51
|
Wong JS, Warbrick E, Vojtesk B, Hill J, Lane DP. Anti-c-Met antibodies recognising a temperature sensitive epitope, inhibit cell growth. Oncotarget 2014; 4:1019-36. [PMID: 23859937 PMCID: PMC3759663 DOI: 10.18632/oncotarget.1075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
c-Met is a tyrosine receptor kinase which is activated by its ligand, the hepatocyte growth factor. Activation of c-Met leads to a wide spectrum of biological activities such as motility, angiogenesis, morphogenesis, cell survival and cell regeneration. c-Met is abnormally activated in many tumour types. Aberrant c-Met activation was found to induce tumour development, tumour cell migration and invasion, and the worst and final step in cancer progression, metastasis. In addition, c-Met activation in cells was also shown to confer resistance to apoptosis induced by UV damage or chemotherapeutic drugs. This study describes the development of monoclonal antibodies against c-Met as therapeutic molecules in cancer treatment/diagnostics. A panel of c-Met monoclonal antibodies was developed and characterised by epitope mapping, Western blotting, immunoprecipitation, agonist/antagonist effect in cell scatter assays and for their ability to recognise native c-Met by flow cytometry. We refer to these antibodies as Specifically Engaging Extracellular c-Met (seeMet). seeMet 2 and 13 bound strongly to native c-Met in flow cytometry and reduced SNU-5 cell growth. Interestingly, seeMet 2 binding was strongly reduced at 4oC when compared to 37oC. Detail mapping of the seeMet 2 epitope indicated a cryptic binding site hidden within the c-Met α-chain.
Collapse
Affiliation(s)
- Julin S Wong
- p53 Laboratory, 8A Biomedical Grove, Immunos #06-06, Singapore, Singapore
| | | | | | | | | |
Collapse
|
52
|
Fauvel B, Yasri A. Antibodies directed against receptor tyrosine kinases: current and future strategies to fight cancer. MAbs 2014; 6:838-51. [PMID: 24859229 DOI: 10.4161/mabs.29089] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy.
Collapse
Affiliation(s)
| | - Aziz Yasri
- OriBase Pharma; Cap Gamma; Parc Euromédecine; Montpellier, France
| |
Collapse
|
53
|
Xu J, Ai J, Liu S, Peng X, Yu L, Geng M, Nan F. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors. Org Biomol Chem 2014; 12:3721-34. [PMID: 24781551 DOI: 10.1039/c4ob00364k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.
Collapse
Affiliation(s)
- Jimin Xu
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Penas-Prado M, Gilbert MR. Molecularly targeted therapies for malignant gliomas: advances and challenges. Expert Rev Anticancer Ther 2014; 7:641-61. [PMID: 17492929 DOI: 10.1586/14737140.7.5.641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The identification of molecular markers associated with tumor but not with normal tissue has allowed the development of highly specific, targeted therapies for the treatment of cancer. Over the last several years, tremendous advances in our understanding of the genetic and molecular changes involved in the progression of malignant gliomas have triggered a large effort in the development of targeted therapies to treat these tumors. However, to date only a modest clinical benefit, limited to subsets of patients, has been demonstrated. Furthermore, despite a high degree of target selectivity, the use of targeted therapies often has systemic toxicity. The reasons behind this limited clinical success are complex and include the intricacy of the signaling pathways in gliomas and the heterogeneity of the disease process, compounded by existing limitations in assessing the efficacy of these novel agents when conventional end points and clinical trial designs are utilized. However, despite these difficulties targeted therapies remain a very attractive avenue of treatment for malignant gliomas. Three basic approaches are needed to overcome the hurdles associated with targeted therapies: first, further development of genetic profiling techniques will help to better determine the genetic changes and molecular pathways involved in gliomas and will potentially allow the design of individualized therapies based on the genetic and molecular signature of each tumor. Second, there is a need for the development of better combination strategies (complementary targeted agents or targeted agents with chemotherapy drugs) directed towards disease heterogeneity. Third, we need to optimize the design of preclinical and clinical trials to obtain the maximum amount of information in the shortest period of time.
Collapse
Affiliation(s)
- Marta Penas-Prado
- The UT MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, 77030 TX, USA.
| | | |
Collapse
|
55
|
Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2014; 9:519-34. [DOI: 10.1586/ern.09.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
56
|
Xu Y, Fisher GJ. Role of met axis in head and neck cancer. Cancers (Basel) 2013; 5:1601-18. [PMID: 24287743 PMCID: PMC3875956 DOI: 10.3390/cancers5041601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 01/30/2023] Open
Abstract
Head and neck cancer is the sixth most common type of cancer worldwide. Despite advances in aggressive multidisciplinary treatments, the 5-year survival rate for this dreadful disease is only 50%, mostly due to high rate of recurrence and early involvement of regional lymph nodes and subsequent metastasis. Understanding the molecular mechanisms responsible for invasion and metastasis is one of the most pressing goals in the field of head and neck cancer. Met, also known as hepatocyte growth factor receptor (HGFR), is a member of the receptor protein tyrosine kinase (RPTK) family. There is compelling evidence that Met axis is dysregulated and plays important roles in tumorigenesis, progression, metastasis, angiogenesis, and drug resistance in head and neck cancer. We describe in this review current understanding of Met axis in head and neck cancer biology and development of therapeutic inhibitors targeting Met axis.
Collapse
Affiliation(s)
- Yiru Xu
- Authors to whom correspondence should be addressed; E-Mails: (Y.X.); (G.J.F.); Tel.: +1-734-763-1469 (G.J.F.); Fax: +1-734-647-0076 (G.J.F.)
| | - Gary J. Fisher
- Authors to whom correspondence should be addressed; E-Mails: (Y.X.); (G.J.F.); Tel.: +1-734-763-1469 (G.J.F.); Fax: +1-734-647-0076 (G.J.F.)
| |
Collapse
|
57
|
Teng L, Lu J. cMET as a potential therapeutic target in gastric cancer (Review). Int J Mol Med 2013; 32:1247-54. [PMID: 24141315 DOI: 10.3892/ijmm.2013.1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/16/2013] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide. Despite improvements in surgery and chemotherapy, the outcomes in patients with advanced gastric cancer remain poor. cMET is a member of the receptor tyrosine kinase family, and plays a key role in tumor survival, growth, angiogenesis and metastasis. cMET overexpression and/or gene amplification occurs in a significant proportion of gastric cancers. cMET is associated with a high tumor stage and poor prognosis. Several cMET inhibitors have been investigated in clinical trials, and the initial results are encouraging. It has become increasingly apparent that cMET is a promising therapeutic target in gastric cancer. In this review, we summarize the development of cMET inhibitors in the preclinical and clinical environment. In addition, we discuss the challenges of cMET-targeted therapy in gastric cancer and explore possible solutions.
