51
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Zatorski H, Małecka-Wojciesko E. Hedgehog Signaling Pathway Proteins in Prognosis of Pancreatic Ductal Adenocarcinoma and Its Differentiation From Chronic Pancreatitis. Pancreas 2022; 51:219-227. [PMID: 35584378 DOI: 10.1097/mpa.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hedgehog signaling pathway (Hh) probably plays a role in development and progression of pancreatic ductal adenocarcinoma (PDAC). METHODS In our study, 114 patients (83 with PDAC and 31 with chronic pancreatitis [CP]) after pancreatic surgery were enrolled. The immunoexpression of Sonic hedgehog (Shh), Smoothened (Smo), and Glioblastoma transcription factor 1 (Gli1) and Ki-67 were detected in tissue specimens. RESULTS Mean (standard deviation) immunoexpression of all Hh pathway molecules was significantly higher in PDAC than in CP patients: Shh, 2.24 (0.57) versus 1.17 (0.25) (P < 0.01); Smo, 2.62 (0.34) versus 1.21 (0.23) (P < 0.01); and Gli1, 1.74 (0.74) versus 1.15 (0.72) (P < 0.01). Patients with a lower expression level (z score <0) of Shh and Ki-67 have longer overall survival when compared with z score >0 (15.97 vs 8.53 months [P = 0.0087] and 15.20 vs 5.53 months [P = 0.0004], respectively). In addition, Shh sensitivity in PDAC detection was 84.3%; specificity, 93.5%; positive predictive value, 97.2%; and negative predictive value, 69%. CONCLUSIONS Our results suggest the prognostic role of the Hh pathway in PDAC and a role in the differential diagnosis with CP.
Collapse
Affiliation(s)
- Katarzyna Winter
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | | | | | | | - Marian Danilewicz
- Nephropathology, Division of Morphometry, Medical University of Lodz, Lodz, Poland
| | - Hubert Zatorski
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Wojciesko
- From the Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
52
|
Sánchez-Ramírez D, Medrano-Guzmán R, Candanedo-González F, De Anda-González J, García-Rios LE, Pérez-Koldenkova V, Gutiérrez-de la Barrera M, Rodríguez-Enríquez S, Velasco-Velázquez M, Pacheco-Velázquez SC, Piña-Sánchez P, Mayani H, Gómez-Delgado A, Monroy-García A, Martínez-Lara AK, Montesinos JJ. High expression of both desmoplastic stroma and epithelial to mesenchymal transition markers associate with shorter survival in pancreatic ductal adenocarcinoma. Eur J Histochem 2022; 66:3360. [PMID: 35174683 PMCID: PMC8883614 DOI: 10.4081/ejh.2022.3360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Desmoplastic stroma (DS) and the epithelial-to-mesenchymal transition (EMT) play a key role in pancreatic ductal adenocarcinoma (PDAC) progression. To date, however, the combined expression of DS and EMT markers, and their association with variations in survival within each clinical stage and degree of tumor differentiation is unknown. The purpose of this study was to investigate the association between expression of DS and EMT markers and survival variability in patients diagnosed with PDAC. We examined the expression levels of DS markers alpha smooth muscle actin (α-SMA), fibronectin, and vimentin, and the EMT markers epithelial cell adhesion molecule (EPCAM), pan-cytokeratin, and vimentin, by immunohistochemistry using a tissue microarray of a retrospective cohort of 25 patients with PDAC. The results were examined for association with survival by clinical stage and by degree of tumor differentiation. High DS markers expression -α-SMA, fibronectin, and vimentin- was associated with decreased survival at intermediate and advanced clinical stages (p=0.006-0.03), as well as with both poorly and moderately differentiated tumor grades (p=0.01-0.02). Interestingly, the same pattern was observed for EMT markers, i.e., EPCAM, pan-cytokeratin, and vimentin (p=0.00008-0.03). High expression of DS and EMT markers within each clinical stage and degree of tumor differentiation was associated with lower PDAC survival. Evaluation of these markers may have a prognostic impact on survival time variation in patients with PDAC.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City.
| | - Rafael Medrano-Guzmán
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City.
| | - Fernando Candanedo-González
- Department of Pathology, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City.
| | - Jazmín De Anda-González
- Department of Pathology, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City.
| | - Luis Enrique García-Rios
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City.
| | - Vadim Pérez-Koldenkova
- National Laboratory of Advanced Microscopy-IMSS, National Medical Center, Siglo XXI IMSS, Mexico City.
| | | | | | - Marco Velasco-Velázquez
- Department of Pharmacology and Peripheral Research Unit in Translational Biomedicine (CMN 20 de noviembre, ISSSTE), School of Medicine, UNAM, Mexico City.
| | | | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City.
| | - Héctor Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City.
| | - Alejandro Gómez-Delgado
- Infectious and Parasitic Diseases, Medical Research Unit, Pediatric Hospital, National Medical Center, IMSS, Mexico City.
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City.
| | - Ana Karen Martínez-Lara
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City.
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City.
| |
Collapse
|
53
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
54
|
Murray ER, Menezes S, Henry JC, Williams JL, Alba-Castellón L, Baskaran P, Quétier I, Desai A, Marshall JJT, Rosewell I, Tatari M, Rajeeve V, Khan F, Wang J, Kotantaki P, Tyler EJ, Singh N, Reader CS, Carter EP, Hodivala-Dilke K, Grose RP, Kocher HM, Gavara N, Pearce O, Cutillas P, Marshall JF, Cameron AJM. Disruption of pancreatic stellate cell myofibroblast phenotype promotes pancreatic tumor invasion. Cell Rep 2022; 38:110227. [PMID: 35081338 PMCID: PMC8810397 DOI: 10.1016/j.celrep.2021.110227] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.
