major cell survival signal that is anti-apoptotic, whereas sustained JNK activation contributes to cell death. The crosstalk between the NF-kappaB and JNK is involved in determining cellular outcomes in response to TNF. In regard to cancer, TNF is a double-dealer. On one hand, TNF could be an endogenous tumor promoter, because TNF stimulates the growth, proliferation, invasion and metastasis, and tumor angiogenesis of cancer cells. On the other hand, TNF could be a cancer killer. The property of TNF in inducing cancer cell death renders it a potential cancer therapeutic, although much work is needed to reduce its toxicity for systematic TNF administration. Recent studies have focused on sensitizing cancer cells to TNF-induced apoptosis through inhibiting survival signals such as NF-kappaB, by combined therapy. In this article we provide an overview of the roles of TNF-induced signaling pathways in cancer biology with specific emphasis on carcinogenesis and cancer therapy.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
76
|
Kim MS, Kwak HJ, Lee JW, Kim HJ, Park MJ, Park JB, Choi KH, Yoo H, Shin SH, Shin WS, Song ES, Lee SH. 17-Allylamino-17-Demethoxygeldanamycin Down-Regulates Hyaluronic Acid–Induced Glioma Invasion by Blocking Matrix Metalloproteinase-9 Secretion. Mol Cancer Res 2008; 6:1657-65. [DOI: 10.1158/1541-7786.mcr-08-0034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Abstract
Triggering of tumour cell apoptosis is the foundation of many cancer therapies. Death receptors of the tumour necrosis factor (TNF) superfamily have been largely characterized, as have the signals that are generated when these receptors are activated. TNF-related apoptosis-inducing ligand (TRAIL) receptors (TRAILR1 and TRAILR2) are promising targets for cancer therapy. Herein we review what is known about the molecular control of TRAIL-mediated apoptosis, the role of TRAIL in carcinogenesis and the potential therapeutic utility of recombinant TRAIL and agonistic antibodies against TRAILR1 and TRAILR2.
Collapse
Affiliation(s)
- Ricky W Johnstone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
78
|
Park MJ, Kwon HY, Lee EO, Lee HJ, Ahn KS, Kim MO, Kim CH, Ahn KS, Kim SH. DMNQ-S17 inhibits constitutive NF-kappaB activation leading to induction of apoptosis through the activation of caspase-3 in human myeloid leukemia U937 cells. Life Sci 2008; 83:460-7. [DOI: 10.1016/j.lfs.2008.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/18/2008] [Indexed: 01/13/2023]
|
79
|
Wang X, Chen W, Zeng W, Bai L, Tesfaigzi Y, Belinsky SA, Lin Y. Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol Cancer Ther 2008; 7:1156-63. [PMID: 18483303 DOI: 10.1158/1535-7163.mct-07-2183] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anticancer agent due to its selectivity in killing transformed cells. However, TRAIL can also stimulate the proliferation and metastasis of TRAIL-resistant cancer cells. Thus, acquired TRAIL resistance during TRAIL therapy would shift the patient's treatment from beneficial to detrimental. In this study, we focused on the acquired TRAIL resistance mechanism and showed that the elevated expression of the antiapoptotic factor cellular FLICE-like inhibitory protein (c-FLIP) and the prosurvival Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) underlie the main mechanism of this type of TRAIL resistance in lung cancer cells. Chronic exposure to TRAIL resulted in lung cancer cell resistance to TRAIL-induced cytotoxicity, and this resistance was associated with the increase in the cellular levels of c-FLIP(L) and Mcl-1(L). Overexpresssion of c-FLIP(L) suppressed recruitment of caspase-8 to the death-inducing signaling complex, whereas increased Mcl-1(L) expression blunted the mitochondrial apoptosis pathway. The elevation of c-FLIP(L) and Mcl-1(L) expression was due to Akt-mediated stabilization of these proteins in TRAIL-resistant cells. Importantly, suppressing c-FLIP(L) and Mcl-1(L) expression by RNA interference collectively alleviated acquired TRAIL resistance. Taken together, these results identify c-FLIP(L) and Mcl-1(L) as the major determinants of acquired TRAIL resistance and could be molecular targets for improving the therapeutic value of TRAIL against lung cancer.