Collapse
Affiliation(s)
- Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | | |
Collapse
|
58
|
Vigna E, Pacchiana G, Chiriaco C, Cignetto S, Fontani L, Michieli P, Comoglio PM. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 2013; 92:65-76. [PMID: 24013625 DOI: 10.1007/s00109-013-1079-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
UNLABELLED Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells-transplanted either subcutaneously or orthotopically in nude mice-resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30. KEY MESSAGE Gene transfer allows the continuous in vivo production of therapeutic Fab fragments. Mv-DN30 is an excellent tool for the treatment of Met-driven cancers. Mv-DN30 gene therapy represents an innovative route for Met targeting.
Collapse
Affiliation(s)
- Elisa Vigna
- IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada Provinciale 142-Km 3.95, 10060, Candiolo, Turin, Italy,
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW The mesenchymal-epidermal transition (c-MET) receptor tyrosine kinase has a central role in the cancer cell's survival. MET and its ligand, hepatocyte growth factor (HGF), have recently been identified as promising targets in solid tumors, including nonsmall-cell lung cancer (NSCLC). RECENT FINDINGS Aberrant MET activation can be the result of different mechanisms such as MET and HGF overexpression, MET gene amplification or mutation. Retrospective studies in NSCLC showed that MET gene copy number is a negative prognostic factor, although few data are available on the role of MET mutations. In preclinical models, cell lines with MET gene amplification are extremely sensitive to MET inhibition. Although the inner presence of gene amplification is a rare event (1-7% cases), MET amplification has emerged as one of the critical events for acquired resistance in epidermal growth factor receptor (EGFR) mutated lung adenocarcinomas refractory to EGFR-tyrosine kinase inhibitors (TKIs). In NSCLC with acquired resistance to EGFR-TKIs, MET amplification occurs in up to 20% cases and preclinical and clinical data indicated MET and EGFR co-inhibition as a potential effective strategy to overcome resistance. SUMMARY MET has recently emerged as a promising target, and ongoing trials will clarify the role of anti-MET strategies in NSCLC.
Collapse
|
60
|
Landi L, Minuti G, D’Incecco A, Salvini J, Cappuzzo F. MET overexpression and gene amplification in NSCLC: a clinical perspective. LUNG CANCER (AUCKLAND, N.Z.) 2013; 4:15-25. [PMID: 28210131 PMCID: PMC5217438 DOI: 10.2147/lctt.s35168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transmembrane tyrosine kinase mesenchymal-epidermal transition (MET) receptor and its ligand, hepatocyte growth factor, also known as scatter factor, have recently been identified as novel promising targets in several human malignancies, including non-small cell lung cancer (NSCLC). Amplification, mutation, or overexpression of the MET gene can result in aberrant activation of the MET axis, leading to migration, invasion, proliferation, metastasis, and neoangiogenesis of cancer cells, suggesting that interfering with the MET/hepatocyte growth factor pathway could represent a potential antitumor strategy. While the role of MET mutations in NSCLC is not as yet fully understood, retrospective studies have shown that an increased MET gene copy number is a negative prognostic factor. In NSCLC, amplification of the MET gene is a relatively rare event, occurring in approximately 4% of patients not previously exposed to systemic therapies and in up to 20% of patients with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. In preclinical models, the presence of MET amplification is a predictor of high sensitivity to anti-MET compounds, and several agents have entered in clinical trials for patients having advanced disease, with promising results. The aim of the present review is to summarize available data on the role of MET in NSCLC and to describe therapeutic strategies under investigation.
Collapse
Affiliation(s)
- Lorenza Landi
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| | - Gabriele Minuti
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| | - Armida D’Incecco
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| | - Jessica Salvini
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| | - Federico Cappuzzo
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| |
Collapse
|
61
|
Rex K, Lewis XZ, Gobalakrishnan S, Glaus C, Silva MD, Radinsky R, Burgess TL, Gambhir SS, Coxon A. Evaluation of the antitumor effects of rilotumumab by PET imaging in a U-87 MG mouse xenograft model. Nucl Med Biol 2013; 40:458-63. [DOI: 10.1016/j.nucmedbio.2013.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023]
|
62
|
Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg Med Chem 2013; 21:2843-55. [PMID: 23628470 DOI: 10.1016/j.bmc.2013.04.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
A series of novel 4-(2-fluorophenoxy)quinoline derivatives containing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). All the prepared compounds showed moderate to excellent antiproliferative activity, and the analysis of their structure-activity relationships indicated that 2-chloro or 2-trifluoromethyl substituted phenyl group on the 1-position of cinnoline ring was more favorable for antitumor activity. In this study, a promising compound 33, with a c-Met IC50 value of 0.59 nM, was identified as a multitargeted receptor tyrosine kinase inhibitor.
Collapse
|
63
|
Awazu Y, Nakamura K, Mizutani A, Kakoi Y, Iwata H, Yamasaki S, Miyamoto N, Imamura S, Miki H, Hori A. A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities. Mol Cancer Ther 2013; 12:913-24. [PMID: 23548264 DOI: 10.1158/1535-7163.mct-12-1011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met-amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers.
Collapse
Affiliation(s)
- Yoshiko Awazu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
In Vivo c-Met Pathway Inhibition Depletes Human Glioma Xenografts of Tumor-Propagating Stem-Like Cells. Transl Oncol 2013; 6:104-11. [PMID: 23556031 DOI: 10.1593/tlo.13127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
Solid malignancies contain sphere-forming stem-like cells that are particularly efficient in propagating tumors. Identifying agents that target these cells will advance the development of more effective therapies. Recent converging evidence shows that c-Met expression marks tumor-initiating stem-like cells and that c-Met signaling drives human glioblastoma multiforme (GBM) cell stemness in vitro. However, the degree to which tumor-propagating stem-like cells depend on c-Met signaling in histologically complex cancers remains unknown. We examined the effects of in vivo c-Met pathway inhibitor therapy on tumor-propagating stem-like cells in human GBM xenografts. Animals bearing pre-established tumor xenografts expressing activated c-Met were treated with either neutralizing anti- hepatocyte growth factor (HGF) monoclonal antibody L2G7 or with the c-Met kinase inhibitor PF2341066 (Crizotinib). c-Met pathway inhibition inhibited tumor growth, depleted tumors of sphere-forming cells, and inhibited tumor expression of stem cell markers CD133, Sox2, Nanog, and Musashi. Withdrawing c-Met pathway inhibitor therapy resulted in a substantial rebound in stem cell marker expression concurrent with tumor recurrence. Cells derived from xenografts treated with anti-HGF in vivo were depleted of tumor-propagating potential as determined by in vivo serial dilution tumor-propagating assay. Furthermore, daughter xenografts that did form were 12-fold smaller than controls. These findings show that stem-like tumor-initiating cells are dynamically regulated by c-Met signaling in vivo and that c-Met pathway inhibitors can deplete tumors of their tumor-propagating stem-like cells.
