51
|
|
52
|
Scheper W, Gründer C, Straetemans T, Sebestyen Z, Kuball J. Hunting for clinical translation with innate-like immune cells and their receptors. Leukemia 2013; 28:1181-90. [DOI: 10.1038/leu.2013.378] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
|
53
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
54
|
Tanyi JL, Chu CS. Dendritic cell-based tumor vaccinations in epithelial ovarian cancer: a systematic review. Immunotherapy 2013; 4:995-1009. [PMID: 23148752 DOI: 10.2217/imt.12.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After decades of extensive research, epithelial ovarian cancer still remains a lethal disease. Multiple new studies have reported that the immune system plays a critical role in the growth and spread of ovarian carcinoma. This review summarizes the development of dendritic cell (DC) vaccinations specific for ovarian cancer. So far, DC-based vaccines have induced effective antitumor responses in animal models, but only limited results from human clinical trials are available. Although DC-based immunotherapy has proven to be clinically safe and efficient at inducing tumor-specific immune responses, its clear role in the therapy of ovarian cancer still needs to be clarified. The relatively disappointing low-response rates in early clinical trials point to the need for the development of more effective and personalized DC-based anticancer vaccines. This article reviews the basic mechanisms, limitations and future directions of DC-based anti-ovarian cancer vaccine development.
Collapse
Affiliation(s)
- Janos L Tanyi
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | | |
Collapse
|
55
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol 2013; 91:435-40. [PMID: 23628805 DOI: 10.1038/icb.2013.17] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity presents a substantial barrier to increasing clinical responses mediated by targeted therapies. Broadening the immune response elicited by treatments that target a single antigen is necessary for the elimination of tumor variants that fail to express the targeted antigen. In this study, it is shown that adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) inhibited the growth of target-expressing and -deficient tumor cells within ovarian and lymphoma tumors. Mice bearing the ID8 ovarian or RMA lymphoma tumors were treated with T cells transduced with a NKG2D-based CAR (chNKG2D). NKG2D CAR T-cell therapy protected mice from heterogeneous RMA tumors. Moreover, adoptive transfer of chNKG2D T cells mediated tumor protection against highly heterogeneous ovarian tumors in which 50, 20 or only 7% of tumor cells expressed significant amounts of NKG2D ligands. CAR T cells did not mediate an in vivo response against tumor cells that did not express sufficient amounts of NKG2D ligands, and the number of ligand-expressing tumor cells correlated with therapeutic efficacy. In addition, tumor-free surviving mice were protected against a tumor re-challenge with NKG2D ligand-negative ovarian tumor cells. These data indicate that NKG2D CAR T-cell treatment can be an effective therapy against heterogeneous tumors and induce tumor-specific immunity against ligand-deficient tumor cells.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
56
|
Song DG, Ye Q, Santoro S, Fang C, Best A, Powell DJ. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther 2013; 24:295-305. [PMID: 23297870 DOI: 10.1089/hum.2012.143] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
- De-Gang Song
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
57
|
Meehan KR, Talebian L, Tosteson TD, Hill JM, Szczepiorkowski Z, Sentman CL, Ernstoff MS. Adoptive cellular therapy using cells enriched for NKG2D+CD3+CD8+T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 2013; 19:129-37. [PMID: 22975165 PMCID: PMC3772513 DOI: 10.1016/j.bbmt.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Abstract
