51
|
Mets S, Tryon R, Veach PM, Zierhut HA. Genetic Counselors' Experiences Regarding Communication of Reproductive Risks with Autosomal Recessive Conditions found on Cancer Panels. J Genet Couns 2015; 25:359-72. [PMID: 26454646 DOI: 10.1007/s10897-015-9892-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
The development of hereditary cancer genetic testing panels has altered genetic counseling practice. Mutations within certain genes on cancer panels pose not only a cancer risk, but also a reproductive risk for autosomal recessive conditions such as Fanconi anemia, constitutional mismatch repair deficiency syndrome, and ataxia telangiectasia. This study aimed to determine if genetic counselors discuss reproductive risks for autosomal recessive conditions associated with genes included on cancer panels, and if so, under what circumstances these risks are discussed. An on-line survey was emailed through the NSGC list-serv. The survey assessed 189 cancer genetic counselors' experiences discussing reproductive risks with patients at risk to carry a mutation or variant of uncertain significance (VUS) in a gene associated with both an autosomal dominant cancer risk and an autosomal recessive syndrome. Over half (n = 82, 55 %) reported having discussed reproductive risks; the remainder (n = 66, 45 %) had not. Genetic counselors who reported discussing reproductive risks primarily did so when patients had a positive result and were of reproductive age. Reasons for not discussing these risks included when a patient had completed childbearing or when a VUS was identified. Most counselors discussed reproductive risk after obtaining results and not during the informed consent process. There is inconsistency as to if and when the discussion of reproductive risks is taking place. The wide variation in responses suggests a need to develop professional guidelines for when and how discussions of reproductive risk for autosomal recessive conditions identified through cancer panels should occur with patients.
Collapse
Affiliation(s)
- Sarah Mets
- Department of Genetics, Cell Biology, & Development, University of Minnesota, 321 Church Street, 6-160 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Rebecca Tryon
- Fairview Health Services, Minneapolis, MN, 55455, USA
| | | | - Heather A Zierhut
- Department of Genetics, Cell Biology, & Development, University of Minnesota, 321 Church Street, 6-160 Jackson Hall, Minneapolis, MN, 55455, USA.
| |
Collapse
|
52
|
Sokolenko AP, Suspitsin EN, Kuligina ES, Bizin IV, Frishman D, Imyanitov EN. Identification of novel hereditary cancer genes by whole exome sequencing. Cancer Lett 2015; 369:274-88. [PMID: 26427841 DOI: 10.1016/j.canlet.2015.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 02/09/2023]
Abstract
Whole exome sequencing (WES) provides a powerful tool for medical genetic research. Several dozens of WES studies involving patients with hereditary cancer syndromes have already been reported. WES led to breakthrough in understanding of the genetic basis of some exceptionally rare syndromes; for example, identification of germ-line SMARCA4 mutations in patients with ovarian hypercalcemic small cell carcinomas indeed explains a noticeable share of familial aggregation of this disease. However, studies on common cancer types turned out to be more difficult. In particular, there is almost a dozen of reports describing WES analysis of breast cancer patients, but none of them yet succeeded to reveal a gene responsible for the significant share of missing heritability. Virtually all components of WES studies require substantial improvement, e.g. technical performance of WES, interpretation of WES results, mode of patient selection, etc. Most of contemporary investigations focus on genes with autosomal dominant mechanism of inheritance; however, recessive and oligogenic models of transmission of cancer susceptibility also need to be considered. It is expected that the list of medically relevant tumor-predisposing genes will be rapidly expanding in the next few years.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Ilya V Bizin
- Laboratory of Bioinformatics, RASA Research Center, St.-Petersburg State Polytechnical University, St.-Petersburg 195251, Russia
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, TU Muenchen, Freising 85354, Germany; Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Institute of Bioinformatics and Systems Biology, Neuherberg 85764, Germany
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg 191015, Russia; Department of Oncology, St.-Petersburg State University, St.-Petersburg 199034, Russia.