Collapse
Affiliation(s)
- Elizabeth R Murray
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Shinelle Menezes
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jack C Henry
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Josie L Williams
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorena Alba-Castellón
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Priththivika Baskaran
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ivan Quétier
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ami Desai
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacqueline J T Marshall
- Protein Phosphorylation Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Transgenic Services, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marianthi Tatari
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz Khan
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Panoraia Kotantaki
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Eleanor J Tyler
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Namrata Singh
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Claire S Reader
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Edward P Carter
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, UK
| | - Nuria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Oliver Pearce
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Angus J M Cameron
- Kinase Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
55
|
Zhao Y, Yao H, Yang K, Han S, Chen S, Li Y, Chen S, Huang K, Lian G, Li J. Arsenic Trioxide-loaded nanoparticles Enhance the Chemosensitivity of Gemcitabine in Pancreatic Cancer via Reversal of Pancreatic Stellate Cells Desmoplasia through Targeting AP4/Galectin-1 Pathway. Biomater Sci 2022; 10:5989-6002. [DOI: 10.1039/d2bm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic stellate cell (PSCs) constitutes the fibrotic tumor microenvironment composed of the stroma matrix, which blocks the penetration of Gemcitabine (GEM) in pancreatic adenocarcinoma (PDAC) and results in chemoresistance. We...
Collapse
|
56
|
Advancing Tumor Microenvironment Research by Combining Organs-on-Chips and Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:171-203. [DOI: 10.1007/978-3-031-04039-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
57
|
Paul PK, Das R, Drow TJ, de Souza AH, Balamurugan AN, Belt Davis D, Galipeau J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:630-643. [PMID: 35438788 PMCID: PMC9216495 DOI: 10.1093/stcltm/szac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Travis J Drow
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnaldo H de Souza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jacques Galipeau
- Corresponding author: Jacques Galipeau, Don and Marilyn Anderson Professor in Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, WI, USA. Tel: +1 608-263-0078;
| |
Collapse
|
58
|
Cortesi M, Zanoni M, Pirini F, Tumedei MM, Ravaioli S, Rapposelli IG, Frassineti GL, Bravaccini S. Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. Int J Mol Sci 2021; 23:ijms23010254. [PMID: 35008679 PMCID: PMC8745092 DOI: 10.3390/ijms23010254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.
Collapse
Affiliation(s)
- Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
- Correspondence:
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Maria Maddalena Tumedei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Sara Ravaioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (G.L.F.)
| | - Sara Bravaccini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.Z.); (F.P.); (M.M.T.); (S.R.); (S.B.)
| |
Collapse
|
59
|
Chen X, Zhang Y, Qian W, Han L, Li W, Duan W, Wu Z, Wang Z, Ma Q. Arl4c promotes the growth and drug resistance of pancreatic cancer by regulating tumor-stromal interactions. iScience 2021; 24:103400. [PMID: 34849465 PMCID: PMC8609020 DOI: 10.1016/j.isci.2021.103400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests that ADP-ribosylation factor like-4c (Arl4c) may be a potential choice for cancer treatment. However, its role in pancreatic cancer, especially in tumor-stroma interactions and drug resistance, is still unknown. In the current study, we examined the proliferation and drug resistance effect of Arl4c on pancreatic cancer cells. Furthermore, we explored the contribution of Arl4c high expression in pancreatic stellate cell (PSC) activation. We found that high Arl4c expression is associated with cell proliferation, drug resistance, and PSC activation. In detail, Arl4c regulates connective tissue growth factor (CTGF) paracrine, further induces autophagic flux in PSCs, resulting in PSC activation. TGFβ1 secreted by activated PSCs enhances cancer cell stem cell properties via smad2 signaling, further increasing cell drug resistance. YAP is an important mediator of the Arl4c-CTGF loop. Taken together, these results suggest that Arl4c is essential for pancreatic cancer progression and may be an effective therapeutic choice. High Arl4c expression is correlated with PSCs activation and drug resistance Yap-CTGF-mediated autophagy is required for Arl4c-related PSCs activation Paracrine TGFβ1 of PSCs plays pivotal role in drug resistance of pancreatic cancer cells
Collapse
Affiliation(s)
- Xin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
60
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
61
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Małecka-Wojciesko E. Alpha Smooth Muscle Actin (αSMA) Immunohistochemistry Use in the Differentiation of Pancreatic Cancer from Chronic Pancreatitis. J Clin Med 2021; 10:jcm10245804. [PMID: 34945100 PMCID: PMC8707555 DOI: 10.3390/jcm10245804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aim: Fibrosis is observed both in pancreatic cancer (PDAC) and chronic pancreatitis (CP). The main cells involved in fibrosis are pancreatic stellate cells (PSCs), which activate alpha smooth muscle actin (αSMA), which is considered to be the best-known fibrosis marker. The aim of the study was to evaluate the expression of the αSMA in patients with PDAC and CP as the possible differentiation marker. Methods: We enrolled 114 patients undergoing pancreatic resection: 83 with PDAC and 31 with CP. Normal fragments of resected specimen from 21 patients represented the control tissue. The immunoexpressions of αSMA were detected in tissue specimens with immunohistochemistry (Abcam antibodies, GB). Results: Mean cytoplasmatic expression of αSMA protein in PDAC stromal cells was significantly higher compared to CP: 2.42 ± 0.37 vs 1.95 ± 0.45 (p < 0.01) and control group 0.61 ± 0.45 (p < 0.01). Strong immunoexpression of the αSMA protein was found in the vast majority (80.7%) of patients with PDAC, in about half (58%) of patients with CP, and not at all in healthy tissue. The expression of αSMA of different intensity was found in all patients with PDAC and CP, while in healthy tissue was minimal or absent. In PDAC patients, αSMA expression was significantly higher in tumors of diameter higher than 3 cm compared to smaller ones (p = 0.017). Conclusions: Presented findings confirm the significant role of fibrosis in both PDAC and CP; however, they do not confirm the role of αSMA as a marker of differentiation.