The number of circulating lymphocytes on day 15 after transplantation correlates with improved survival in patients with myeloma, but the lymphocyte subset responsible is unknown. NKG2D is a natural killer (NK) cell activating receptor that mediates non-MHC restricted and TCR-independent cell lysis. Our preliminary results indicate that CD3(+)CD8(+) T cells expressing NKG2D may be a critical lymphocyte population. A phase II trial examined the feasibility of infusing ex vivo-expanded cells enriched for NKG2D(+)CD3(+)CD8(+) T cells at weeks 1, 2, 4, and 8 after an autologous transplantation. In addition, low-dose IL-2 (6 × 10(5) IU/m(2)/day) was administered for 4 weeks, beginning on the day of transplantation. Twenty-three patients were accrued and 19 patients are evaluable. There were no treatment-related deaths. All patients completed their course of IL-2 and demonstrated normal engraftment. When compared with patients with myeloma who underwent transplantation not receiving posttransplantation immune therapy, the treated patients demonstrated an increase in the number of circulating NKG2D(+)CD3(+)CD8(+) T cells/μL (P < .004), CD3(+)CD8(+) T cells/μL (P < .04), CD3(+)CD8(+)CD56(+) T cells/μL (P < .004), and NKG2D(+)CD3(-)CD56(+) T cells/μL (P < .003). Myeloma cell-directed cytotoxicity by the circulating mononuclear cells increased after transplantation (P < .002). When compared to posttransplantation IL-2 therapy alone in this patient population, the addition of cells enriched for NKG2D(+)CD3(+)CD8(+) T cells increased tumor-specific immunity, as demonstrated by enhanced lysis of autologous myeloma cells (P = .02). We postulate that this regimen that increased the number and function of the NKG2D(+)CD3(+)CD8(+) T cells after transplantation may improve clinical outcomes by eliminating residual malignant cells in vivo.
Collapse
Affiliation(s)
- Kenneth R Meehan
- Blood and Marrow Transplant Program, Dartmouth Hitchcock Medical Center, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Shi H, Liu L, Wang Z. Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett 2012; 328:191-7. [PMID: 23022475 DOI: 10.1016/j.canlet.2012.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/29/2012] [Accepted: 09/19/2012] [Indexed: 01/28/2023]
Abstract
Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, Shandong Cancer Hospital and Institute, No. 440 Jiyan Road, Jinan, Shandong 250117, PR China
| | | | | |
Collapse
|
59
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. THE JOURNAL OF IMMUNOLOGY 2012; 188:6389-98. [PMID: 22586039 DOI: 10.4049/jimmunol.1103019] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
60
|
Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One 2012; 7:e31210. [PMID: 22355347 PMCID: PMC3280271 DOI: 10.1371/journal.pone.0031210] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/04/2012] [Indexed: 11/19/2022] Open
Abstract
We explored the possibility to target Ewing's sarcoma family of tumors (ESFT) by redirecting T cells. To this aim, we considered NKG2D-ligands (NKG2D-Ls) as possible target antigens. Detailed analysis of the expression of MICA, MICB, ULBP-1, -2, and -3 in fourteen ESFT cell lines revealed consistent expression of at least one NKG2D-L. Thus, for redirecting T cells, we fused a CD3ζ/CD28-derived signaling domain to the ectodomain of NKG2D, however, opposite transmembrane orientation of this signaling domain and NKG2D required inverse orientation fusion of either of them. We hypothesized that the particularly located C-terminus of the NKG2D ectodomain should allow reengineering of the membrane anchoring from a native N-terminal to an artificial C-terminal linkage. Indeed, the resulting chimeric NKG2D receptor (chNKG2D) was functional and efficiently mediated ESFT cell death triggered by activated T cells. Notably, ESFT cells with even low NKG2D-L expression were killed by CD8(pos) and also CD4(pos) cells. Both, mRNA transfection and lentiviral transduction resulted in high level surface expression of chNKG2D. However, upon target-cell recognition receptor surface levels were maintained by tranfected RNA only during the first couple of hours after transfection. Later, target-cell contact resulted in strong and irreversible receptor down-modulation, whereas lentivirally mediated expression of chNKG2D remained constant under these conditions. Together, our study defines NKG2D-Ls as targets for a CAR-mediated T cell based immunotherapy of ESFT. A comparison of two different methods of gene transfer reveals strong differences in the susceptibility to ligand-induced receptor down-modulation with possible implications for the applicability of RNA transfection.