| |
Collapse
|
53
|
Deleterious Germline BLM Mutations and the Risk for Early-onset Colorectal Cancer. Sci Rep 2015; 5:14060. [PMID: 26358404 PMCID: PMC4566092 DOI: 10.1038/srep14060] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Bloom syndrome is an autosomal recessive disorder characterized by chromosomal instability and increased cancer risk, caused by biallelic mutations in the RECQL-helicase gene BLM. Previous studies have led to conflicting conclusions as to whether carriers of heterozygous BLM mutations have an increased risk to develop colorectal cancer (CRC). We recently identified two carriers of a pathogenic BLM mutation in a cohort of 55 early-onset CRC patients (≤45 years of age), suggesting an overrepresentation compared to the normal population. Here, we performed targeted sequencing using molecular inversion probes to screen an additional cohort of 185 CRC patients (≤50 years of age) and 532 population-matched controls for deleterious BLM mutations. In total, we identified three additional CRC patients (1.6%) and one control individual (0.2%) that carried a known pathogenic BLM mutation, suggesting that these mutations are enriched in early-onset CRC patients (P = 0.05516). A comparison with local and publically available databases from individuals without suspicion for hereditary cancer confirmed this enrichment (P = 0.003534). Analysis of family members of the five BLM mutation carriers with CRC suggests an incomplete penetrance for CRC development. Therefore, these data indicate that carriers of deleterious BLM mutations are at increased risk to develop CRC, albeit with a moderate-to-low penetrance.
Collapse
|
54
|
Virts EL, Jankowska A, Mackay C, Glaas MF, Wiek C, Kelich SL, Lottmann N, Kennedy FM, Marchal C, Lehnert E, Scharf RE, Dufour C, Lanciotti M, Farruggia P, Santoro A, Savasan S, Scheckenbach K, Schipper J, Wagenmann M, Lewis T, Leffak M, Farlow JL, Foroud TM, Honisch E, Niederacher D, Chakraborty SC, Vance GH, Pruss D, Timms KM, Lanchbury JS, Alpi AF, Hanenberg H. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum Mol Genet 2015; 24:5093-108. [PMID: 26085575 PMCID: PMC4550815 DOI: 10.1093/hmg/ddv227] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.
Collapse
Affiliation(s)
| | | | - Craig Mackay
- Department of MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Marcel F Glaas
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| | | | - Nadine Lottmann
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| | | | | | - Erik Lehnert
- Department of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Rüdiger E Scharf
- Department of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Carlo Dufour
- Hematology Unit, G. Gaslini Children's Hospital, Genoa, Italy
| | | | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, A.R.N.A.S. Ospedale Civico, Palermo, Italy
| | | | - Süreyya Savasan
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Jörg Schipper
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| | - Martin Wagenmann
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| | - Todd Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Janice L Farlow
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tatiana M Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ellen Honisch
- Department of Gynecology, Heinrich Heine University, Düsseldorf, Germany and
| | - Dieter Niederacher
- Department of Gynecology, Heinrich Heine University, Düsseldorf, Germany and
| | - Sujata C Chakraborty
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gail H Vance
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Arno F Alpi
- Department of MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK,
| | - Helmut Hanenberg
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Department of Otorhinolaryngology and Head/Neck Surgery (ENT) and
| |
Collapse
|
55
|
Sirák I, Šinkorová Z, Šenkeříková M, Špaček J, Laco J, Vošmiková H, John S, Petera J. Hypersensitivity to chemoradiation in FANCA carrier with cervical carcinoma-A case report and review of the literature. Rep Pract Oncol Radiother 2014; 20:309-15. [PMID: 26109920 DOI: 10.1016/j.rpor.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Compared to Fanconi anemia (FA) patients with homozygous defective two-alleles inheritance, there is a scarce or no evidence on one defective allele FANCA carriers, with respect to their cancer incidence, clinical and in vitro radiosensitivity and chemosensitivity. On that account, we report a case of a 30-year old FANCA mutation carrier woman with uterine cervix adenocarcinoma who was treated with chemoradiotherapy, in which unexpected acute toxicity and fatal late morbidity occured. METHODS We also report the results of an in vitro test for radiosensitivity, immunohistochemical examination with FANCA staining and human papillomavirus genotypization, and a review of the literature for FA carrier patients with respect to cancer incidence, clinical and in vitro response to chemo/radiotherapy, options of early heterozygosity detection, and methods of in vitro prediction of hypersensitivity to oncologic treatment. CONCLUSION Although there are no standard guidelines for management of FA carriers with malignancies and reports about chemo- or radiosensitivity in this population are scarce; patients with FA-A heterozygosity may have a high rate of complications from chemo/radiotherapy. Up to now, an optimum method for the prediction of radiosensitivity and the best parameter has not been found. Clinical radioresponsiveness is unpredictable in FA carriers and there is a pressing need of new rapid and predictive in vitro assays of radiation responses. Until then, the treatment of FA carriers with malignancies should be individualized, with respect to potential hypersensitivity to ionizing radiation or cross-linking agents.