Collapse
Affiliation(s)
- Katarzyna Winter
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Correspondence: ; Tel.: +48-500-275-615; +48-4267-76-664; Fax: +48-678-6480
| | | | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| | | | - Marian Danilewicz
- Department of Nephropathology, Division of Morphometry, Medical University of Lodz, 90-153 Lodz, Poland; (M.W.-D.); (M.D.)
| | - Ewa Małecka-Wojciesko
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
62
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
63
|
Yu KH, Ozer M, Cockrum P, Surinach A, Wang S, Chu BC. Real-world prognostic factors for survival among treated patients with metastatic pancreatic ductal adenocarcinoma. Cancer Med 2021; 10:8934-8943. [PMID: 34811961 PMCID: PMC8683530 DOI: 10.1002/cam4.4415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Many real‐world studies of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) are restricted to single centers, limiting the generalizability of their insights. This study aimed to identify important population‐based predictors for survival in patients diagnosed with mPDAC in a broader setting. Methods Data between 1 January 2017 and 31 December 2019 were extracted from the Flatiron Health EHR database. Treatment‐specific predictive models were generated for patients treated with first‐line gemcitabine+nabpaclitaxel (GNP), FOLFIRINOX, gemcitabine monotherapy (gem‐mono), and second‐line liposomal irinotecan‐based regimens. The holdout method was used for cross‐validation. Age at diagnosis, sex, BMI, smoking status, and ECOG performance score were included in all models with additional demographic, clinical characteristics, and hematological function assessed for inclusion. Results Of the 3625 patients, 43% received GNP, 26% received FOLFIRINOX, 7% received gem‐mono, and 23% received other regimens; 40% (n = 1448) advanced to the second line. Among all first‐line patients, the following were included in the final model: prior surgery, white blood cell (WBC) counts, serum albumin (SA), liver function tests (LFTs), serum bilirubin, serum carbohydrate antigen 19–9, and ascites. Models for patients receiving specific therapies differed from the overall model, GNP (ascites removed), FOLFIRINOX (stage at initial diagnosis added), and gem‐mono (LFTs omitted). Alkaline phosphatase (ALP), SA, and WBC counts were important predictors of survival among patients treated with second‐line liposomal irinotecan. Across all regimens, the strongest predictors of survival were ECOG score, SA, and ALP. Conclusions In this real‐world study of patients with mPDAC, important population prognostic factors of survival were identified in a large cohort of patients receiving systemic treatment.
Collapse
Affiliation(s)
- Kenneth H Yu
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| | - Muhammet Ozer
- Capital Health Medical Center, Trenton, New Jersey, USA
| | | | | | - Shu Wang
- Genesis Research, Hoboken, New Jersey, USA
| | | |
Collapse
|
64
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
65
|
Eukaryotic initiation factor 2 signaling behind neural invasion linked with lymphatic and vascular invasion in pancreatic cancer. Sci Rep 2021; 11:21197. [PMID: 34707166 PMCID: PMC8551178 DOI: 10.1038/s41598-021-00727-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Perineural invasion (PNI) is a typical poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC). The mechanisms linking PNI to poor prognosis remain unclear. This study aimed to clarify what changes occurred alongside PNI in PDAC. A 128-patient cohort undergoing surgery for early-stage PDAC was evaluated. Subdivided into two groups, according to pathological state, a pancreatic nerve invasion (ne) score of less than three (from none to moderate invasion) was designated as the low-grade ne group. The high-grade (marked invasion) ne group (74 cases, 57.8%) showed a higher incidence of lymphatic metastasis (P = 0.002), a higher incidence of early recurrence (P = 0.004), decreased RFS (P < 0.001), and decreased DSS (P < 0.001). The severity of lymphatic (r = 0.440, P = 0.042) and venous (r = 0.610, P = 0.002) invasions was positively correlated with the ne score. Tumors having abundant stroma often displayed severe ne. Proteomics identified eukaryotic initiation factor 2 (EIF2) signaling as the most significantly enriched pathway in high-grade ne PDAC. Additionally, EIF2 signaling-related ribosome proteins decreased according to severity. Results showed that PNI is linked with lymphatic and vascular invasion in early-stage PDAC. Furthermore, the dysregulation of proteostasis and ribosome biogenesis can yield a difference in PNI severity.
Collapse
|
66
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
67
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
68
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
69
|
The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev 2021; 40:675-689. [PMID: 34591240 DOI: 10.1007/s10555-021-09988-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies and is characterized by a unique tumor microenvironment (TME) consisting of an abundant stromal component. Many features contained with the PDAC stroma contribute to resistance to cytotoxic and immunotherapeutic regimens, as well as the propensity for this tumor to metastasize. At the cellular level, PDAC cells crosstalk with a complex mixture of non-neoplastic cell types including fibroblasts, endothelial cells, and immune cells. These intricate interactions fuel the progression and therapeutic resistance of this aggressive cancer. Moreover, data suggest the polarization of these cell types, in particular immune and fibroblast populations, dictate how PDAC tumors grow, metastasize, and respond to therapy. As a result, current research is focused on how to best target these populations to render tumors responsive to treatment. Herein, we summarize the cell populations implicated in providing a supporting role for the development and progression of PDAC. We focus on stromal fibroblasts and immune subsets that have been widely researched. We discuss factors which govern the phenotype of these populations and provide insight on how they have been targeted therapeutically. This review provides an overview of the tumor microenvironment and postulates that cellular and soluble factors within the microenvironment can be specifically targeted to improve patient outcomes.