Collapse
|
65
|
Bhardwaj V, Cascone T, Cortez MA, Amini A, Evans J, Komaki RU, Heymach JV, Welsh JW. Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer 2013; 119:1768-75. [PMID: 23423860 DOI: 10.1002/cncr.27965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
The c-Met/hepatocyte growth factor receptor and its family members are known to promote cancer cell migration and invasion. Signaling within and beyond this pathway contributes to the systemic spread of metastases through induction of the epithelial-mesenchymal transition, a process also implicated in mediating resistance to current anticancer therapies, including radiation. Induction of c-Met has also been observed after irradiation, suggesting that c-Met participates in radiation-induced disease progression through the epithelial-mesenchymal transition. Therefore, c-Met inhibition is an attractive target for potentially mitigating radiation resistance. This article summarizes key findings regarding crosstalk between radiotherapy and c-Met and discusses studies performed to date in which c-Met inhibition was used as a strategy to increase cellular radiosensitivity.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Mizuno S, Nakamura T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int J Mol Sci 2013; 14:888-919. [PMID: 23296269 PMCID: PMC3565297 DOI: 10.3390/ijms14010888] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte growth factor (HGF) was discovered in 1984 as a mitogen of rat hepatocytes in a primary culture system. In the mid-1980s, MET was identified as an oncogenic mutant protein that induces malignant phenotypes in a human cell line. In the early 1990s, wild-type MET was shown to be a functional receptor of HGF. Indeed, HGF exerts multiple functions, such as proliferation, morphogenesis and anti-apoptosis, in various cells via MET tyrosine kinase phosphorylation. During the past 20 years, we have accumulated evidence that HGF is an essential conductor for embryogenesis and tissue regeneration in various types of organs. Furthermore, we found in the mid-1990s that stroma-derived HGF is a major contributor to cancer invasion at least in vitro. Based on this background, we prepared NK4 as an antagonist of HGF: NK4 inhibits HGF-mediated MET tyrosine phosphorylation by competing with HGF for binding to MET. In vivo, NK4 treatments produced the anti-tumor outcomes in mice bearing distinct types of malignant cancers, associated with the loss in MET activation. There are now numerous reports showing that HGF-antagonists and MET-inhibitors are logical for inhibiting tumor growth and metastasis. Additionally, NK4 exerts anti-angiogenic effects, partly through perlecan-dependent cascades. This paper focuses on the chronology and significance of HGF-antagonisms in anti-tumor researches, with an interest in NK4 discovery. Tumor HGF–MET axis is now critical for drug resistance and cancer stem cell maintenance. Thus, oncologists cannot ignore this cascade for the future success of anti-metastatic therapy.
Collapse
Affiliation(s)
- Shinya Mizuno
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2-B7 Yamadaoka, Suita 565-0871, Japan; E-Mail:
| | - Toshikazu Nakamura
- Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-6-6879-4130
| |
Collapse
|
67
|
Troiani T, Martinelli E, Morgillo F, Capasso A, Nappi A, Sforza V, Ciardiello F. Targeted approach to metastatic colorectal cancer: what comes beyond epidermal growth factor receptor antibodies and bevacizumab? Ther Adv Med Oncol 2013; 5:51-72. [PMID: 23323147 PMCID: PMC3539274 DOI: 10.1177/1758834012462462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The prognosis of patients with cancer remains poor in spite of the advances obtained in recent years with new therapeutic agents, new approaches in surgical procedures and new diagnostic methods. The discovery of a plethora of cellular targets and the rational generation of selective targeting agents has opened an era of new opportunities and extraordinary challenges. The specificity of these agents renders them capable of specifically targeting the inherent abnormalities of cancer cells, potentially resulting in less toxicity than traditional nonselective cytotoxics. Among the many new types of rationally designed agents are therapeutics targeting various strategic facets of growth signal transduction, malignant angiogenesis, survival, metastasis and cell-cycle regulation. The evaluation of these agents is likely to require some changes from the traditional drug development paradigms to realize their full potential. Inhibition of the epidermal growth factor receptor and the vascular endothelial growth factor have provided proof of principle that disruption of signal cascades in patients with colorectal cancer has therapeutic potential. This experience has also taught us that resistance to such rationally developed targeted therapeutic strategies is common. In this article, we review the role of signal transduction in colorectal cancer, introduce promising molecular targets, and outline therapeutic approaches under development.
Collapse
Affiliation(s)
- Teresa Troiani
- Oncologia Medica and Immunologia Clinica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale F. Magrassi e A. Lanzara, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
68
|
Nakada M, Kita D, Teng L, Pyko IV, Watanabe T, Hayashi Y, Hamada JI. Receptor tyrosine kinases: principles and functions in glioma invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:143-70. [PMID: 22879068 DOI: 10.1007/978-94-007-4719-7_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
69
|
Preclinical strategies targeted at non-small-cell lung cancer signalling pathways with striking translational fallout. Drug Discov Today 2013; 18:11-24. [DOI: 10.1016/j.drudis.2012.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/22/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
|
70
|
Oh YM, Song YJ, Lee SB, Jeong Y, Kim B, Kim GW, Kim KE, Lee JM, Cho MY, Choi J, Nam DH, Song PH, Cheong KH, Kim KA. A new anti-c-Met antibody selected by a mechanism-based dual-screening method: therapeutic potential in cancer. Mol Cells 2012; 34:523-9. [PMID: 23180291 PMCID: PMC3887825 DOI: 10.1007/s10059-012-0194-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/11/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022] Open
Abstract
c-Met, the high affinity receptor for hepatocyte growth factor (HGF), is one of the most frequently activated tyrosine kinases in many human cancers and a target for cancer therapy. However, inhibitory targeting of c-Met with antibodies has proven difficult, because most antibodies have intrinsic agonist activity. Therefore, the strategy for reducing the agonism is critical for successful development of cancer therapies based on anti-c-Met antibodies. Here we developed a mechanism-based assay method for rapid screening of anti-c-Met antibodies, involving the determination of Akt phosphorylation and c-Met degradation for agonism and efficacy, respectively. Using the method, we identified an antibody, F46, that binds to human c-Met with high affinity (Kd = 2.56 nM) and specificity, and induces the degradation of c-Met in multiple cancer cells (including MKN45, a gastric cancer cell line) with minimal activation of c-Met signaling. F46 induced c-Met internalization in both HGF-dependent and HGF-independent cells, suggesting that the degradation of c-Met results from antibody-mediated receptor internalization. Furthermore, F46 competed with HGF for binding to c-Met, resulting in the inhibition of both HGF-mediated invasion and angiogenesis. Consistently, F46 inhibited the proliferation of MKN45 cells, in which c-Met is constitutively activated in an HGF-independent manner. Xenograft analysis revealed that F46 markedly inhibits the growth of subcutaneously implanted gastric and lung tumors. These results indicate that F46, identified by a novel mechanism-based assay, induces c-Met degradation with minimal agonism, implicating a potential role of F46 in therapy of human cancers.