Collapse
Affiliation(s)
- Igor Sirák
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Health Sciences, University of Defence in Brno, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Mária Šenkeříková
- Department of Medical Genetics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Špaček
- Department of Gynecology and Obstetrics, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University in Prague, Faculty of Medicine and University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Stanislav John
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| | - Jiří Petera
- Department of Oncology and Radiotherapy, University Hospital Hradec Králové, Sokolská 581, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
56
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
57
|
Genetic Counseling for Fanconi Anemia: Crosslinking Disciplines. J Genet Couns 2014; 23:910-21. [DOI: 10.1007/s10897-014-9754-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
|
58
|
Fargo JH, Rochowski A, Giri N, Savage SA, Olson SB, Alter BP. Comparison of chromosome breakage in non-mosaic and mosaic patients with Fanconi anemia, relatives, and patients with other inherited bone marrow failure syndromes. Cytogenet Genome Res 2014; 144:15-27. [PMID: 25227706 DOI: 10.1159/000366251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
Fanconi anemia (FA) is a rare inherited bone marrow failure syndrome (IBMFS). Affected individuals must be distinguished from relatives, patients with mosaicism must be identified, and patients with other IBMFS classified as non-FA. The diagnostic feature of FA is increased chromosomal breakage in blood lymphocytes cultured with diepoxybutane or mitomycin C. Here, we sought a method to uniquely identify patients with FA with mosaicism, using cells from participants in the National Cancer Institute IBMFS cohort. Lymphocytes were treated with diepoxybutane or mitomycin C, and metaphases scored for breaks and radials. Analyses included the percentage of cells with any aberration, breaks per cell, and breaks per aberrant cell. There were 26 patients with FA (4 mosaics), 46 FA relatives, and 62 patients with a non-FA IBMFS. By all analytic methods, patients with FA were abnormal compared with other groups. Those with FA mosaicism had more breakage than relatives or patients with non-FA IBMFS, but there was some individual overlap. The choices of clastogen are laboratory-dependent, but there was no method or analysis of lymphocytes that clearly distinguished all individuals mosaic for FA from relatives or patients with other IBMFS. Thus, genotyping remains the best method for providing absolute clarity.
Collapse
Affiliation(s)
- John H Fargo
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Md., USA
| | | | | | | | | | | |
Collapse
|
59
|
Rogers KJ, Fu W, Akey JM, Monnat RJ. Global and disease-associated genetic variation in the human Fanconi anemia gene family. Hum Mol Genet 2014; 23:6815-25. [PMID: 25104853 DOI: 10.1093/hmg/ddu400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations.
Collapse
Affiliation(s)
| | | | | | - Raymond J Monnat
- Department of Genome Sciences and Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
60
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
61
|
Jazieh KA, Foote MB, Diaz LA. The clinical utility of biomarkers in the management of pancreatic adenocarcinoma. Semin Radiat Oncol 2014; 24:67-76. [PMID: 24635863 DOI: 10.1016/j.semradonc.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and survival rates have seen minimal improvement over the past few decades. Although results are poor, surgical resection is considered the only curative therapeutic intervention for pancreatic cancer, thereby emphasizing the significance of effective diagnostic and prognostic tools to improve outcomes. As such, biomarkers play a promising role in the development of personalized treatments for patients with pancreatic cancer. Prognostic biomarkers, such as serum carbohydrate antigen 19-9 in particular, as well as cancer stem cell markers, provide valuable insight into the biological processes of an individual and their likely course of disease. This, consequently, allows for the assessment of optimal therapeutic intervention. Furthermore, current efforts target putative predictive biomarkers such as BRCA2, PALB2, and SPARC so as to determine their influence on tumor response on targeted therapies. As research progresses, more evidence will provide clinicians with guidelines on the utilization of biomarkers to accurately stage and tailor personalized treatment to the needs of specific patients with pancreatic cancer.
Collapse
Affiliation(s)
- Khalid A Jazieh
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Michael B Foote
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Luis A Diaz
- The Swim Across America Laboratory, The Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, MD; The Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD.
| |
Collapse
|
62
|
Hilbers FSM, Vreeswijk MPG, van Asperen CJ, Devilee P. The impact of next generation sequencing on the analysis of breast cancer susceptibility: a role for extremely rare genetic variation? Clin Genet 2013; 84:407-14. [PMID: 24025038 DOI: 10.1111/cge.12256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022]
Abstract
Women with a family history of breast cancer have an approximately twofold elevated risk of the disease. Even though an array of genes has been associated with breast cancer risk the past two decades, variants within these genes jointly explain at most 40% of this familial risk. Many explanations for this 'missing heritability' have been proposed, including the existence of many very rare variants, interactions between genetic and environmental factors and structural genetic variation. In this review, we discuss how next generation sequencing will teach us more about the genetic architecture of breast cancer, with a specific focus on very rare genetic variants. While such variants potentially explain a substantial proportion of familial breast cancer, assessing the breast cancer risks conferred by them remains challenging, even if this risk is relatively high. To assess more moderate risks, epidemiological approaches will require very large patient cohorts to be genotyped for the variant, only achievable through international collaboration. How well we will be able to eventually resolve the missing heritability for breast cancer in a clinically meaningful way crucially depends on the underlying complexity of the genetic architecture.