Collapse
|
70
|
Kang MJ, Lee S, Jung U, Mandal C, Park H, Stetler-Stevenson WG, Kim YS, Moon JW, Park SH, Oh J. Inhibition of Hepatic Stellate Cell Activation Suppresses Tumorigenicity of Hepatocellular Carcinoma in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2219-2230. [PMID: 34428424 PMCID: PMC8747013 DOI: 10.1016/j.ajpath.2021.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Transdifferentiation (or activation) of hepatic stellate cells (HSCs) to myofibroblasts is a key event in liver fibrosis. Activated HSCs in the tumor microenvironment reportedly promote tumor progression. This study analyzed the effect of an inhibitor of HSC activation, retinol-binding protein–albumin domain III fusion protein (R-III), on protumorigenic functions of HSCs. Although conditioned medium collected from activated HSCs enhanced the migration, invasion, and proliferation of the hepatocellular carcinoma cell line Hepa-1c1c7, this effect was not observed in Hepa-1c1c7 cells treated with conditioned medium from R-III–exposed HSCs. In a subcutaneous tumor model, larger tumors with increased vascular density were formed in mice transplanted with Hepa-1c1c7+HSC than in mice transplanted with Hepa-1c1c7 cells alone. Intriguingly, when Hepa-1c1c7+HSC–transplanted mice were injected intravenously with R-III, a reduction in vascular density and extended tumor necrosis were observed. In an orthotopic tumor model, co-transplantation of HSCs enhanced tumor growth, angiogenesis, and regional metastasis accompanied by increased peritumoral lymphatic vessel density, which was abolished by R-III. In vitro study showed that R-III treatment affected the synthesis of pro-angiogenic and anti-angiogenic factors in activated HSCs, which might be the potential mechanism underlying the R-III effect. These findings suggest that the inhibition of HSC activation abrogates HSC-induced tumor angiogenesis and growth, which represents an attractive therapeutic strategy.
Collapse
Affiliation(s)
- Min-Jung Kang
- Department of Biomedical Science, Korea University Graduate School, Seoul, Korea
| | - Soovin Lee
- Laboratory Animal Research Center, College of Medicine, Korea University, Seoul, Korea
| | - Usuk Jung
- Department of Biomedical Science, Korea University Graduate School, Seoul, Korea
| | - Chanchal Mandal
- Department of Biomedical Science, Korea University Graduate School, Seoul, Korea
| | - Heekyung Park
- Department of Biomedical Science, Korea University Graduate School, Seoul, Korea
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Young-Sik Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Korea
| | - Ji Wook Moon
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Sun-Hwa Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Junseo Oh
- Department of Biomedical Science, Korea University Graduate School, Seoul, Korea; Department of Anatomy, College of Medicine, Korea University, Seoul, Korea.
| |
Collapse
|
71
|
Sharbeen G, McCarroll JA, Akerman A, Kopecky C, Youkhana J, Kokkinos J, Holst J, Boyer C, Erkan M, Goldstein D, Timpson P, Cox TR, Pereira BA, Chitty JL, Fey SK, Najumudeen AK, Campbell AD, Sansom OJ, Ignacio RMC, Naim S, Liu J, Russia N, Lee J, Chou A, Johns A, Gill AJ, Gonzales-Aloy E, Gebski V, Guan YF, Pajic M, Turner N, Apte MV, Davis TP, Morton JP, Haghighi KS, Kasparian J, McLean BJ, Setargew YF, Phillips PA. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Res 2021; 81:3461-3479. [PMID: 33980655 DOI: 10.1158/0008-5472.can-20-2496] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of New South Wales Sydney, New South Wales, Australia
| | - Anouschka Akerman
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Chantal Kopecky
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - John Kokkinos
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Jeff Holst
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| | - Mert Erkan
- Koc University Research Centre for Translational Medicine and Department of Surgery, Koc University, School of Medicine, Istanbul, Turkey
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Sigrid K Fey
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | | | | | - Owen J Sansom
- Cancer Research UK, Beatson Institute, Glasgow, United Kingdom
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Stephanie Naim
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Nelson Russia
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Julia Lee
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Angela Chou
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Johns
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, New South Wales, Australia
| | - Yi Fang Guan
- School of Medical Science and Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
- Australian Pancreatic Cancer Genome Initiative (APGI), Sydney, New South Wales, Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University New South Wales and Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute of Bioengineering & Nanotechnology, University of Queensland, Queensland, Australia
| | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Koroush S Haghighi
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, New South Wales, Australia
| | - Jorjina Kasparian
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Benjamin J McLean
- The Garvan Institute of Medical Research and the Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | | | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Prince of Wales Clinical School and School of Medical Sciences, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
72
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
73
|
Pang TCY, Xu Z, Mekapogu AR, Pothula S, Becker T, Corley S, Wilkins MR, Goldstein D, Pirola R, Wilson J, Apte M. HGF/c-Met Inhibition as Adjuvant Therapy Improves Outcomes in an Orthotopic Mouse Model of Pancreatic Cancer. Cancers (Basel) 2021; 13:2763. [PMID: 34199452 PMCID: PMC8199621 DOI: 10.3390/cancers13112763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Inhibition of hepatocyte growth factor (HGF)/c-MET pathway, a major mediator of pancreatic stellate cell (PSC)-PC cell interactions, retards local and distant cancer progression. This study examines the use of this treatment in preventing PC progression after resection. We further investigate the postulated existence of circulating PSCs (cPSCs) as a mediator of metastatic PC. METHODS Two orthotopic PC mouse models, produced by implantation of a mixture of luciferase-tagged human pancreatic cancer cells (AsPC-1), and human PSCs were used. Model 1 mice underwent distal pancreatectomy 3-weeks post-implantation (n = 62). One-week post-resection, mice were randomised to four treatments of 8 weeks: (i) IgG, (ii) gemcitabine (G), (iii) HGF/c-MET inhibition (HiCi) and (iv) HiCi + G. Tumour burden was assessed longitudinally by bioluminescence. Circulating tumour cells and cPSCs were enriched by filtration. Tumours of Model 2 mice progressed for 8 weeks prior to the collection of primary tumour, metastases and blood for single-cell RNA-sequencing (scRNA-seq). RESULTS HiCi treatments: (1) reduced both the risk and rate of disease progression after resection; (2) demonstrated an anti-angiogenic effect on immunohistochemistry; (3) reduced cPSC counts. cPSCs were identified using immunocytochemistry (α-smooth muscle actin+, pan-cytokeratin-, CD45-), and by specific PSC markers. scRNA-seq confirmed the existence of cPSCs and identified potential genes associated with development into cPSCs. CONCLUSIONS This study is the first to demonstrate the efficacy of adjuvant HGF/c-Met inhibition for PC and provides the first confirmation of the existence of circulating PSCs.