Collapse
Affiliation(s)
- Young Mi Oh
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Yun-Jeong Song
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Saet Byoul Lee
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Yunju Jeong
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Bogyou Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Geun Woong Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kyung Eun Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Ji Min Lee
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Mi-Young Cho
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Jaehyun Choi
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | | | - Paul H Song
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kwang Ho Cheong
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| | - Kyung-Ah Kim
- Therapeutic Antibody Group, Samsung Advanced Institute of Technology, Yongin 446-712,
Korea
| |
Collapse
|
71
|
Luraghi P, Schelter F, Krüger A, Boccaccio C. The MET Oncogene as a Therapeutical Target in Cancer Invasive Growth. Front Pharmacol 2012; 3:164. [PMID: 22973229 PMCID: PMC3438853 DOI: 10.3389/fphar.2012.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/21/2012] [Indexed: 01/30/2023] Open
Abstract
The MET proto-oncogene, encoding the tyrosine kinase receptor for Hepatocyte Growth Factor (HGF) regulates invasive growth, a genetic program that associates control of cell proliferation with invasion of the extracellular matrix and protection from apoptosis. Physiologically, invasive growth takes place during embryonic development, and, in post-natal life, in wound healing and regeneration of several tissues. The MET oncogene is overexpressed and/or genetically mutated in many tumors, thereby sustaining pathological invasive growth, a prerequisite for metastasis. MET is the subject of intense research as a target for small molecule kinase inhibitors and, together with its ligand HGF, for inhibitory antibodies. The tight interplay of MET with the protease network has unveiled mechanisms to be exploited to achieve effective inhibition of invasive growth.
Collapse
Affiliation(s)
- Paolo Luraghi
- Division of Experimental Clinical Molecular Oncology, IRCC – Institute for Cancer Research and Treatment, University of Turin Medical SchoolCandiolo, Italy
| | - Florian Schelter
- Klinikum rechts der Isar der Technischen Universität München, Institut für Experimentelle Onkologie und TherapieforschungMünchen, Germany
| | - Achim Krüger
- Klinikum rechts der Isar der Technischen Universität München, Institut für Experimentelle Onkologie und TherapieforschungMünchen, Germany
| | - Carla Boccaccio
- Division of Experimental Clinical Molecular Oncology, IRCC – Institute for Cancer Research and Treatment, University of Turin Medical SchoolCandiolo, Italy
| |
Collapse
|
72
|
Cui JJ, McTigue M, Nambu M, Tran-Dubé M, Pairish M, Shen H, Jia L, Cheng H, Hoffman J, Le P, Jalaie M, Goetz GH, Ryan K, Grodsky N, Deng YL, Parker M, Timofeevski S, Murray BW, Yamazaki S, Aguirre S, Li Q, Zou H, Christensen J. Discovery of a Novel Class of Exquisitely Selective Mesenchymal-Epithelial Transition Factor (c-MET) Protein Kinase Inhibitors and Identification of the Clinical Candidate 2-(4-(1-(Quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (PF-04217903) for the Treatment of Cancer. J Med Chem 2012; 55:8091-109. [DOI: 10.1021/jm300967g] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J. Jean Cui
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Michele McTigue
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Mitchell Nambu
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Michelle Tran-Dubé
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Mason Pairish
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Hong Shen
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Lei Jia
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Hengmiao Cheng
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Jacqui Hoffman
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Phuong Le
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Mehran Jalaie
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Gilles H. Goetz
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Kevin Ryan
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Neil Grodsky
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Ya-li Deng
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Max Parker
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Sergei Timofeevski
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Brion W. Murray
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Shinji Yamazaki
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Shirley Aguirre
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Qiuhua Li
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - Helen Zou
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| | - James Christensen
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive,
San Diego, California 92121, United States
| |
Collapse
|
73
|
Numata M, Oshima T. Significance of regenerating islet-derived type IV gene expression in gastroenterological cancers. World J Gastroenterol 2012; 18:3502-10. [PMID: 22826614 PMCID: PMC3400851 DOI: 10.3748/wjg.v18.i27.3502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 01/12/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
The regenerating islet-derived members (Reg), a group of small secretory proteins, which are involved in cell proliferation or differentiation in digestive organs, are upregulated in several gastrointestinal cancers, functioning as trophic or antiapoptotic factors. Regenerating islet-derived type IV (RegIV), a member of the Reg gene family, has been reported to be overexpressed in gastroenterological cancers. RegIV overexpression in tumor cells has been associated with carcinogenesis, cell growth, survival and resistance to apoptosis. Cancer tissue expressing RegIV is generally associated with more malignant characteristics than that without such expression, and RegIV is considered a novel prognostic factor as well as diagnostic marker in some gastroenterological cancers. We previously investigated the expression levels of RegIV mRNA of 202 surgical colorectal cancer specimens with quantitative real-time reverse-transcriptase polymerase chain reaction and reported that a higher level of RegIV gene expression was a significant independent predictor of colorectal cancer. The biologic functions of RegIV protein in cancer tissue, associated with carcinogenesis, anti-apoptosis and invasiveness, are being elucidated by molecular investigations using transfection techniques or neutralizing antibodies of RegIV, and the feasibility of antibody therapy targeting RegIV is being assessed. These studies may lead to novel therapeutic strategies for gastroenterological cancers expressing RegIV. This review article summarizes the current information related to biological functions as well as clinical importance of RegIV gene to clarify the significance of RegIV expression in gastroenterological cancers.
Collapse
|
74
|
|
75
|
Capelletto E, Novello S. Emerging New Agents for the Management of Patients with Non-Small Cell Lung Cancer. Drugs 2012; 72 Suppl 1:37-52. [DOI: 10.2165/1163028-s0-000000000-00000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
76
|
Abstract
INTRODUCTION Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand-activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. AREA COVERED The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programs. The authors review Met structure and function, the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development, as well as the latest clinical trial results. EXPERT OPINION Clinical trials with HGF/Met pathway antagonists show that as a class these agents are well tolerated. Although widespread efficacy was not seen in several completed Phase II studies, promising results have been reported in lung, gastric, prostate and papillary renal cancer patients treated with these agents. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment are optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents, and model systems available concerning HGF/Met oncogenic signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.