Collapse
Affiliation(s)
- F S M Hilbers
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | |
Collapse
|
63
|
Bogdanova N, Helbig S, Dörk T. Hereditary breast cancer: ever more pieces to the polygenic puzzle. Hered Cancer Clin Pract 2013; 11:12. [PMID: 24025454 PMCID: PMC3851033 DOI: 10.1186/1897-4287-11-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.
Collapse
Affiliation(s)
- Natalia Bogdanova
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Sonja Helbig
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
64
|
Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493:356-63. [PMID: 23325218 DOI: 10.1038/nature11863] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.
Collapse
Affiliation(s)
- Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | | |
Collapse
|
65
|
Ellis NA, Offit K. Heterozygous mutations in DNA repair genes and hereditary breast cancer: a question of power. PLoS Genet 2012; 8:e1003008. [PMID: 23028381 PMCID: PMC3459983 DOI: 10.1371/journal.pgen.1003008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nathan A Ellis
- Department of Pediatrics and the Institute of Human Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America.
| | | |
Collapse
|
66
|
Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DYH, Tothill RW, Thorne H, Barnes DR, Li J, Ellul J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G, Campbell IG. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 2012; 8:e1002894. [PMID: 23028338 PMCID: PMC3459953 DOI: 10.1371/journal.pgen.1002894] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/28/2012] [Indexed: 11/25/2022] Open
Abstract
Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families. Currently, we know that a woman who inherits a fault in one of two genes, BRCA1 or BRCA2, has a high risk of developing both breast and ovarian cancer. However, such faults account for only half of all families with a strong family history of breast cancer. In this study, we planned to identify new genes that may be associated with an increased risk of developing breast cancer by looking for faults in every gene in the blood DNA of multiple women with breast cancer from large families with a strong family history of the condition over multiple generations. We can then track which gene fault is present in all the women with breast cancer in that family and in other families, but is not found in the women who did not develop breast cancer or have no family history. Using this approach, we identified faults in two genes, Fanconi C and Bloom helicase, in six families. Faults in these genes appear to increase the risk of developing breast cancer. Both these genes work in a similar way as BRCA1 and BRCA2, and this highlights the importance of these functions in preventing breast cancer. Further studies need to be done to confirm our results.
Collapse
Affiliation(s)
- Ella R. Thompson
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Maria A. Doyle
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Georgina L. Ryland
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Simone M. Rowley
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - David Y. H. Choong
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Richard W. Tothill
- Molecular Genomics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Heather Thorne
- Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - kConFab
- Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Daniel R. Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jason Ellul
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gayle K. Philip
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria, Australia
| | - Yoland C. Antill
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Paul A. James
- Familial Cancer Centre, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Alison H. Trainer
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gillian Mitchell
- Familial Cancer Centre, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ian G. Campbell
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
67
|
Litim N, Labrie Y, Desjardins S, Ouellette G, Plourde K, Belleau P, Durocher F. Polymorphic variations in the FANCA gene in high-risk non-BRCA1/2 breast cancer individuals from the French Canadian population. Mol Oncol 2012; 7:85-100. [PMID: 23021409 DOI: 10.1016/j.molonc.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022] Open
Abstract
The majority of genes associated with breast cancer susceptibility, including BRCA1 and BRCA2 genes, are involved in DNA repair mechanisms. Moreover, among the genes recently associated with an increased susceptibility to breast cancer, four are Fanconi Anemia (FA) genes: FANCD1/BRCA2, FANCJ/BACH1/BRIP1, FANCN/PALB2 and FANCO/RAD51C. FANCA is implicated in DNA repair and has been shown to interact directly with BRCA1. It has been proposed that the formation of FANCA/G (dependent upon the phosphorylation of FANCA) and FANCB/L sub-complexes altogether with FANCM, represent the initial step for DNA repair activation and subsequent formation of other sub-complexes leading to ubiquitination of FANCD2 and FANCI. As only approximately 25% of inherited breast cancers are attributable to BRCA1/2 mutations, FANCA therefore becomes an attractive candidate for breast cancer susceptibility. We thus analyzed FANCA gene in 97 high-risk French Canadian non-BRCA1/2 breast cancer individuals by direct sequencing as well as in 95 healthy control individuals from the same population. Among a total of 85 sequence variants found in either or both series, 28 are coding variants and 19 of them are missense variations leading to amino acid change. Three of the amino acid changes, namely Thr561Met, Cys625Ser and particularly Ser1088Phe, which has been previously reported to be associated with FA, are predicted to be damaging by the SIFT and PolyPhen softwares. cDNA amplification revealed significant expression of 4 alternative splicing events (insertion of an intronic portion of intron 10, and the skipping of exons 11, 30 and 31). In silico analyzes of relevant genomic variants have been performed in order to identify potential variations involved in the expression of these spliced transcripts. Sequence variants in FANCA could therefore be potential spoilers of the Fanconi-BRCA pathway and as a result, they could in turn have an impact in non-BRCA1/2 breast cancer families.