Collapse
Affiliation(s)
- Tony C. Y. Pang
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Srinivasa Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Therese Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia;
| | - Susan Corley
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - Marc R. Wilkins
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia; (S.C.); (M.R.W.)
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Romano Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Jeremy Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Health, Ingham Institute for Applied Medical Research, University of New South Wales, Sydney, NSW 2170, Australia; (T.C.Y.P.); (Z.X.); (A.R.M.); (S.P.); (D.G.); (R.P.); (J.W.)
| |
Collapse
|
74
|
Liu H, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021; 172:37-51. [PMID: 33705881 DOI: 10.1016/j.addr.2021.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
75
|
Nemec S, Lam J, Zhong J, Heu C, Timpson P, Li Q, Youkhana J, Sharbeen G, Phillips PA, Kilian KA. Interfacial Curvature in Confined Coculture Directs Stromal Cell Activity with Spatial Corralling of Pancreatic Cancer Cells. Adv Biol (Weinh) 2021; 5:e2000525. [PMID: 33754491 DOI: 10.1002/adbi.202000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Indexed: 01/18/2023]
Abstract
Interfacial cues in the tumor microenvironment direct the activity and assembly of multiple cell types. Pancreatic cancer, along with breast and prostate cancers, is enriched with cancer-associated fibroblasts (CAFs) that activate to coordinate the deposition of the extracellular matrix, which can comprise over 90% of the tumor mass. While it is clear that matrix underlies the severity of the disease, the relationship between stromal-tumor cell assembly and cell-matrix dynamics remains elusive. Micropatterned hydrogels deconstruct the interplay between matrix stiffness and geometric confinement, guiding heterotypic cell populations and matrix assembly in pancreatic cancer. Interfacial cues at the perimeter of microislands guide CAF migration and direct cancer cell assembly. Computational modeling shows curvature-stress dependent cellular localization for cancer and CAFs in coculture. Regions of convex curvature enhance edge stress that activates a myofibroblast phenotype in the CAFs with migration and increased collagen I deposition, ultimately leading to a central "corralling" of cancer cells. Inhibiting mechanotransduction pathways decreases CAF activation and the associated corralling phenotype. Together, this work reveals how interfacial biophysical cues underpin aspects of stromal desmoplasia, a hallmark of disease severity and chemoresistance in the pancreatic, breast, and prostate cancers, thereby providing a tool to expand stroma-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie Nemec
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Joey Lam
- School of Chemistry Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Celine Heu
- Biomedical Imaging Facility, Mark Wainwright Analytical Center, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, 2052, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Chemistry Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
76
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
77
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
78
|
Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol 2021; 236:2087-2098. [PMID: 32749678 DOI: 10.1002/jcp.29995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Hypoxia is involved in the development of pancreatic cancer (PC). The responses of hypoxia-associated genes and their regulated mechanisms are largely unknown. In this study, through bioinformatic analysis and quantitative real-time polymerase chain reaction, the YEATS domain containing 2 (YEATS2) was determined to be a key hypoxia-associated gene. It was increased in PC cells under hypoxia, upregulated in PC tissues, and predicted poor outcome. YEATS2 inhibition decreased the proliferation and migration of PC cells under both normoxia and hypoxia in vitro as well as proliferation and metastasis in vivo. We found that hypoxia-inducible factor 1α (HIF1α) regulated the expression of YEATS2 via binding to the hypoxia response element (HRE) of YEATS2 and coexpressed with YEATS2 in PC tissues. Overexpression of YEATS2 blocked the inhibitory effects of HIF1α silence on PC cell proliferation and migration under hypoxia. Collectively, our study revealed that YEATS2 is a target gene of HIF1α and promotes PC development under hypoxia.
Collapse
Affiliation(s)
- Zhirui Zeng
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shan Lei
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease of Wuhan University, Wuhan, China
| |
Collapse
|
79
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
80
|
Ex vivo culture of intact human patient derived pancreatic tumour tissue. Sci Rep 2021; 11:1944. [PMID: 33479301 PMCID: PMC7820421 DOI: 10.1038/s41598-021-81299-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.
Collapse
|
81
|
Robinson CM, Talty A, Logue SE, Mnich K, Gorman AM, Samali A. An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13020261. [PMID: 33445669 PMCID: PMC7828145 DOI: 10.3390/cancers13020261] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Claire M. Robinson
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Aaron Talty
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Adrienne M. Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, H91 W2TY Galway, Ireland; (C.M.R.); (A.T.); (K.M.); (A.M.G.)