Collapse
|
61
|
Patankar MS, Gubbels JAA, Felder M, Connor JP. The immunomodulating roles of glycoproteins in epithelial ovarian cancer. Front Biosci (Elite Ed) 2012; 4:631-50. [PMID: 22201900 DOI: 10.2741/405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor growth. This review focuses first on the immune environment in ovarian cancer, and the mechanisms of activation and inhibition that immune cells undergo in order to either attack or ignore a target cell. Next we illustrate the immunomodulatory roles of ovarian cancer-associated glycans and glycoproteins in 1. preventing immune synapse formation, 2. serving as ligands of immune cell receptors, 3. scavenging cytokines and chemokines, and 4. participating in the formation of autoantibodies against the tumor. The importance of these immunomodulating strategies from the view points of understanding the tumor immunology of ovarian tumors, potential origin of such mechanisms, and specific strategies to circumvent the glycoconjugate-mediated suppression of immune responses is discussed in this review.
Collapse
Affiliation(s)
- Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, WI 53792-6188, USA.
| | | | | | | |
Collapse
|
62
|
Lavoué V, Cabillic F, Toutirais O, Thedrez A, Dessarthe B, de La Pintière CT, Daniel P, Foucher F, Bauville E, Henno S, Burtin F, Bansard JY, Levêque J, Catros V, Bouet-Toussaint F. Sensitization of ovarian carcinoma cells with zoledronate restores the cytotoxic capacity of Vγ9Vδ2 T cells impaired by the prostaglandin E2 immunosuppressive factor: implications for immunotherapy. Int J Cancer 2011; 131:E449-62. [PMID: 22095289 DOI: 10.1002/ijc.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/04/2011] [Indexed: 11/06/2022]
Abstract
Epithelial ovarian cancer (EOC) usually spreads into the peritoneal cavity, thereby providing an opportunity for intraperitoneal adoptive immunotherapy with Vγ9Vδ2 T lymphocytes, a T cell subpopulation endowed with high lytic properties against tumor cells. However, previous studies have reported that Vγ9Vδ2 T cells fail to expand from peripheral blood mononuclear cells in one-third of patients with cancer. Here, from a cohort of 37 patients with EOC, a multiple correspondence analysis identified three populations, one of which was not suitable for Vγ9Vδ2 T-cell adoptive therapy. Interestingly, the ineligible patients were identified based on the frequency of Vγ9Vδ2 T cells in their peripheral blood and the patients' age. The average time to tumor recurrence was also found to be significantly different between the three populations, suggesting that the innate immune response is involved in EOC prognosis. A dramatic decrease in the lytic properties of Vγ9Vδ2 T cells occurred following incubation with ascitic supernatant and was found to be associated with reduced perforin/granzyme degranulation. Prostaglandin E2, but not IL-6, IL-10, VEGF or TGF-β, showed immunosuppressive effects in Vγ9Vδ2 T cells. Interestingly, our results emphasize that pretreating ovarian tumor cells with zoledronate partially reverses the immunosuppressive effects of ovarian cancer-associated ascites and restores a high level of lytic activity. These data sustain that optimal Vγ9Vδ2 T-cell adoptive immunotherapy previously requires counteracting the tumor immunosuppressive microenvironment. Altogether, our findings provide a rationale for clinically evaluating Vγ9Vδ2 T-cell adoptive immunotherapy with intraperitoneal carcinomatosis presensitization by zoledronate in patients with EOC.