Collapse
Affiliation(s)
- Nadhir Litim
- Cancer Genomics Laboratory, Division of Endocrinology and Genomics of CHUQ Research Centre and Laval University, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Gille JJP, Floor K, Kerkhoven L, Ameziane N, Joenje H, de Winter JP. Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing. Anemia 2012; 2012:603253. [PMID: 22778927 PMCID: PMC3388349 DOI: 10.1155/2012/603253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/21/2012] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed.
Collapse
Affiliation(s)
- Johan J. P. Gille
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| | - Karijn Floor
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| | - Lianne Kerkhoven
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| | - Johan P. de Winter
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorsttraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
69
|
Savina NV, Smal MP, Kuzhir TD, Egorova TM, Khurs OM, Polityko AD, Goncharova RI. Biomarkers for genome instability in some genetic disorders: a pilot study. Biomarkers 2012; 17:201-8. [DOI: 10.3109/1354750x.2011.651157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
70
|
de Miranda NF, Björkman A, Pan-Hammarström Q. DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci 2012; 1246:50-63. [PMID: 22236430 DOI: 10.1111/j.1749-6632.2011.06322.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adaptive component of the immune system depends greatly on the generation of genetic diversity provided by lymphocyte-specific genomic rearrangements. V(D)J recombination, class switch recombination (CSR), and somatic hypermutation (SHM) constitute complex and vulnerable processes that are orchestrated by a multitude of DNA repair pathways. When inherited defects in certain DNA repair proteins are present, lymphocyte development can be compromised and, consequently, patients can develop primary immunodeficiencies (PIDs). PID patients often have a strong predisposition for cancer development as a result of genomic instability generated from defective DNA repair mechanisms. Tumors of lymphoid origin are one of the most common PID-associated cancers, likely due to DNA lesions resulting from defective V(D)J, CSR, and SHM. In this review, we describe PID syndromes that confer an increased risk for cancer development. Furthermore, we discuss the role of the affected proteins in tumorigenesis/lymphomagenesis.
Collapse
Affiliation(s)
- Noel Fcc de Miranda
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
71
|
Vollebergh MA, Jonkers J, Linn SC. Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci 2012; 69:223-45. [PMID: 21922196 PMCID: PMC11114988 DOI: 10.1007/s00018-011-0809-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 12/20/2022]
Abstract
Breast and ovarian cancer are among the most common malignancies diagnosed in women worldwide. Together, they account for the majority of cancer-related deaths in women. These cancer types share a number of features, including their association with hereditary cancer syndromes caused by heterozygous germline mutations in BRCA1 or BRCA2. BRCA-associated breast and ovarian cancers are hallmarked by genomic instability and high sensitivity to DNA double-strand break (DSB) inducing agents due to loss of error-free DSB repair via homologous recombination (HR). Recently, poly(ADP-ribose) polymerase inhibitors, a new class of drugs that selectively target HR-deficient tumor cells, have been shown to be highly active in BRCA-associated breast and ovarian cancers. This finding has renewed interest in hallmarks of HR deficiency and the use of other DSB-inducing agents, such as platinum salts or bifunctional alkylators, in breast and ovarian cancer patients. In this review we discuss the similarities between breast and ovarian cancer, the hallmarks of genomic instability in BRCA-mutated and BRCA-like breast and ovarian cancers, and the efforts to search for predictive markers of HR deficiency in order to individualize therapy in breast and ovarian cancer.