- Correspondence:
| |
Collapse
|
82
|
Feldmann K, Maurer C, Peschke K, Teller S, Schuck K, Steiger K, Engleitner T, Öllinger R, Nomura A, Wirges N, Papargyriou A, Jahan Sarker RS, Ranjan RA, Dantes Z, Weichert W, Rustgi AK, Schmid RM, Rad R, Schneider G, Saur D, Reichert M. Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology. Gastroenterology 2021; 160:346-361.e24. [PMID: 33007300 DOI: 10.1053/j.gastro.2020.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.
Collapse
Affiliation(s)
- Karin Feldmann
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carlo Maurer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kathleen Schuck
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Thomas Engleitner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Rupert Öllinger
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Alice Nomura
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nils Wirges
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Aristeidis Papargyriou
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg, Germany
| | - Rim Sabrina Jahan Sarker
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Raphela Aranie Ranjan
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University, New York, New York
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Roland Rad
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Dieter Saur
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany.
| |
Collapse
|
83
|
Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134:2091-2115. [PMID: 32808663 PMCID: PMC7434989 DOI: 10.1042/cs20191211] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.
Collapse
|
84
|
Seifert AM, List J, Heiduk M, Decker R, von Renesse J, Meinecke AC, Aust DE, Welsch T, Weitz J, Seifert L. Gamma-delta T cells stimulate IL-6 production by pancreatic stellate cells in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2020; 146:3233-3240. [PMID: 32865617 PMCID: PMC7679341 DOI: 10.1007/s00432-020-03367-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The immunosuppressive tumor microenvironment promotes progression of pancreatic ductal adenocarcinoma (PDAC). γδ T cells infiltrate the pancreatic tumor stroma and support tumorigenesis through αβ T cell inhibition. Pancreatic stellate cell (PSC) activation contributes to pancreatic fibrosis in PDAC, limiting the delivery and efficacy of therapeutic agents. Whether γδ T cells have direct effects on PSC activation is unknown. METHODS In this study, we analyzed tumor tissue from 68 patients with PDAC and determined the frequency and location of γδ T cells using immunohistochemistry and immunofluorescence. PDAC samples from the TCGA database with low and high TRGC2 expression were correlated with the expression of extracellular matrix genes. Further, PSCs were isolated from pancreatic tumor tissue and co-cultured with γδ T cells for 48 hours and cytokine production was measured using a cytometric bead array. RESULTS γδ T cells infiltrated the pancreatic tumor stroma and were located in proximity to PSCs. A high infiltration of γδ T cells was associated with increased expression of several extracellular matrix genes in human PDAC. In vitro, γδ T cells stimulated IL-6 production by PDAC-derived PSCs. CONCLUSION γδ T cells activated PSCs and modulation of this interaction may enhance the efficacy of combinational therapies in human PDAC.
Collapse
Affiliation(s)
- Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Julian List
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rahel Decker
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Janusz von Renesse
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ann-Christin Meinecke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela E Aust
- Department of Pathology, Medical Faculty, University Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
- NCT Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307, Dresden, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany.
| |
Collapse
|
85
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:E9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
86
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
87
|
Cannabinoids Inhibited Pancreatic Cancer via P-21 Activated Kinase 1 Mediated Pathway. Int J Mol Sci 2020; 21:ijms21218035. [PMID: 33126623 PMCID: PMC7662796 DOI: 10.3390/ijms21218035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The anti-cancer effects of cannabinoids including CBD (Cannabidiol) and THC ((−)-trans-∆9-tetrahydrocannabinol) have been reported in the case of pancreatic cancer (PC). The connection of these cannabinoids to KRas oncogenes that mutate in more than 90% of PC, and their effects on PD-L1, a key target of immune checkpoint blockade, have not been thoroughly investigated. Using cell lines and mouse models of PC, the effects of CBD and THC on cancer growth, the interaction between PC cells and a stromal cell, namely pancreatic stellate cells (PSCs), and the mechanism(s) involved were determined by cell-based assays and mouse study in vivo. CBD and THC inhibited the proliferation of PC, PSC, and PSC-stimulated PC cells. They also suppressed pancreatic tumour growth in mice. Furthermore, CBD and/or THC reduced the expression of PD-L1 by either PC or PSC cells. Knockout of p-21 activated kinase 1 (PAK1, activated by KRas) in PC and PSC cells and, in mice, dramatically decreased or blocked these inhibitory effects of CBD and/or THC. These results indicated that CBD and THC exerted their inhibitions on PC and PSC via a p-21 activated kinase 1 (PAK1)-dependent pathway, suggesting that CBD and THC suppress Kras activated pathway by targeting PAK1. The inhibition by CBD and THC of PD-L1 expression will enhance the immune checkpoint blockade of PC.
Collapse
|
88
|
Kim GP, Surinach A, Corvino FA, Cockrum P, Belanger B, Abushahin L. Real-world outcomes associated with liposomal irinotecan dose reductions in metastatic pancreatic ductal adenocarcinoma. Future Oncol 2020; 17:675-688. [PMID: 33070660 DOI: 10.2217/fon-2020-0902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study sought to understand the association between liposomal irinotecan dose reductions (DRs) and clinical outcomes among patients with metastatic pancreatic ductal adenocarcinoma. Materials & methods: A retrospective study of adult patients with metastatic pancreatic ductal adenocarcinoma treated with liposomal irinotecan in the Flatiron Health database was conducted to assess treatment and clinical outcomes. Results: DRs occurred in 28.4% of the 320 patients in the study. Patients with DRs had longer overall survival (7.7 [95% CI: 6.2-10.2]) vs 3.6 [3.2-4.1] months) and time to discontinuation (4.2 [3.0-4.9] vs 1.4 [1.0-1.5] months) than patients without DRs. Results were consistent in a validation analysis requiring three cycles of treatment. Conclusion: Liposomal irinotecan DRs were associated with improved clinical outcomes compared with patients without DRs.