Collapse
|
63
|
Cheng M, Ma J, Chen Y, Zhang J, Zhao W, Zhang J, Wei H, Ling B, Sun R, Tian Z. Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant 2011; 20:1731-46. [PMID: 21669033 DOI: 10.3727/096368911x580536] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells play important roles in adoptive cellular immunotherapy against certain human cancers. This study aims to establish a new human NK cell line and to study its role for adoptive cancer immunotherapy. Peripheral blood samples were collected from 54 patients to establish the NK cell line. A new human NK cell line, termed as NKG, was established from a Chinese male patient with rapidly progressive non-Hodgkin's lymphoma. NKG cells showed LGL morphology and were phenotypically identified as CD56(bright) NK cell with CD16(-), CD27(-), CD3(-), αβTCR(-), γδTCR(-), CD4(-), CD8(-), CD19(-), CD161(-), CD45(+), CXCR4(+), CCR7(+), CXCR1(-), and CX3CR1(-). NKG cells showed high expression of adhesive molecules (CD2, CD58, CD11a, CD54, CD11b, CD11c), an array of activating receptors (NKp30, NKp44, NKp46, NKG2D, NKG2C), and cytolysis-related receptors and molecules (TRAIL, FasL, granzyme B, perforin, IFN-γ). The cytotoxicity of NKG cells against tumor cells was higher than that of the established NK cell lines NK-92, NKL, and YT. NKG cell cytotoxicity depended on the presence of NKG2D and NKp30. When irradiated with 8 Gy, NKG cells were still with high cytotoxicity and activity in vitro and with safety in vivo, but without proliferation. Further, the irradiated NKG cells exhibited strong cytotoxicity against human primary ovarian cancer cells in vitro, and against human ovarian cancer in a mouse xenograft model. The adoptive transfer of NKG cells significantly inhibited the ovarian tumor growth, decreased the mortality rate and prolonged the survival, even in cases of advanced diseases. A number of NKG cells were detected in the ovarian tumor tissues during cell therapy. In use of the new human NK cell line, NKG would a promising cellular candidate for adoptive immunotherapy of human cancer.
Collapse
Affiliation(s)
- Min Cheng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wertel I, Nowicka A, Rogala E, Kotarski J. Peritoneal Immune System in Patients with Advance Epithelial Ovarian Cancer. Int Rev Immunol 2011; 30:87-101. [DOI: 10.3109/08830185.2011.569902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Chiriva-Internati M, Mirandola L, Kast WM, Jenkins MR, Cobos E, Cannon MJ. Understanding the Cross-Talk between Ovarian Tumors and Immune Cells: Mechanisms for Effective Immunotherapies. Int Rev Immunol 2011; 30:71-86. [DOI: 10.3109/08830185.2011.561507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
66
|
Abstract
Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8(+) T cells. Stimulation of CD8(+) T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin-induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin- and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8(+) T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex.
Collapse
|
67
|
Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther 2011; 18:509-16. [PMID: 21209626 DOI: 10.1038/gt.2010.174] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple myeloma causes approximately 10% of all hematologic malignancies. We have previously shown that human T cells expressing chimeric NKG2D receptors (chNKG2D) consisting of NKG2D fused to the CD3ζ cytoplasmic domain secrete proinflammatory cytokines and kill human myeloma cells. In this study, we show chNKG2D T cells are effective in a murine model of multiple myeloma. Mice with established 5T33MM-green fluorescent protein tumors were treated with one or two infusions of chNKG2D T cells. Compared with mice treated with T cells expressing wild type (wt)NKG2D receptors, a single dose of chNKG2D T cells increased survival, with half of the chNKG2D T-cell-treated mice surviving long term. Two infusions of chNKG2D T cells led to tumor-free survival in all mice. ChNKG2D T cells were located at sites of tumor growth, including the bone marrow and spleen after intravenous injection. There was an increase in activated host T cells and NK cells at tumor sites and in serum interferon-γ after chNKG2D T-cell injection. Surviving mice were able to resist a rechallenge with 5T33MM cells but not RMA lymphoma cells, indicating that the mice developed a protective, specific memory response. These data demonstrate that chNKG2D T cells may be an effective adoptive cellular therapy for multiple myeloma.