Collapse
Affiliation(s)
- Marieke A. Vollebergh
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sabine C. Linn
- Division of Molecular Biology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Rosenberg PS, Tamary H, Alter BP. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am J Med Genet A 2011; 155A:1877-83. [PMID: 21739583 PMCID: PMC3140593 DOI: 10.1002/ajmg.a.34087] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/07/2011] [Indexed: 11/07/2022]
Abstract
For many recessive genetic syndromes, carrier frequencies have been assessed through screening studies in founder populations but remain unclear in heterogeneous populations. One such syndrome is Fanconi Anemia (FA). FA is a model disease in cancer research, yet there are no contemporary data on carrier frequency or prevalence in the general United States (US) population or elsewhere. We inferred carrier frequency from birth incidence using the Hardy-Weinberg law. We estimated prevalence using birth incidence and survival data. We defined "plausible ranges" to incorporate uncertainty about completeness of case ascertainment. We made estimates for the US and Israel using demographic data from the Fanconi Anemia Research Fund and Israeli Fanconi Anemia Registry. In the US, a plausible range for the carrier frequency is 1:156-1:209 [midpoint 1:181]; we estimate that 550-975 persons were living with FA in 2010. For Israel, a plausible range for the carrier frequency is 1:66-1:128 [midpoint 1:93] in line with founder screening studies; we estimate that 40-135 Israelis were living with FA in 2008. The estimated US FA carrier frequency of 1:181 is significantly higher than the historical estimate of 1:300; hence, the gap may be narrower than previously recognized between the US carrier frequency and higher carrier frequencies of around 1:100 in several founder groups including Ashkenazi Jews. Assessment of cancer risks in heterozygous carriers merits further study. Clinical trials in FA will require co-ordination and innovative design because the number of living US patients is probably less than 1,000.
Collapse
Affiliation(s)
- Philip S Rosenberg
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, USA.
| | | | | |
Collapse
|
73
|
Vargas AC, Reis-Filho JS, Lakhani SR. Phenotype-genotype correlation in familial breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:27-40. [PMID: 21400086 DOI: 10.1007/s10911-011-9204-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/25/2022] Open
Abstract
Familial breast cancer accounts for a small but significant proportion of breast cancer cases worldwide. Identification of the candidate genes is always challenging specifically in patients with little or no family history. Therefore, a multidisciplinary team is required for the proper detection and further management of these patients. Pathologists have played a pivotal role in the cataloguing of genotypic-phenotypic correlations in families with hereditary cancer syndromes. These efforts have led to the identification of histological and phenotypic characteristics that can help predict the presence or absence of germline mutations of specific cancer predisposition genes. However, the panoply of cancer phenotypes associated with mutations of genes other than in BRCA1 is yet to be fully characterised; in fact, many cancer syndromes, germline mutations and gene sequence variants are under investigation for their possible morphological associations. Here we review the current understanding of phenotype-genotype correlation in familial breast cancer.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
74
|
Zheng Y, Zhang J, Hope K, Niu Q, Huo D, Olopade OI. Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat 2010; 124:857-61. [PMID: 20697805 DOI: 10.1007/s10549-010-1095-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/24/2010] [Indexed: 02/04/2023]
Abstract
It has been reported that one biallelic missense mutation in the RAD51C gene was found in a Fanconi anemia-like disorder and six monoallelic pathogenic mutations were identified in 480 BRCA1/2 negative breast and ovarian cancer pedigrees but not in 620 pedigrees with breast cancer only. Additionally, the RAD51C gene was reported to be involved in gene fusion events in the MCF-7 breast cancer cell line. We performed complete sequencing and fusion gene breakpoint screening to detect deleterious mutations and chromosomal structure change in the RAD51C gene. Ninety-two hereditary gynecological cancer patients with a family history of breast and ovarian cancer but not carrying BRCA1/2 mutations were studied. In addition, 46 breast cancer cell lines were screened for the gene fusion events. Ten DNA sequence variants but no deleterious mutations were identified. We did not observe the occurrence of the known gene fusion either. We were unable to confirm the contribution of the RAD51C gene to hereditary breast and ovarian cancer (HBOC) in this relatively small cohort. Nonetheless, larger studies in diverse populations to fully investigate the mutation spectrum of the RAD51C gene are needed.
Collapse
Affiliation(s)
- Yonglan Zheng
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
75
|
Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood 2010; 116:3780-91. [PMID: 20639400 DOI: 10.1182/blood-2009-11-256016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly conserved cysteine of the iron-sulfur domain. Given the genetic linkage of the FANCJ-A349P allele to FA, we investigated the effect of this particular mutation on the biochemical and cellular functions of the FANCJ protein. Purified recombinant FANCJ-A349P protein had reduced iron and was defective in coupling adenosine triphosphate (ATP) hydrolysis and translocase activity to unwinding forked duplex or G-quadruplex DNA substrates or disrupting protein-DNA complexes. The FANCJ-A349P allele failed to rescue cisplatin or telomestatin sensitivity of a FA-J null cell line as detected by cell survival or γ-H2AX foci formation. Furthermore, expression of FANCJ-A349P in a wild-type background exerted a dominant-negative effect, indicating that the mutant protein interferes with normal DNA metabolism. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind DNA or destabilize protein bound to DNA is required for its role in DNA repair.