Collapse
Affiliation(s)
- Fabiola Cecchi
- National Cancer Institute, National Institutes of Health, Center for Cancer Research, Urologic Oncology Branch, 10 Center Drive MSC 1107, Bethesda, MD 20892-1107, USA.
| | | | | |
Collapse
|
77
|
Mytych DT, Barger TE, King C, Grauer S, Haldankar R, Hsu E, Wu MM, Shiwalkar M, Sanchez S, Kuck A, Civoli F, Sun J, Swanson SJ. Development and characterization of a human antibody reference panel against erythropoietin suitable for the standardization of ESA immunogenicity testing. J Immunol Methods 2012; 382:129-41. [PMID: 22634015 DOI: 10.1016/j.jim.2012.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 01/16/2023]
Abstract
Recombinant human erythropoietin (EPO) has been used therapeutically for more than two decades in the treatment of anemia. Although EPO is generally well tolerated, in rare cases, patients have developed anti-EPO antibodies that can negatively impact safety and efficacy. Therefore, the detection of antibodies against EPO is a regulatory requirement during clinical development and post-approval. Although it is a rare phenomenon, antibody-mediated pure red cell aplasia (PRCA) is a serious complication than can result from antibodies that develop and neutralize EPO as well as endogenous erythropoietin. Currently, there are no universally accepted analytical methods to detect the full repertoire of binding and neutralizing anti-EPO antibodies. A number of different methods that differ in terms of antibodies detected and assay sensitivities are used by different manufacturers. There is also a lack of antibody reference reagents, and therefore no consistent basis for detecting and measuring anti-EPO antibodies. Reference reagents, with established ranges, are essential to monitor the safety and efficacy of all erythropoiesis-stimulating agents (ESAs) structurally related to human erythropoietin. This is the first report of the development and characterization of a panel of fully human antibodies against EPO suitable as reference reagents. The characteristics of antibodies within the panel were selected based on the prevalence of non-neutralizing IgG and IgM antibodies in non-PRCA patients and neutralizing IgG antibodies, including IgG1 and IgG4, in antibody-mediated PRCA subjects. The reference panel includes antibodies of high- and low-affinity with binding specificity to neutralizing and non-neutralizing erythropoietin epitopes. The subclass of human antibodies in this reference panel includes an IgG1, IgG2, and IgG4, as well as an IgM isotype. This antibody panel could help select appropriate immunogenicity assays, guide validation, and monitor assay performance. Further, this human anti-ESA antibody panel may help set the limits of each assay platform in terms of the full repertoire of the anti-ESA antibodies, and may facilitate standardization of ESA immunogenicity reporting across assay platforms.
Collapse
Affiliation(s)
- Daniel T Mytych
- Department of Clinical Immunology, Amgen, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
The MET pathway is dysregulated in many human cancers and promotes tumour growth, invasion and dissemination. Abnormalities in MET signalling have been reported to correlate with poor clinical outcomes and drug resistance in patients with cancer. Thus, MET has emerged as an attractive target for cancer therapy. Several MET inhibitors have been introduced into the clinic, and are currently in all phases of clinical trials. In general, initial results from these studies indicate only a modest benefit in unselected populations. In this Review, we discuss current challenges in developing MET inhibitors--including identification of predictive biomarkers--as well as the most-efficient ways to combine these drugs with other targeted agents or with classic chemotherapy or radiotherapy.
Collapse
|
79
|
Progress in cancer therapy targeting c-Met signaling pathway. Arch Pharm Res 2012; 35:595-604. [DOI: 10.1007/s12272-012-0402-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/13/2011] [Accepted: 11/19/2011] [Indexed: 01/09/2023]
|
80
|
Greenall SA, Gherardi E, Liu Z, Donoghue JF, Vitali AA, Li Q, Murphy R, Iamele L, Scott AM, Johns TG. Non-agonistic bivalent antibodies that promote c-MET degradation and inhibit tumor growth and others specific for tumor related c-MET. PLoS One 2012; 7:e34658. [PMID: 22511956 PMCID: PMC3325269 DOI: 10.1371/journal.pone.0034658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/06/2012] [Indexed: 11/18/2022] Open
Abstract
The c-MET receptor has a function in many human cancers and is a proven therapeutic target. Generating antagonistic or therapeutic monoclonal antibodies (mAbs) targeting c-MET has been difficult because bivalent, intact anti-Met antibodies frequently display agonistic activity, necessitating the use of monovalent antibody fragments for therapy. By using a novel strategy that included immunizing with cells expressing c-MET, we obtained a range of mAbs. These c-MET mAbs were tested for binding specificity and anti-tumor activity using a range of cell-based techniques and in silico modeling. The LMH 80 antibody bound an epitope, contained in the small cysteine-rich domain of c-MET (amino acids 519–561), that was preferentially exposed on the c-MET precursor. Since the c-MET precursor is only expressed on the surface of cancer cells and not normal cells, this antibody is potentially tumor specific. An interesting subset of our antibodies displayed profound activities on c-MET internalization and degradation. LMH 87, an antibody binding the loop connecting strands 3d and 4a of the 7-bladed β-propeller domain of c-MET, displayed no intrinsic agonistic activity but promoted receptor internalization and degradation. LMH 87 inhibited HGF/SF-induced migration of SK-OV-3 ovarian carcinoma cells, the proliferation of A549 lung cancer cells and the growth of human U87MG glioma cells in a mouse xenograft model. These results indicate that c-MET antibodies targeting epitopes controlling receptor internalization and degradation provide new ways of controlling c-MET expression and activity and may enable the therapeutic targeting of c-MET by intact, bivalent antibodies.