Collapse
Affiliation(s)
- A Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
68
|
McGilvray RW, Eagle RA, Rolland P, Jafferji I, Trowsdale J, Durrant LG. ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. Int J Cancer 2010; 127:1412-20. [PMID: 20054857 DOI: 10.1002/ijc.25156] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human activating immune receptor, NKG2D, binds to a diverse array of cellular ligands of the MIC and unique long 16 (UL16)-binding protein (ULBP)/retinoic acid early transcript (RAET) family. NKG2D is thought to participate in anticancer immune responses. By using tissue microarrays representing over 300 patients with defined clinicopathological factors, we present the first comprehensive screen of the expression of all NKG2D ligands in primary ovarian cancers. NKG2D ligands were expressed by the majority of tumors; however, the level of expression varied considerably. By categorizing each tumor as having negative, low or high expression, it was shown that high expression of several NKG2D ligands is inversely correlated with disease survival. Patients whose tumors had high expression of RAET1E (p = 0.037), ULBP1 (p = 0.036) and ULBP3 (p = 0.004) surviving a median of 11, 14 and 11 months, respectively, compared with disease-specific survival of 29, 30 and 25 months in patients whose tumors showed no expression of these ligands. These results contrast with previous findings showing that high level NKG2D ligand expression is associated with good prognosis in colorectal cancer and suggest a fundamental difference in the involvement of NKG2D-mediated immunity in these two types of cancer. By using multivariate analysis, the factors retaining independent prognostic significance were International Federation of Gynecologists and Obstetricians stage (p < 0.001), presence of residual disease (p = 0.003), ULBP2 (p = 0.042) and RAET1E (p = 0.030).
Collapse
Affiliation(s)
- Roger W McGilvray
- Academic Division of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
69
|
Chekmasova AA, Rao TD, Nikhamin Y, Park KJ, Levine DA, Spriggs DR, Brentjens RJ. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 2010; 16:3594-606. [PMID: 20628030 DOI: 10.1158/1078-0432.ccr-10-0192] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Most patients diagnosed with ovarian cancer will ultimately die from their disease. For this reason, novel approaches to the treatment of this malignancy are needed. Adoptive transfer of a patient's own T cells, genetically modified ex vivo through the introduction of a gene encoding a chimeric antigen receptor (CAR) targeted to a tumor-associated antigen, is a novel approach to the treatment of ovarian cancer. EXPERIMENTAL DESIGN We have generated several CARs targeted to the retained extracellular domain of MUC16, termed MUC-CD, an antigen expressed on most ovarian carcinomas. We investigate the in vitro biology of human T cells retrovirally transduced to express these CARs by coculture assays on artificial antigen-presenting cells as well as by cytotoxicity and cytokine release assays using the human MUC-CD(+) ovarian tumor cell lines and primary patient tumor cells. Further, we assess the in vivo antitumor efficacy of MUC-CD-targeted T cells in SCID-Beige mice bearing peritoneal human MUC-CD(+) tumor cell lines. RESULTS CAR-modified, MUC-CD-targeted T cells exhibited efficient MUC-CD-specific cytolytic activity against both human ovarian cell and primary ovarian carcinoma cells in vitro. Furthermore, expanded MUC-CD-targeted T cells infused through either i.p. injection or i.v. infusion into SCID-Beige mice bearing orthotopic human MUC-CD(+) ovarian carcinoma tumors either delayed progression or fully eradicated disease. CONCLUSION These promising preclinical studies justify further investigation of MUC-CD-targeted T cells as a potential therapeutic approach for patients with high-risk MUC16(+) ovarian carcinomas.
Collapse
Affiliation(s)
- Alena A Chekmasova
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Eagle RA, Traherne JA, Hair JR, Jafferji I, Trowsdale J. ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 2010; 39:3207-16. [PMID: 19658097 DOI: 10.1002/eji.200939502] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To date five ULBP/RAET (UL16-binding protein, also known as retinoic acid early transcript) genes, encoded on human chromosome 6q24.2-q25.3, have been shown to encode ligands of the activating immunoreceptor NKG2D. Here, we show that a sixth gene, ULBP6/RAET1L, is a polymorphic locus that expresses a functional transcript. ULBP6 had a more restricted expression profile in cell lines and primary human tissues than other NKG2D ligands, but expression was detected in several human papillomavirus-positive cervical carcinoma cell lines and was inducible on infection with human CMV. ULBP6 bound to recombinant NKG2D as well as the human CMV immune evasion molecule UL16. By confocal microscopy we show that UL16 retains ULBP6 inside the cell, preventing it from reaching the cell surface. Expression of ULBP6 on target cells induced a significant increase in NK-cell killing. Comparison of ULBP6 with ULBP4 and ULBP5 indicated that differences in recombinant NKG2D binding correlated with differences in NK-cell activation.