Collapse
|
76
|
Palagyi A, Neveling K, Plinninger U, Ziesch A, Targosz BS, Denk GU, Ochs S, Rizzani A, Meier D, Thasler WE, Hanenberg H, De Toni EN, Bassermann F, Schäfer C, Göke B, Schindler D, Gallmeier E. Genetic inactivation of the Fanconi anemia gene FANCC identified in the hepatocellular carcinoma cell line HuH-7 confers sensitivity towards DNA-interstrand crosslinking agents. Mol Cancer 2010; 9:127. [PMID: 20509860 PMCID: PMC2890608 DOI: 10.1186/1476-4598-9-127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/28/2010] [Indexed: 01/19/2023] Open
Abstract
Background Inactivation of the Fanconi anemia (FA) pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL)-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI) tumors has not yet been systematically explored. Results A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC) line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X) was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. Conclusions As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could identify small subpopulations of patients expected to predictably benefit from individualized treatment protocols using ICL-agents.
Collapse
Affiliation(s)
- Andreas Palagyi
- Department of Medicine II, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
The study of rare genetic diseases can lead to insights into the cause and treatment of common diseases. An example is the rare chromosomal instability disorder, Fanconi Anemia (FA). Studies of this disease have elucidated general mechanisms of bone marrow failure, cancer pathogenesis, and resistance to chemotherapy. The principal features of FA are aplastic anemia in childhood, susceptibility to cancer or leukemia, and hypersensitivity of FA cells to DNA cross-linking agents. There are thirteen FA genes, and one of these genes is identical to the well known breast cancer susceptibility gene, BRCA2. The corresponding FA proteins cooperate in the recognition and repair of damaged DNA. Inactivation of FA genes occurs not only in FA patients but also in a variety of cancers in the general population. These findings have broad implications for predicting the sensitivity and resistance of tumors to conventional anti-cancer agents, to inhibitors of poly-ADP ribose polymerase 1, an enzyme involved in DNA repair, and to other inhibitors of DNA repair.
Collapse
Affiliation(s)
- Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
78
|
Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood 2010; 115:3453-62. [PMID: 20089964 DOI: 10.1182/blood-2009-10-246694] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.
Collapse
|
79
|
Barroso E, Pita G, Arias JI, Menendez P, Zamora P, Blanco M, Benitez J, Ribas G. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features. Breast Cancer Res Treat 2009; 118:655-60. [PMID: 19536649 DOI: 10.1007/s10549-009-0439-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 06/03/2009] [Indexed: 01/14/2023]
Abstract
Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/PALB2 and FANCJ/BRIP1 explain 2% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous case-control association study analysing FANCA, FANCD2 and FANCL, we reported an association between FANCD2 and sporadic breast cancer (BC) risk (OR = 1.35). In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER- and PR-). A total of 61 SNPs in ten FA genes (FANC-B, -C, -D1, -E, -F, -G, -I, -J, -M, -N) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/BRIP1 and FANCN/PALB2 and PR- status.
Collapse
|
80
|
Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture. In Vitro Cell Dev Biol Anim 2009; 45:290-9. [PMID: 19184247 DOI: 10.1007/s11626-008-9174-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/15/2008] [Indexed: 01/17/2023]
Abstract
Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.