Collapse
Affiliation(s)
- Xia Wang
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Vince JE, Chau D, Callus B, Wong WWL, Hawkins CJ, Schneider P, McKinlay M, Benetatos CA, Condon SM, Chunduru SK, Yeoh G, Brink R, Vaux DL, Silke J. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. ACTA ACUST UNITED AC 2008; 182:171-84. [PMID: 18606850 PMCID: PMC2447903 DOI: 10.1083/jcb.200801010] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor κB (NF-κB) signaling, and sensitize cells to tumor necrosis factor α (TNFα). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1–Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1–TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-κB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFα-induced death occurs. TWEAK-induced loss of the cIAP1–TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFα-induced death, whereas primary cells remain resistant. Conversely, cIAP1–TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFα sensitization. Lysosomal degradation of cIAP1–TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Collapse
Affiliation(s)
- James E Vince
- Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, VIC 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Vince JE, Wong WWL, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2008; 131:682-93. [PMID: 18022363 DOI: 10.1016/j.cell.2007.10.037] [Citation(s) in RCA: 1010] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/19/2007] [Accepted: 10/22/2007] [Indexed: 11/17/2022]
Abstract
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.
Collapse
Affiliation(s)
- James E Vince
- Department of Biochemistry, La Trobe University, Kingsbury Drive, Melbourne, VIC 3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Shen KH, Chang JK, Hsu YL, Kuo PL. Chalcone arrests cell cycle progression and induces apoptosis through induction of mitochondrial pathway and inhibition of nuclear factor kappa B signalling in human bladder cancer cells. Basic Clin Pharmacol Toxicol 2008; 101:254-61. [PMID: 17845507 DOI: 10.1111/j.1742-7843.2007.00120.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chalcones (1,3-diphenyl-2-propenone) are cancer preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in two human bladder cancer cell lines: T24 and HT-1376. The results show that chalcone inhibits the proliferation of T24 and HT-1376 cells by inducing apoptosis and blocking cell cycle progression in the G2/M phase. Western blot assay showed that chalcone significantly increases the expression of p21 and p27 proteins, and decreases the levels of cyclin B1, cyclin A and Cdc2, thereby contributing to cell cycle arrest. In addition, chalcone increased the expression of Bax and Bak, but decreased the levels of Bcl-2 and Bcl-X(L) and subsequently triggered mitochondrial apoptotic pathway (release of cytochrome c and activation of caspase-9 and caspase-3). Our study suggests that the induction of mitochondrial pathway and inhibition of the nuclear factor kappa B survival system may play important roles in the antiproliferative activity of chalcone in T24 and HT-1376 cells.
Collapse
Affiliation(s)
- Kun-Hung Shen
- Cell Biology Laboratory, Department of Biotechnology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road Sec. 1, Jen-Te, Tainan 717, Taiwan
| | | | | | | |
Collapse
|
83
|
Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 2007; 11:1299-314. [PMID: 17907960 PMCID: PMC2976473 DOI: 10.1517/14728222.11.10.1299] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since its identification in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. In contrast to other members of the TNF superfamily, TRAIL administration in vivo is safe. The relative absence of toxic side effects of this naturally occurring cytokine, in addition to its antitumoural properties, has led to its preclinical evaluation. However, despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity or efficiency. An appropriate understanding of its physiological relevance, and of the mechanisms controlling cancer cells escape from TRAIL-induced cell death, will be required to optimally use the cytokine in clinics. The present review focuses on recent advances in the understanding of TRAIL signal transduction and discusses the existing and future challenges of TRAIL-based cancer therapy development.