Collapse
Affiliation(s)
- Robert A Eagle
- Cambridge Institute for Medical Research, Cambridge, UK.
| | | | | | | | | |
Collapse
|
71
|
Barber A, Rynda A, Sentman CL. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. THE JOURNAL OF IMMUNOLOGY 2009; 183:6939-47. [PMID: 19915047 DOI: 10.4049/jimmunol.0902000] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adoptive transfer of T cells expressing chimeric NKG2D (chNKG2D) receptors, a fusion of NKG2D and CD3zeta, can lead to long-term, tumor-free survival in a murine model of ovarian cancer. To determine the mechanisms of chNKG2D T cell antitumor efficacy, we analyzed how chNKG2D T cells altered the tumor microenvironment, including the tumor-infiltrating leukocyte populations. chNKG2D T cell treatment of mice bearing ID8 tumor cells increased the number and activation of NK cells and increased the activation of host CD8+ T cells within the tumor. Foxp3+ regulatory T cells at the tumor site decreased more than 300-fold after chNKG2D T cell treatment. Tumor-associated regulatory T cells expressed cell surface NKG2D ligands and were killed by chNKG2D T cells in a perforin-dependent manner. chNKG2D T cells also altered the function of myeloid cells at the tumor site, changing these cells from being immunosuppressive to enhancing T cell responses. Cells isolated from the tumor produced elevated amounts of IFN-gamma, NO, and other proinflammatory cytokines after chNKG2D T cell treatment. ChNKG2D T cells required perforin, IFN-gamma, and GM-CSF to induce a full response at the tumor site. In addition, transfer of chNKG2D T cells into mice bearing tumors that were established for 5 weeks led to long-term survival of the mice. Thus, chNKG2D T cells altered the ovarian tumor microenvironment to eliminate immunosuppressive cells and induce infiltration and activation of antitumor immune cells and production of inflammatory cytokines. This induction of an immune response likely contributes to chNKG2D T cells' ability to eliminate established tumors.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
72
|
Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG, Kiessling R, Malmberg KJ. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4921-30. [PMID: 19801517 DOI: 10.4049/jimmunol.0901226] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The activating NK cell receptor DNAX accessory molecule-1 (DNAM-1) contributes to tumor immune surveillance and plays a crucial role in NK cell-mediated recognition of several types of human tumors, including ovarian carcinoma. Here, we have analyzed the receptor repertoire and functional integrity of NK cells in peritoneal effusions from patients with ovarian carcinoma. Relative to autologous peripheral blood NK cells, tumor-associated NK cells expressed reduced levels of the DNAM-1, 2B4, and CD16 receptors and were hyporesponsive to HLA class I-deficient K562 cells and to coactivation via DNAM-1 and 2B4. Moreover, tumor-associated NK cells were also refractory to CD16 receptor stimulation, resulting in diminished Ab-dependent cellular cytotoxicity against autologous tumor cells. Coincubation of NK cells with ovarian carcinoma cells expressing the DNAM-1 ligand CD155 led to reduction of DNAM-1 expression. Therefore, NK cell-mediated rejection of ovarian carcinoma may be limited by perturbed DNAM-1 expression on tumor-associated NK cells induced by chronic ligand exposure. Thus, these data support the notion that tumor-induced alterations of activating NK cell receptor expression may hamper immune surveillance and promote tumor progression.
Collapse
Affiliation(s)
- Mattias Carlsten
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Center for Infectious Medicine, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R, Wang L, Nesbeth Y, Durant Y, Gewirtz AT, Sentman CL, Kedl R, Conejo-Garcia JR. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 2009; 119:2231-44. [PMID: 19620771 PMCID: PMC2719935 DOI: 10.1172/jci37716] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 05/27/2009] [Indexed: 02/06/2023] Open
Abstract
The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.