Collapse
Affiliation(s)
- Sameer A. Greenall
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | - Zhanqi Liu
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Jacqueline F. Donoghue
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Angela A. Vitali
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Qian Li
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Roger Murphy
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Luisa Iamele
- Medical Research Council Centre, Cambridge, United Kingdom
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, Victoria, Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
81
|
Ceccarelli S, Romano F, Angeloni A, Marchese C. Potential dual role of KGF/KGFR as a target option in novel therapeutic strategies for the treatment of cancers and mucosal damages. Expert Opin Ther Targets 2012; 16:377-93. [PMID: 22443411 DOI: 10.1517/14728222.2012.671813] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Keratinocyte growth factor (KGF) and its receptor KGFR play a pivotal role in regulating cell proliferation, migration, differentiation and survival, in response to injury and tissue repair. Altered expression of this pathway in cancer opened the way to the development of targeted therapy to achieve KGFR inhibition. Nevertheless, KGF administration has been demonstrated to ameliorate oral mucositis resulting from chemoradiotherapy, besides protecting epithelial cells against radiation-induced damage. AREAS COVERED This review focuses on the potential therapeutic interest of KGF/KGFR in two different areas: selective inhibition of KGFR signaling for the treatment of cancers characterized by upregulation of this pathway and administration of KGF to protect epithelial cells from induced damage. The review presents an overview of therapeutic strategies in both directions. EXPERT OPINION KGF/KGFR signaling can contribute to enhancing the malignant potential of epithelial cells and to promoting tumorigenesis. On the other hand, the therapeutic use of KGF in cancer patients provides epithelial protection, reducing chemotherapy side effects. FGFRs have become attractive antitumor targets and various inhibitors have been used to contrast tumor cell growth. The identification of KGFR-specific molecules might represent a promising therapeutic strategy that could increase the window of available agents and treatment methods.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Sapienza University of Rome, Department of Experimental Medicine, Roma, Italy
| | | | | | | |
Collapse
|
82
|
Kawas LH, McCoy AT, Yamamoto BJ, Wright JW, Harding JW. Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J Pharmacol Exp Ther 2012; 340:539-48. [PMID: 22129598 DOI: 10.1124/jpet.111.188136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The 6-AH family [D-Nle-X-Ile-NH-(CH(2))(5)-CONH(2); where X = various amino acids] of angiotensin IV (Ang IV) analogs binds directly to hepatocyte growth factor (HGF) and inhibit HGF's ability to form functional dimers. The metabolically stabilized 6-AH family member, D-Nle-Tyr-Ile-NH-(CH(2))(5)-CONH(2,) had a t(1/2) in blood of 80 min compared with the parent compound norleual [Nle-Tyr-Leu-Ψ-(CH(2)-NH(2))(3-4)-His-Pro-Phe], which had a t(1/2) in blood of <5 min. 6-AH family members were found to act as mimics of the dimerization domain of HGF (hinge region) and inhibited the interaction of an HGF molecule with a (3)H-hinge region peptide resulting in an attenuated capacity of HGF to activate its receptor Met. This interference translated into inhibition of HGF-dependent signaling, proliferation, and scattering in multiple cell types at concentrations down into the low picomolar range. We also noted a significant correlation between the ability of the 6-AH family members to block HGF dimerization and inhibition of the cellular activity. Furthermore, a member of the 6-AH family with cysteine at position 2, was a particularly effective antagonist of HGF-dependent cellular activities. This compound suppressed pulmonary colonization by B16-F10 murine melanoma cells, which are characterized by an overactive HGF/Met system. Together, these data indicate that the 6-AH family of Ang IV analogs exerts its biological activity by modifying the activity of the HGF/Met system and offers the potential as therapeutic agents in disorders that are dependent on or possess an overactivation of the HGF/Met system.
Collapse
Affiliation(s)
- Leen H Kawas
- Department of Veterinary and Comparative, Anatomy, Pharmacology, and Physiology, PO Box 6520, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
83
|
Surati M, Patel P, Peterson A, Salgia R. Role of MetMAb (OA-5D5) in c-MET active lung malignancies. Expert Opin Biol Ther 2012; 11:1655-62. [PMID: 22047509 DOI: 10.1517/14712598.2011.626762] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION MetMAb (OA-5D5) is a one-armed monoclonal antibody developed to bind to and inhibit c-MET receptor tyrosine kinase. Though only in early clinical testing, this agent holds great promise in diseases thought to be driven by c-MET activation, as evidenced by the Phase II results in NSCLC where a benefit in overall survival was observed in patients with MET-diagnostic-positive disease. Thus far, both alone and in combination with other targeted agents, this drug has been well tolerated and no new significant safety signals have been identified. AREAS COVERED This review summarizes the structure and function of the c-MET receptor and its ligand hepatic growth factor (HGF), provides an overview of select targeted monotherapies developed to interfere in the MET-HGF signaling pathway, discusses pre-clinical and clinical data surrounding MetMAb, and concludes with an expert opinion regarding this novel agent. EXPERT OPINION MetMAb has been well tolerated and based on Phase II data testing it, in combination with erlotinib in advanced NSCLC, may have a role in improving survival in patients with disease driven by c-MET activation. However, Phase III validation is underway and the results of these studies will help elucidate which patients will benefit most from this novel agent.
Collapse
Affiliation(s)
- Mosmi Surati
- University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
84
|
Vosjan MJWD, Vercammen J, Kolkman JA, Stigter-van Walsum M, Revets H, van Dongen GAMS. Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy. Mol Cancer Ther 2012; 11:1017-25. [PMID: 22319202 DOI: 10.1158/1535-7163.mct-11-0891] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met are associated with increased aggressiveness of tumors and poor prognostic outcome of patients with cancer. Here, we report the development and characterization of therapeutic anti-HGF (αHGF)-Nanobodies and their potential for positron emission tomographic (PET) imaging to assess HGF expression in vivo. Two αHGF-Nanobodies designated 1E2 and 6E10 were identified, characterized, and molecularly fused to an albumin-binding Nanobody unit (Alb8) to obtain serum half-life extension. The resulting Nanobody formats were radiolabeled with the positron emitter zirconium-89 ((89)Zr, t(1/2;) = 78 hours), administered to nude mice bearing U87 MG glioblastoma xenografts, and their biodistribution was assessed. In addition, their therapeutic effect was evaluated in the same animal model at doses of 10, 30, or 100 μg per mouse. The (89)Zr-Nanobodies showed similar biodistribution with selective tumor targeting. For example, 1E2-Alb8 showed decreased blood levels of 12.6%ID/g ± 0.6%ID/g, 7.2%ID/g ± 1.0%ID/g, 3.4%ID/g ± 0.3%ID/g, and 0.3%ID/g ± 0.1%ID/g at 1, 2, 3, and 7 days after injection, whereas tumor uptake levels remained relatively stable at these time points: 7.8%ID/g ± 1.1%ID/g, 8.9%ID/g ± 1.0%ID/g, 8.7%ID/g ± 1.5%ID/g, and 7.2%ID/g ±1.6%ID/g. Uptake in normal tissues was lower than in tumor, except for kidneys. In a therapy study, all Nanobody-treated mice showed tumor growth delay compared with the control saline group. In the 100-μg group, four of six mice were cured after treatment with 1E2-Alb8 and 73 days follow-up, and three of six mice when treated with 6E10-Alb8. These results provide evidence that Nanobodies 1E2-Alb8 and 6E10-Alb8 have potential for therapy and PET imaging of HGF-expressing tumors.