Collapse
|
84
|
Tew GW, Lorimer EL, Berg TJ, Zhi H, Li R, Williams CL. SmgGDS regulates cell proliferation, migration, and NF-kappaB transcriptional activity in non-small cell lung carcinoma. J Biol Chem 2007; 283:963-76. [PMID: 17951244 DOI: 10.1074/jbc.m707526200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is promoted by the increased activities of several small GTPases, including K-Ras4B, Rap1A, Rap1B, RhoC, and Rac1. SmgGDS is an unusual guanine nucleotide exchange factor that activates many of these small GTPases, and thus may promote NSCLC development or progression. We report here that SmgGDS protein levels are elevated in NSCLC tumors, compared with normal lung tissue from the same patients or from individuals without cancer. To characterize SmgGDS functions in NSCLC, we tested the effects of silencing SmgGDS expression by transfecting cultured NSCLC cells with SmgGDS small interfering RNA (siRNA). Cells with silenced SmgGDS expression form fewer colonies in soft agar, do not proliferate in culture due to an arrest in G(1) phase, and exhibit disrupted myosin organization and reduced cell migration. The transcriptional activity of NF-kappaB in NSCLC cells is diminished by transfecting the cells with SmgGDS siRNA, and enhanced by transfecting the cells with a cDNA encoding SmgGDS. Because RhoA is a major substrate for SmgGDS, we investigated whether diminished RhoA expression mimics the effects of diminished SmgGDS expression. Silencing RhoA expression with RhoA siRNA disrupts myosin organization, but only moderately decreases cell proliferation and does not inhibit migration. Our finding that the aggressive NSCLC phenotype is more effectively suppressed by silencing SmgGDS than by silencing RhoA is consistent with the ability of SmgGDS to regulate multiple small GTPases in addition to RhoA. These results demonstrate that SmgGDS promotes the malignant NSCLC phenotype and is an intriguing therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Gaik Wei Tew
- Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | | | |
Collapse
|
85
|
Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S. DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 2007; 14:976-84. [PMID: 17853923 DOI: 10.1038/sj.cgt.7701087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High levels of decoy receptor 2 (DcR2; TRAIL-R4) expression are correlated with TRAIL resistance in prostate cancer cells. In addition, upregulation of TRAIL death receptor (DR4 and DR5) expression, either by ionizing radiation or chemotherapy, can sensitize cancer cells to TRAIL. Considering more than half of human cancers are TRAIL resistant, modulation of surface TRAIL receptor expression appears to be an attractive treatment modality to counteract TRAIL resistance. In this study, three siRNA duplexes targeting DcR2 receptor were tested. Ad5hTRAIL infections were performed to overexpress human full-length TRAIL to induce cell death, and the in vitro tumorigenic potential of prostate cancer cells was assessed using colony-forming assays on soft agar. The DU145 and LNCaP prostate cancer cell lines, which express high levels of DcR2, were resistant to Ad5hTRAIL-induced death. Downregulation of surface DcR2 expression by siRNA sensitized these prostate cancer cell lines to Ad5hTRAIL. In addition, DcR2 siRNA-mediated knockdown of DcR2, followed by Ad5hTRAIL infection, dramatically reduced the in vitro tumorigenic potential of prostate cancer cells. Collectively, our results suggest the potential for combining receptor-specific siRNA with TRAIL in the treatment of certain cancers.
Collapse
Affiliation(s)
- A D Sanlioglu
- Human Gene Therapy Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | | | | |
Collapse
|
86
|
Ju W, Wang X, Shi H, Chen W, Belinsky SA, Lin Y. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 2007; 71:1381-8. [PMID: 17296806 DOI: 10.1124/mol.106.032185] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) activated by tumor necrosis factor (TNF) attenuates the TNF-induced apoptosis pathway. Therefore, blockage of NF-kappaB should improve the anticancer activity of TNF. Luteolin, a naturally occurring polyphenol flavonoid, has been reported to sensitize colorectal cancer cells to TNF-induced apoptosis through suppression of NF-kappaB; however, the mechanisms of this effect have not been well elucidated. In this article, we provide evidence showing a critical role of reactive oxygen species (ROS) accumulation induced by luteolin in modulating TNF-activated pathways in lung cancer cells. Luteolin effectively suppressed NF-kappaB, whereas it potentiated the c-Jun N-terminal kinase (JNK) to increase apoptosis induced by TNF in lung cancer cells. Our results further demonstrate that luteolin induced an early phase ROS accumulation via suppression of the cellular superoxide dismutase activity. It is noteworthy that suppression of ROS accumulation by ROS scavengers butylated hydroxyanisole, and N-acetyl-L-cysteine prevented the luteolin-induced suppression of NF-kappaB and potentiation of JNK and significantly suppressed the synergistic cytotoxicity seen with cotreatment of luteolin and TNF. Taken together, these results suggest that the accumulation of ROS induced by luteolin plays a pivotal role in suppression of NF-kappaB and potentiation of JNK to sensitize lung cancer cells to undergo TNF-induced apoptosis.