Collapse
Affiliation(s)
- Juan R. Cubillos-Ruiz
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Xavier Engle
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Uciane K. Scarlett
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Diana Martinez
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Li Wang
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Yolanda Nesbeth
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Yvon Durant
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Andrew T. Gewirtz
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Charles L. Sentman
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Ross Kedl
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - Jose R. Conejo-Garcia
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
Nanostructured Polymers Research Center, University of New Hampshire, Durham, New Hampshire, USA.
Department of Pathology, Emory University, Atlanta, Georgia, USA.
Department of Immunology, University of Colorado, Denver, Colorado, USA.
Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| |
Collapse
|
74
|
Barber A, Sentman CL. Chimeric NKG2D T cells require both T cell- and host-derived cytokine secretion and perforin expression to increase tumor antigen presentation and systemic immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:2365-72. [PMID: 19625653 DOI: 10.4049/jimmunol.0900721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Treatment of mice bearing established ovarian tumors with T cells expressing chimeric NKG2D receptors (chNKG2D) develop protective host immune responses to tumor Ags. In this study, the mechanisms that chNKG2D T cells require to induce host immunity against ovarian tumors and which of the host immune cells are involved in tumor elimination were determined. Treatment with chNKG2D T cells led to a sustained, increased IFN-gamma production by host NK, CD4(+), and CD8(+) T cells in the spleen and at the tumor site and this continued for many weeks after T cell injection. Tumor Ag presentation was enhanced in chNKG2D T cell-treated mice, and there were greater numbers of tumor-specific T cells at the tumor site and in draining lymph nodes after treatment with chNKG2D T cells. The increase in host cell cytokine secretion and Ag presentation was dependent on chNKG2D T cell-derived perforin, IFN-gamma, and GM-CSF. Host immune mechanisms were involved in tumor elimination because inhibition of tumor growth was limited in mice that lacked perforin, IFN-gamma, NK cells, or T and B cells (Rag1(-/-)). There was no role for host-derived GM-CSF or CD1-dependent NKT cells, because mice deficient in these were able to clear tumors as well as treated wild-type B6 mice. In summary, chNKG2D T cells required both cytotoxicity and cytokine secretion as well as the participation of host immune cells for development of a host antitumor immune response and complete efficacy.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
75
|
Abstract
BACKGROUND Ovarian cancer is frequently diagnosed at an advanced stage, and although initially responsive to surgery and chemotherapy, has a high rate of recurrence and mortality. Cellular immunotherapy may offer the prospect of treatment to prevent or delay recurrent metastatic disease. OBJECTIVE To provide an overview of current innovations in cellular immunotherapy for ovarian cancer, with an emphasis on dendritic cell vaccination and adoptive T-cell immunotherapy. METHODS Three key areas are explored in this review: first, an appraisal of the current state of the art of cellular immunotherapy for treatment of ovarian cancer; second, a discussion of the immunological defenses erected by ovarian cancer to prevent immunological attack, with an emphasis on the role of tumor-associated regulatory T cells; and third, an exploration of innovative techniques that may enhance the ability of cellular immunotherapy to overcome ovarian tumor-associated immune suppression. RESULTS/CONCLUSION Ovarian cancer is recognized as a paradigm for tumor-associated immune suppression. Innovative approaches for antagonism of tumor-associated regulatory T-cell infiltration and redirection of self antigen-driven regulatory T-cell activation may provide the key to development of future strategies for cellular immunotherapy against ovarian cancer.