Collapse
Affiliation(s)
- George P Kim
- Division of Hematology & Oncology, George Washington University, Washington DC 20052, USA
| | | | | | | | | | - Laith Abushahin
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
89
|
Xu J, Liu S, Yang X, Cao S, Zhou Y. Paracrine HGF promotes EMT and mediates the effects of PSC on chemoresistance by activating c-Met/PI3K/Akt signaling in pancreatic cancer in vitro. Life Sci 2020; 263:118523. [PMID: 33039386 DOI: 10.1016/j.lfs.2020.118523] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play key roles in the pancreatic tumor microenvironment and are considered to contribute to chemoresistance. PSCs can participate in malignant behaviors of pancreatic carcinoma (PC) by secreting hepatocyte growth factor (HGF). The objective of this research was to explore the potential molecular mechanism of HGF on gemcitabine (GEM) chemoresistance of PC. MATERIALS AND METHODS HGF, c-Met, E-Cadherin and Vimentin levels were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The changes of HGF level were detected by ELISA. The half maximal inhibitory concentration, the growth inhibitions and apoptosis of pancreatic cancer cells (PCCs) were respectively assayed using CCK-8 and flow cytometry. Associated proteins were measured using western blot and cell immunofluorescence assay. KEY FINDINGS PSCs strongly expressed HGF, and its receptor c-Met was expressed in PCCs. PCCs exerted a positive regulative effect on HGF production. HGF neutralizing antibody AMG102 could effectively reduce the HGF level in PSC-conditioned medium (PSC-CM). PSC-CM promoted chemoresistance in PCCs. When exposed to PSC-CM, PCCs underwent epithelial-to-mesenchymal transition (EMT), and c-Met was also activated. Recombinant human HGF had the same protective effect. Blocking the HGF/c-Met axis with a c-Met inhibitor PHA665752 and AMG102 reduced the phosphorylation level of c-Met (p-c-Met) and attenuated EMT and chemoresistance. P-c-Met overexpression resulted in activation of the PI3K/Akt pathway, and inhibition of PI3K/Akt signaling with LY294002 reversed chemoresistance and EMT. SIGNIFICANCE PSCs can activate the c-Met/PI3K/Akt pathway in PCCs via paracrine HGF, induce EMT of PCCs and inhibit cancer cell apoptosis, thus enhance chemoresistance to Gem in PCCs.
Collapse
Affiliation(s)
- Jianfei Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaopeng Yang
- Department of Gastrointestinal Surgery, Yidu Central Hospital, Weifang, China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
90
|
Liu X, Yang X, Zhan C, Zhang Y, Hou J, Yin X. Perineural Invasion in Adenoid Cystic Carcinoma of the Salivary Glands: Where We Are and Where We Need to Go. Front Oncol 2020; 10:1493. [PMID: 33014792 PMCID: PMC7461905 DOI: 10.3389/fonc.2020.01493] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Adenoid cystic carcinoma of the salivary gland (SACC) is a rare malignant tumors of the head and neck region, but it is one of the most common malignant tumors that are prone to perineural invasion (PNI) of the head and neck. The prognosis of patients with SACC is strongly associated with the presence of perineural spread (PNS). Although many contributing factors have been reported, the mechanisms underlying the preferential destruction of the blood-nerve barrier (BNB) by tumors and the infiltration of the tumor microenvironment by nerve fibers in SACC, have received little research attention. This review summarizes the current knowledge concerning the characteristics of SACC in relation to the PNI, and then highlights the interplay between components of the tumor microenvironment and perineural niche, as well as their contributions to the PNI. Finally, we provide new insights into the possible mechanisms underlying the pathogenesis of PNI, with particular emphasis on the role of extracellular vesicles that may serve as an attractive entry point in future studies.
Collapse
Affiliation(s)
- Xiaohao Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Yin
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
91
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
92
|
Radoslavova S, Ouadid-Ahidouch H, Prevarskaya N. Ca2+ signaling is critical for pancreatic stellate cell’s pathophysiology : from fibrosis to cancer hallmarks. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
93
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
94
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
95
|
Turaga RC, Sharma M, Mishra F, Krasinskas A, Yuan Y, Yang JJ, Wang S, Liu C, Li S, Liu ZR. Modulation of Cancer-Associated Fibrotic Stroma by An Integrin α vβ 3 Targeting Protein for Pancreatic Cancer Treatment. Cell Mol Gastroenterol Hepatol 2020; 11:161-179. [PMID: 32810598 PMCID: PMC7674520 DOI: 10.1016/j.jcmgh.2020.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapeutics owing to dense fibrotic stroma orchestrated by cancer-associated pancreatic stellate cells (CAPaSC). CAPaSC also support cancer cell growth, metastasis, and resistance to apoptosis. Currently, there is no effective therapy for PDAC that specifically targets CAPaSC. We previously reported a rationally designed protein, ProAgio, that targets integrin αvβ3 at a novel site and induces apoptosis in integrin αvβ3-expressing cells. Because both CAPaSC and angiogenic endothelial cells express high levels of integrin αvβ3, we aimed to analyze the effects of ProAgio in PDAC tumor. METHODS Expression of integrin αvβ3 was examined in both patient tissue and cultured cells. The effects of ProAgio on CAPaSC were analyzed using an apoptosis assay kit. The effects of ProAgio in PDAC tumor were studied in 3 murine tumor models: subcutaneous xenograft, genetic engineered (KrasG12D; p53R172H; Pdx1-Cre, GEM-KPC) mice, and an orthotopic KrasG12D; p53R172H; Pdx1-Cre (KPC) model. RESULTS ProAgio induces apoptosis in CAPaSC. ProAgio treatment significantly prolonged survival of a genetically engineered mouse-KPC and orthotopic KPC mice alone or in combination with gemcitabine (Gem). ProAgio specifically induced apoptosis in CAPaSC, resorbed collagen, and opened collapsed tumor vessels without an increase in angiogenesis in PDAC tumor, enabling drug delivery into the tumor. ProAgio decreased intratumoral insulin-like growth factor 1 levels as a result of depletion of CAPaSC and consequently decreased cytidine deaminase, a Gem metabolism enzyme in cancer cells, and thereby reduced resistance to Gem-induced apoptosis. CONCLUSIONS Our study suggests that ProAgio is an effective PDAC treatment agent because it specifically depletes CAPaSC and eliminates tumor angiogenesis, thereby enhancing drug delivery and Gem efficacy in PDAC tumors.