Collapse
Affiliation(s)
- Wei Ju
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | |
Collapse
|
87
|
Wang X, Chen W, Lin Y. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-kappaB and Akt pathways. Biochem Biophys Res Commun 2007; 355:807-12. [PMID: 17316570 DOI: 10.1016/j.bbrc.2007.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
Blockage of either nuclear factor-kappaB (NF-kappaB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-kappaB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-kappaB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-kappaB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-kappaB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-kappaB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-kappaB and Akt, which may be applied in lung cancer therapy.
Collapse
Affiliation(s)
- Xia Wang
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | | | | |
Collapse
|
88
|
Gout S, Morin C, Houle F, Huot J. Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res 2006; 66:9117-24. [PMID: 16982754 DOI: 10.1158/0008-5472.can-05-4605] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
E-selectin-mediated adhesion of colon cancer cells to endothelial cells is a key event in metastasis. However, the signaling mechanisms that confer metastatic advantages to cancer cells adhering to E-selectin are ill defined. By using affinity column chromatography and pull-down assays on purified membrane extracts of HT29 and LoVo cells coupled to mass spectrometry analysis, we obtained the first evidence indicating that E-selectin binds to death receptor-3 (DR3) expressed by the cancer cells. Thereafter, we accumulated several results, suggesting that DR3 is an E-selectin receptor on colon cancer cells and that its activation by E-selectin triggers the activation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and confers migration and survival advantages. First, by Western blotting, we found that the E-selectin-binding protein, identified as DR3, is recognized by two anti-DR3 antibodies. Second, the neutralization of DR3 with an antibody and its knockdown by small interfering RNA decrease the adhesion of colon cancer cells to E-selectin and E-selectin-expressing human umbilical vein endothelial cells. Third, inhibiting DR3 and knocking down its expression impair transendothelial migration of HT29 cells and block the activation of p38 and ERK by E-selectin. Fourth, high molecular weight isoforms of DR3 are expressed in samples of primary human colon carcinoma but not in samples from normal colon tissue. Intriguingly, DR3 is a death receptor but its activation by E-selectin does not induce apoptosis in colon cancer cells, except when ERK is inhibited. Our findings identify novel signaling and functional roles of DR3 activated in response to E-selectin and highlight the potential link between DR3 and metastasis.
Collapse
Affiliation(s)
- Stéphanie Gout
- Le Centre de Recherche en Cancérologie de l'Université Laval, Québec PQ, Canada
| | | | | | | |
Collapse
|
89
|
Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5:769-84. [PMID: 16955068 DOI: 10.1038/nrd2133] [Citation(s) in RCA: 2281] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. In addition, the activity of non-histone proteins can be regulated through HDAC-mediated hypo-acetylation. In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. However, such studies have also indicated that the effects of HDAC inhibitors could be considerably broader and more complicated than originally understood. Here we summarize recent advances in the understanding of the molecular events that underlie the anticancer effects of HDAC inhibitors, and discuss how such information could be used in optimizing the development and application of these agents in the clinic, either as monotherapies or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Jessica E Bolden
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002, Victoria, Australia
| | | | | |
Collapse
|
90
|
Duiker EW, Mom CH, de Jong S, Willemse PHB, Gietema JA, van der Zee AGJ, de Vries EGE. The clinical trail of TRAIL. Eur J Cancer 2006; 42:2233-40. [PMID: 16884904 DOI: 10.1016/j.ejca.2006.03.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
The naturally occurring tumour necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis through two death receptors, death receptor 4 (DR4) and death receptor 5 (DR5), that are expressed on the cell membrane. Binding of the ligand to the death receptors leads to activation of the extrinsic apoptosis pathway. Chemotherapy on the other hand stimulates the intrinsic apoptosis pathway via activation of p53 in response to cellular damage. Many cancer cells have mutations in p53 causing resistance to chemotherapy-induced apoptosis. Concomitant signalling through the extrinsic pathway may overcome this resistance. Moreover, enthusiasm for TRAIL as an anticancer agent is based on the demonstration of rhTRAIL-induced selective cell death in tumour cells and not in normal cells. In this review, we provide an overview of the TRAIL pathway, the physiological role of TRAIL and the factors regulating TRAIL sensitivity. We also discuss the clinical development of novel agents, i.e. rhTRAIL and agonistic antibodies, that activate the death receptors.