Collapse
|
81
|
Tischkowitz M, Easton DF, Ball J, Hodgson SV, Mathew CG. Cancer incidence in relatives of British Fanconi Anaemia patients. BMC Cancer 2008; 8:257. [PMID: 18786261 PMCID: PMC2556683 DOI: 10.1186/1471-2407-8-257] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/11/2008] [Indexed: 01/07/2023] Open
Abstract
Background Fanconi anemia (FA) is an autosomal recessive DNA repair disorder with affected individuals having a high risk of developing acute myeloid leukaemia and certain solid tumours. Thirteen complementation groups have been identified and the genes for all of these are known (FANCA, B, C, D1/BRCA2, D2, E, F, G, I, J/BRIP1, L, M and N/PALB2). Previous studies of cancer incidence in relatives of Fanconi anemia cases have produced conflicting results. A study of British FA families was therefore carried out to investigate this question, since increases in cancer risk in FA heterozygotes would have implications for counselling FA family members, and possibly also for the implementation of preventative screening measures in FA heterozygotes. Methods Thirty-six families took part and data was collected on 575 individuals (276 males, 299 females), representing 18,136 person years. In this cohort, 25 males and 30 females were reported with cancer under the age of 85 years, and 36 cancers (65%) could be confirmed from death certificates, cancer registries or clinical records. Results A total of 55 cancers were reported in the FA families compared to an estimated incidence of 56.95 in a comparable general population cohort, and the relative risk of cancer was 0.97 (95% C.I. = 0.71–1.23, p = 0.62) for FA family members. Analysis of relative risk for individual cancer types in each carrier probability group did not reveal any significant differences with the possible exception of prostate cancer (RR = 3.089 (95% C.I. = 1.09 – 8.78; Χ2 = 4.767, p = 0.029). Conclusion This study has not shown a significant difference in overall cancer risk in FA families.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Cancer Genetics Program, Departments of Human Genetics and Oncology, Sir M.B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
82
|
Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008; 124:31-42. [PMID: 18575892 DOI: 10.1007/s00439-008-0529-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Six genes confer a high risk for developing breast cancer (BRCA1/2, TP53, PTEN, STK11, CDH1). Both BRCA1 and BRCA2 have DNA repair functions, and BRCA1/2 deficient tumors are now being targeted by poly(ADP-ribose) polymerase inhibitors. Other genes conferring an increased risk for breast cancer include ATM, CHEK2, PALB2, BRIP1 and genome-wide association studies have identified lower penetrance alleles including FGFR2, a minor allele of which is associated with breast cancer. We review recent findings related to the function of some of these genes, and discuss how they can be targeted by various drugs. Gaining deeper insights in breast cancer susceptibility will improve our ability to identify those families at increased risk and permit the development of new and more specific therapeutic approaches.
Collapse
Affiliation(s)
- Philippe M Campeau
- Department of Medical Genetics, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
83
|
Analysis of FANCB and FANCN/PALB2 fanconi anemia genes in BRCA1/2-negative Spanish breast cancer families. Breast Cancer Res Treat 2008; 113:545-51. [PMID: 18302019 DOI: 10.1007/s10549-008-9945-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Recent reports have shown that mutations in the FANCJ/BRIP1 and FANCN/PALB2 Fanconi Anemia (FA) genes confer a moderate breast cancer risk. Discussion has been raised on the phenotypic characteristics of the PALB2-associated families and tumors. The role of FANCB in breast cancer susceptibility has not been tested to date. Likewise PALB2 mutation frequency has not been studied in Spanish population. We analyzed the complete coding sequence and splicing sites of FANCB and PALB2 in 95 index cases of BRCA1/2-negative Spanish breast cancer families. We also performed an exhaustive screening of three previously described rare but recurrent PALB2 mutations in 725 additional probands. Pathogenic changes were not detected in FANCB. We found a novel PALB2 truncating mutation c.1056_1057delGA (p.K353IfsX7) in one of the 95 screened patients, accounting for a mutation frequency of 1% in our series. Further comprehensive screening of the novel mutation and of previously reported rare but recurrent PALB2 mutations did not reveal any carrier patient. We report the first example of LOH occurring in a PALB2-associated tumor. Our results rule out a major contribution of FANCB to hereditary breast cancer. Our data are consistent with the notion of individually rare PALB2 mutations, lack of mutational hot-spots in the gene and existence of between-population disease-allele heterogeneity. We show evidence that PALB2 loss of function might also conform to the inactivation model of a classic tumor-suppressor gene and present data that adds to the clinically relevant discussion about the existence of a PALB2-breast cancer phenotype.
Collapse
|
84
|
Abstract
Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. A total of 13 FA proteins are involved in regulating genome surveillance and chromosomal stability. The FA core complex, consisting of 8 FA proteins (A/B/C/E/F/G/L/M), is essential for the monoubiquitination of FANCD2 and FANCI. FANCM is a human ortholog of the archaeal DNA repair protein Hef, and it contains a DEAH helicase and a nuclease domain. Here, we examined the effect of FANCM expression on the integrity and localization of the FA core complex. FANCM was exclusively localized to chromatin fractions and underwent cell cycle-dependent phosphorylation and dephosphorylation. FANCM-depleted HeLa cells had an intact FA core complex but were defective in chromatin localization of the complex. Moreover, depletion of the FANCM binding partner, FAAP24, disrupted the chromatin association of FANCM and destabilized FANCM, leading to defective recruitment of the FA core complex to chromatin. Our results suggest that FANCM is an anchor required for recruitment of the FA core complex to chromatin, and that the FANCM/FAAP24 interaction is essential for this chromatin-loading activity. Dysregulated loading of the FA core complex accounts, at least in part, for the characteristic cellular and developmental abnormalities in FA.
Collapse
|