Collapse
Affiliation(s)
- Maria J W D Vosjan
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
85
|
Wader KF, Fagerli UM, Børset M, Lydersen S, Hov H, Sundan A, Bofin A, Waage A. Immunohistochemical analysis of hepatocyte growth factor and c-Met in plasma cell disease. Histopathology 2012; 60:443-51. [DOI: 10.1111/j.1365-2559.2011.04112.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
86
|
Chattopadhyay C, Ellerhorst JA, Ekmekcioglu S, Greene VR, Davies MA, Grimm EA. Association of activated c-Met with NRAS-mutated human melanomas. Int J Cancer 2012; 131:E56-65. [PMID: 22020736 DOI: 10.1002/ijc.26487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Cutaneous melanomas can be divided into three mutually exclusive genetic subsets: tumors with mutated BRAF, tumors with mutated NRAS and tumors wild type at both loci (wt/wt). Targeted therapy for melanoma has been advancing with agents directed to mutated BRAF, accounting for 50% of melanoma patients. The c-Met pathway is known to play a role in melanoma tumorigenesis and preliminary data from our laboratory suggested that this pathway is preferentially activated in NRAS-mutated tumors. The objective of this study was to test the hypothesis that melanomas carrying the mutated NRAS genotype are uniquely sensitively to c-Met inhibition, thus providing rationale for therapeutic targeting of c-Met in this patient cohort. Using primary human melanomas with known BRAF/NRAS genotypes, we observed greater immunostaining for phosphorylated (activated) c-Met in NRAS-mutated and wt/wt tumors, compared to BRAF-mutated tumors. NRAS-mutated and wt/wt cell lines also demonstrated more robust c-Met activation in response to hepatocyte growth factor (HGF). Knock-down of mutated N-Ras, but not wild type N-Ras, by RNA interference resulted in decreased c-Met phosphorylation. Compared to BRAF mutants, NRAS-mutated melanoma cells were more sensitive to pharmacologic c-Met inhibition in terms of c-Met activation, Akt phosphorylation, tumor cell proliferation, migration and apoptosis. This enhanced sensitivity was observed in wt/wt cells as well, but was a less consistent finding. On the basis of these experimental results, we propose that c-Met inhibition may be a useful therapeutic strategy for melanomas with NRAS mutations, as well as some tumors with a wt/wt genotype.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
89
|
Sathornsumetee S, Rich JN. Molecularly targeted therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:255-78. [PMID: 22230448 DOI: 10.1016/b978-0-444-52138-5.00018-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
90
|
Marshall D, Mitchell DA, Graner MW, Bigner DD. Immunotherapy of brain tumors. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:309-30. [PMID: 22230450 DOI: 10.1016/b978-0-444-52138-5.00020-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
91
|
Affiliation(s)
- Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
92
|
Vijayalakshmi R, Krishnamurthy A. Targetable "driver" mutations in non small cell lung cancer. Indian J Surg Oncol 2011; 2:178-88. [PMID: 22942608 DOI: 10.1007/s13193-011-0108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality in the world despite advances in the field of cancer therapeutics. Traditional treatment with empirically chosen cytotoxic chemotherapeutic agents, have given small, but real survival benefits. Recent advances and insights into molecular pathogenesis of lung cancers have provided some novel molecular targets, offering newer strategies and agents that are tumor specific. Studies have identified mutations in specific genes that are involved in driving the development of lung cancer and so it is important to subsequently target them with specific drugs thus changing paradigms of management of this type of cancer. Recently, Lung Cancer Mutation Consortium (LCMC) has identified at least one of the many recognized "driver mutations" in nearly two thirds of the patients with advanced cancer. This study suggests that identification of driver mutations can help in molecular targeted therapeutics and in addition supplant tumor histology in guiding treatment decisions, identifying subset of patients who may benefit therapy. This review focuses on these mutations identified in specific genes serving as "drivers" of lung tumorigenesis and suggests that clear promise for the future of lung cancer treatment is indeed personalized therapy with drugs chosen according to the patient mutation profile. Most clinically relevant translational advances made in genes involved in lung tumorigenesis namely EML4-ALK fusions, HER2, PIK3CA, AKT, BRAF, MAP2K1, MET mutations and amplifications along with the well established EGFR and KRAS mutations are discussed in the context of NSCLCs. These studies emphasize the need for treatment management based on mutation profile along with routine histology based classification of these tumors in future for a directed therapy and thus a better therapeutic outcome.
Collapse
|
93
|
Kawas LH, Yamamoto BJ, Wright JW, Harding JW. Mimics of the dimerization domain of hepatocyte growth factor exhibit anti-Met and anticancer activity. J Pharmacol Exp Ther 2011; 339:509-18. [PMID: 21859930 DOI: 10.1124/jpet.111.185694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The angiotensin IV analog norleual [Nle-Tyr-Leu-ψ-(CH(2)-NH(2))-Leu-His-Pro-Phe] has been shown recently to act as a hepatocyte growth factor (HGF)/Met antagonist capable of blocking the binding of HGF to the Met receptor, inhibiting HGF-dependent activation of Met, and attenuating HGF-dependent cellular activities. In addition, norleual exhibited marked anticancer activity. Homology between norleual and the dimerization domain (hinge region) of HGF led to the hypothesis that norleual acts by interfering with HGF dimerization/multimerization and functions as a dominant-negative hinge region mimic. To test this hypothesis we investigated the ability of norleual to bind to and inhibit the dimerization of HGF. To further evaluate the idea that norleual was acting as a hinge region mimic, we synthesized a hexapeptide representing the HGF hinge sequence and established its capacity to similarly block HGF-dependent activation of Met and HGF-dependent cellular functions. The hinge peptide not only bound with high affinity directly to HGF and blocked its dimerization but it also inhibited HGF-dependent Met activation, suppressed HGF-dependent cellular functions, and exhibited anticancer activity. The major implication of this study is that molecules targeting the dimerization domain of HGF may represent novel and viable anticancer therapeutic agents; the development of such molecules should be feasible using norleual and the hinge peptide as synthetic templates.