Collapse
Affiliation(s)
- E W Duiker
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
91
|
Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 2006; 12:382-93. [PMID: 16798087 DOI: 10.1016/j.molmed.2006.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Abstract
Important breakthroughs in cancer therapy include clinical application of antibodies, such as Rituximab, and small inhibitory molecules, such as Iressa and Velcade. In addition, recent reports have indicated the therapeutic potential of physiological pro-apoptotic proteins such as TRAIL and galectin-1. Although unrelated at first glance, each strategy relies on the deliberate and selective induction of apoptosis in malignant cells. Importantly, therapy-resistance in cancer is frequently associated with de-regulation in the mechanisms that control apoptosis. However, cancer cells are often reliant on these molecular aberrations for survival. Therefore, selective induction of apoptosis in cancer cells but not normal cells seems feasible. Here, we review recent progress and prospects of selected novel anti-cancer approaches that specifically target and sensitize cancer cells to apoptosis.
Collapse
Affiliation(s)
- Edwin Bremer
- Groningen University Institute for Drug Exploration (GUIDE), Department of Pathology and Laboratory Medicine, Section Medical Biology, Laboratory for Tumor Immunology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
92
|
Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 2006; 97:683-8. [PMID: 16863502 PMCID: PMC11158693 DOI: 10.1111/j.1349-7006.2006.00235.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although hepatitis B virus (HBV) has been documented to cause hepatocellular carcinoma (HCC), the exact role of HBV in the development of HCC remains enigmatic. Several hypotheses have been proposed to explain the potential mechanism, including insertional mutagenesis of HBV genomes and transcriptional activators of HBV gene products such as hepatitis B x protein (HBx) and truncated middle S mutants. In the past few years, we have identified two types of large HBV surface antigens (LHBs) with deletions at the pre-S1 (DeltaS1-LHBs) and pre-S2 (DeltaS2-LHBs) regions in ground glass hepatocytes. The pre-S mutant LHBs are retained in the endoplasmic reticulum (ER) and escape from immune attack. The pre-S mutants, particularly DeltaS2-LHBs, are increasingly prevalent in patients with hepatitis B e antigen (HBeAg)-positive chronic HBV infection, ranging from 6% before the 3rd decade to 35% in the 6th decade. In HCC patients, the two pre-S mutants were detected in 60% of HCC patients, in the serum and in HCC tissues. Pre-S mutant LHBs can initiate ER stress to induce oxidative DNA damage and genomic instability. Furthermore, pre-S mutant LHBs can upregulate cyclooxygenase-2 and cyclin A to induce cell cycle progression and proliferation of hepatocytes. In transgenic mice, the pre-S mutants can induce dysplasia of hepatocytes and development of HCC. In a nested control study, the presence of pre-S mutants carried a high risk of developing HCC in HBV carriers. In summary, the findings we describe in this review suggest a potential role for HBV pre-S mutants in HBV-related hepatocarcinogenesis, providing a model of viral carcinogenesis associated with ER stress.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Division of Clinical Research, National Health Research Institutes, National Cheng Kung University College of Medicine, Tainan 704, Taiwan
| | | | | | | |
Collapse
|