Collapse
Affiliation(s)
- Martin J Cannon
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, 4301 West Markham, Little Rock, AR 72205, USA.
| | | |
Collapse
|
76
|
Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21:215-23. [PMID: 19327974 DOI: 10.1016/j.coi.2009.02.009] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/25/2009] [Indexed: 12/26/2022]
Abstract
One important purpose of T cell engineering is to generate tumor-targeted T cells through the genetic transfer of antigen-specific receptors, which consist of either physiological, MHC-restricted T cell receptors (TCRs) or non MHC-restricted chimeric antigen receptors (CARs). CARs combine antigen-specificity and T cell activating properties in a single fusion molecule. First generation CARs, which included as their signaling domain the cytoplasmic region of the CD3zeta or Fc receptor gamma chain, effectively redirected T cell cytotoxicity but failed to enable T cell proliferation and survival upon repeated antigen exposure. Receptors encompassing both CD28 and CD3zeta are the prototypes for second generation CARs, which are now rapidly expanding to a diverse array of receptors with different functional properties. First generation CARs have been tested in phase I clinical studies in patients with ovarian cancer, renal cancer, lymphoma, and neuroblastoma, where they have induced modest responses. Second generation CARs, which are just now entering the clinical arena in the B cell malignancies and other cancers, will provide a more significant test for this approach. If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
77
|
Barber A, Zhang T, Megli CJ, Wu J, Meehan KR, Sentman CL. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol 2008; 36:1318-28. [PMID: 18599182 DOI: 10.1016/j.exphem.2008.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/14/2008] [Accepted: 04/22/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Most myeloma tumor cells from patients express NKG2D ligands. We have reported the development of a chimeric NKG2D receptor (chNKG2D), which consists of the NKG2D receptor fused to the CD3zeta chain. T cells expressing this receptor kill and produce cytokines in response to NKG2D-ligand+ tumor cells. Therefore, we investigated whether human chNKG2D T cells respond against human myeloma cells. MATERIALS AND METHODS ChNKG2D T cells were generated from healthy donors and myeloma patients. The effector phase of chNKG2D T cells was analyzed by cell-surface marker expression and human myeloma cell lines were tested for expression of NKG2D ligands. Lysis of myeloma cell lines and cytokine secretion by chNKG2D T cells was determined. ChNKG2D T cells grown in serum-free media, or cyropreserved, were assessed for effector cell functions. RESULTS Myeloma cell lines expressed NKG2D ligands. ChNKG2D T cells from healthy donors and myeloma patients lysed myeloma cells, and secreted proinflammatory cytokines when cultured with myeloma cells or patient bone marrow, but not with peripheral blood mononuclear cells or normal bone marrow. Lysis of myeloma cells was dependent on chNKG2D T-cell expression of NKG2D and perforin. Additionally, chNKG2D T cells upregulated CD45RO, did not express CD57, and maintained expression of CD27, CD62L, and CCR7, indicating that the T cells were at an early effector stage. Finally, we showed that chNKG2D T cells generated with serum-free media, or when cryopreserved, maintained effector functions. CONCLUSION ChNKG2D T cells respond to human myeloma cells and can be generated using clinically applicable cell culture techniques.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
78
|
Barber A, Zhang T, Sentman CL. Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. THE JOURNAL OF IMMUNOLOGY 2008; 180:72-8. [PMID: 18097006 DOI: 10.4049/jimmunol.180.1.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer death in women and the development of novel therapies is needed to complement the standard treatment options such as chemotherapy and radiation. In this study, we show that treatment with T cells expressing a chimeric NKG2D receptor (chNKG2D) was able to lead to long-term, tumor-free survival in mice bearing established ovarian tumors. Tumor-free mice were able to reject a rechallenge with ovarian tumor cells 225 days after original tumor injection. In addition, chNKG2D T cell treatment induced specific host immune responses to ovarian tumor cells, including the development of both CD8+ and CD4+ T cell tumor-specific memory responses. The chNKG2D T cells reduced the ovarian tumor burden using both cytotoxic and cytokine-dependent pathways. Specifically, chNKG2D T cell expression of perforin, GM-CSF, and IFN-gamma were essential for complete antitumor efficacy.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
79
|
Inhibition of human ovarian tumor growth by cytokine-induced killer cells. Arch Pharm Res 2007; 30:1464-70. [DOI: 10.1007/bf02977372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|