Collapse
Affiliation(s)
- Leen H Kawas
- Department of Veterinary and Comparative, Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
94
|
Lau PCP, Chan ATC. Novel therapeutic target for head and neck squamous cell carcinoma: HGF-MET signaling pathway. Anticancer Drugs 2011; 22:665-73. [PMID: 21709616 DOI: 10.1097/cad.0b013e328341879d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a devastating type of malignancy characterized by its high incidence of regional and distant metastases at the time of diagnosis. Vital physiological functions in the upper aerodigestive tract are often impaired as a result of the disease and treatment for the disease, giving rise to severe morbidity in patients suffering from this type of cancer. It is crucial to delineate the aberrant growth signaling pathways in HNSCC cells and develop specific target therapies for the disease to improve the treatment outcome. Although the epidermal growth factor receptor pathway has been extensively studied in HNSCC and anti-epidermal growth factor receptor therapy has already shown promise in treating HNSCC in phase III clinical trials, the signaling pathway that accounts for the highly invasive phenotype of HNSCC needs to be defined and also therapeutically targeted. The hepatocyte growth factor-MET signaling pathway has been studied extensively over the past two decades and it is now clear that it plays an important role in mediating invasive growth of many types of cancer. Here, we review comprehensively the evidence on hepatocyte growth factor-MET cascade being a key in the signaling pathway in mediating invasive growth of HNSCC and the potential of this signaling pathway to be a therapeutic target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Patrick Chi-pan Lau
- State Key Laboratory of Oncology, South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
95
|
Giaccone G, Wang Y. Strategies for overcoming resistance to EGFR family tyrosine kinase inhibitors. Cancer Treat Rev 2011; 37:456-64. [PMID: 21367530 PMCID: PMC3139833 DOI: 10.1016/j.ctrv.2011.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/21/2011] [Indexed: 01/14/2023]
Abstract
The first-generation epidermal growth factor receptor tyrosine kinase inhibitors erlotinib and gefitinib have been incorporated into treatment paradigms for patients with advanced non-small cell lung cancer. These agents are particularly effective in a subset of patients whose tumors harbor activating epidermal growth factor receptor mutations. However, most patients do not respond to these tyrosine kinase inhibitors, and those who do will eventually acquire resistance that typically results from a secondary epidermal growth factor receptor mutation (e.g., T790M), mesenchymal-epithelial transition factor amplification, or activation of other signaling pathways. For patients whose tumors have wild-type epidermal growth factor receptor, there are several known mechanisms of initial resistance (e.g., Kirsten rat sarcoma viral oncogene homolog mutations) but these do not account for all cases, suggesting that unknown mechanisms also contribute. To potentially overcome the issue of resistance, next-generation tyrosine kinase inhibitors are being developed, which irreversibly block multiple epidermal growth factor receptor family members (e.g., afatinib [BIBW 2992] and PF-00299804) and/or vascular endothelial growth factor receptor pathways (e.g., BMS-690514 and XL647). In addition, drugs that block parallel signaling pathways or signaling molecules downstream of the epidermal growth factor receptor, such as the insulin-like growth factor-1 receptor and the mammalian target of rapamycin, are undergoing clinical evaluation. As drug resistance appears to be pleomorphic, combinations of drugs or drugs with multiple targets may be more effective in circumventing resistance.
Collapse
Affiliation(s)
- Giuseppe Giaccone
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1906, United States.
| | | |
Collapse
|
96
|
Pleural mesothelioma instigates tumor-associated fibroblasts to promote progression via a malignant cytokine network. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1483-93. [PMID: 21763682 DOI: 10.1016/j.ajpath.2011.05.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/25/2011] [Accepted: 05/23/2011] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment is crucial to the progression of various malignancies. Malignant pleural mesothelioma (MPM), which originates from the pleura, grows aggressively in the thoracic cavity. Here we describe an orthotopic implantation SCID mouse model of MPM and demonstrate that α-SMA-positive fibroblast-like cells accumulate in the tumors produced by the human MPM cell lines MSTO-211H and Y-Meso-14. We assessed the interaction between MPM cells and their microenvironments, focusing on tumor-associated fibroblasts. MSTO-211H and Y-Meso-14 cells produced fibroblast growth factor-2 (FGF-2) and/or platelet-derived growth factor-AA (PDGF-AA); they also enhanced growth, migration, and production of hepatocyte growth factor (HGF) by human lung fibroblast MRC-5 cells. MRC-5 cells stimulated HGF-mediated growth and migration of MSTO-211H and Y-Meso-14 cells in an in vitro coculture system. In the orthotopic model, tumor formation by MSTO-211H and Y-Meso-14 cells was significantly inhibited by TSU-68, an inhibitor of FGF, VEGF, and PDGF receptors; imatinib, an inhibitor of PDGF receptors; and NK4, an antagonist of HGF. Histological analyses of clinical specimens from 51 MPM patients revealed considerable tumor-associated fibroblasts infiltration and expression of HGF, together with FGF-2 or PDGF-AA, in tumors. These findings indicate that MPM instigates tumor-associated fibroblasts, promoting tumor progression via a malignant cytokine network. Regulation of this cytokine network may be therapeutically useful for controlling MPM.
Collapse
|
97
|
Cullinane C, Dorow DS, Jackson S, Solomon B, Bogatyreva E, Binns D, Young R, Arango ME, Christensen JG, McArthur GA, Hicks RJ. Differential 18F-FDG and 3′-Deoxy-3′-18F-Fluorothymidine PET Responses to Pharmacologic Inhibition of the c-MET Receptor in Preclinical Tumor Models. J Nucl Med 2011; 52:1261-7. [DOI: 10.2967/jnumed.110.086967] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
98
|
Pleshkan VV, Zinovyeva MV, Sverdlov ED. Melanoma: Surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy. Mol Biol 2011. [DOI: 10.1134/s0026893311030149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
99
|
Katz JD, Jewell JP, Guerin DJ, Lim J, Dinsmore CJ, Deshmukh SV, Pan BS, Marshall CG, Lu W, Altman MD, Dahlberg WK, Davis L, Falcone D, Gabarda AE, Hang G, Hatch H, Holmes R, Kunii K, Lumb KJ, Lutterbach B, Mathvink R, Nazef N, Patel SB, Qu X, Reilly JF, Rickert KW, Rosenstein C, Soisson SM, Spencer KB, Szewczak AA, Walker D, Wang W, Young J, Zeng Q. Discovery of a 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one (MK-2461) inhibitor of c-Met kinase for the treatment of cancer. J Med Chem 2011; 54:4092-108. [PMID: 21608528 DOI: 10.1021/jm200112k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
c-Met is a transmembrane tyrosine kinase that mediates activation of several signaling pathways implicated in aggressive cancer phenotypes. In recent years, research into this area has highlighted c-Met as an attractive cancer drug target, triggering a number of approaches to disrupt aberrant c-Met signaling. Screening efforts identified a unique class of 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one kinase inhibitors, exemplified by 1. Subsequent SAR studies led to the development of 81 (MK-2461), a potent inhibitor of c-Met that was efficacious in preclinical animal models of tumor suppression. In addition, biochemical studies and X-ray analysis have revealed that this unique class of kinase inhibitors binds preferentially to the activated (phosphorylated) form of the kinase. This report details the development of 81 and provides a description of its unique biochemical properties.
Collapse
Affiliation(s)
- Jason D Katz
- Department of Chemistry, Merck Research Laboratories, 33 Avenue Louis Pasteur, BMB-2-114, Boston, Massachusetts 02115, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Cecchi F, Rabe DC, Bottaro DP. The Hepatocyte Growth Factor Receptor: Structure, Function and Pharmacological Targeting in Cancer. ACTA ACUST UNITED AC 2011; 6:146-151. [PMID: 25197268 DOI: 10.2174/157436211795659955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programs. Pathway inhibitors can be divided broadly into biologicals and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other inhibitor types. We review here Met structure and function, the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development, as well as the latest clinical trial results. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel C Rabe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Donald P Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|