Collapse
Affiliation(s)
| | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Shiyuan Wang
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Chunfeng Liu
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Sun Li
- Research and Development Division, Amoytop Biotech, Inc, Xiamen, People's Republic of China
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
96
|
Sperb N, Tsesmelis M, Wirth T. Crosstalk between Tumor and Stromal Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E5486. [PMID: 32752017 PMCID: PMC7432853 DOI: 10.3390/ijms21155486] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer. The poor prognosis calls for a more detailed understanding of disease biology in order to pave the way for the development of effective therapies. Typically, the pancreatic tumor is composed of a minority of malignant cells within an excessive tumor microenvironment (TME) consisting of extracellular matrix (ECM), fibroblasts, immune cells, and endothelial cells. Research conducted in recent years has particularly focused on cancer-associated fibroblasts (CAFs) which represent the most prominent cellular component of the desmoplastic stroma. Here, we review the complex crosstalk between CAFs, tumor cells, and other components of the TME, and illustrate how these interactions drive disease progression. We also discuss the emerging field of CAF heterogeneity, their tumor-supportive versus tumor-suppressive capacity, and the consequences for designing stroma-targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany; (N.S.); (M.T.)
| |
Collapse
|
97
|
Roife D, Sarcar B, Fleming JB. Stellate Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:67-84. [PMID: 32588324 DOI: 10.1007/978-3-030-44518-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As tumor microenvironments share many of the same qualities as chronic wounds, attention is turning to the wound-repair cells that support the growth of cancerous cells. Stellate cells are star-shaped cells that were first discovered in the perisinusoidal spaces in the liver and have been found to support wound healing by the secretion of growth factors and extracellular matrix. They have since been also found to serve a similar function in the pancreas. In both organs, the wound-healing process may become dysregulated and lead to pathological fibrosis (also known as cirrhosis in the liver). In recent years there has been increasing attention paid to the role of these cells in tumor formation and progression. They may be a factor in initiating the first steps of carcinogenesis such as with liver cirrhosis and hepatocellular carcinoma and also contribute to continued tumor growth, invasion, metastasis, evasion of the immune system, and resistance to chemotherapy, in cancers of both the liver and pancreas. In this chapter we aim to review the structure and function of hepatic and pancreatic stellate cells and their contributions to the tumor microenvironment in their respective cancers and also discuss potential new targets for cancer therapy based on our new understanding of these vital components of the tumor stroma.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
98
|
Aguilar B, Gibbs DL, Reiss DJ, McConnell M, Danziger SA, Dervan A, Trotter M, Bassett D, Hershberg R, Ratushny AV, Shmulevich I. A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma. Gigascience 2020; 9:giaa075. [PMID: 32696951 PMCID: PMC7374045 DOI: 10.1093/gigascience/giaa075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/14/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. RESULTS By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type-specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. CONCLUSIONS The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.
Collapse
Affiliation(s)
- Boris Aguilar
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - David L Gibbs
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - David J Reiss
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Mark McConnell
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Samuel A Danziger
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Andrew Dervan
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Matthew Trotter
- BMS Center for Innovation and Translational Research Europe (CITRE), Pabellon de Italia, Calle Isaac Newton 4, Sevilla 41092, Spain
| | - Douglas Bassett
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Robert Hershberg
- Formerly Celgene Corporation, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Alexander V Ratushny
- Bristol-Myers Squibb, 400 Dexter Avenue North, Suite 1200, Seattle, WA 98109, USA
| | - Ilya Shmulevich
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
99
|
Che M, Kweon SM, Teo JL, Yuan YC, Melstrom LG, Waldron RT, Lugea A, Urrutia RA, Pandol SJ, Lai KKY. Targeting the CBP/β-Catenin Interaction to Suppress Activation of Cancer-Promoting Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12061476. [PMID: 32516943 PMCID: PMC7352534 DOI: 10.3390/cancers12061476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Although cyclic AMP-response element binding protein-binding protein (CBP)/β-catenin signaling is known to promote proliferation and fibrosis in various organ systems, its role in the activation of pancreatic stellate cells (PSCs), the key effector cells of desmoplasia in pancreatic cancer and fibrosis in chronic pancreatitis, is largely unknown. Methods: To investigate the role of the CBP/β-catenin signaling pathway in the activation of PSCs, we have treated mouse and human PSCs with the small molecule specific CBP/β-catenin antagonist ICG-001 and examined the effects of treatment on parameters of activation. Results: We report for the first time that CBP/β-catenin antagonism suppresses activation of PSCs as evidenced by their decreased proliferation, down-regulation of “activation” markers, e.g., α-smooth muscle actin (α-SMA/Acta2), collagen type I alpha 1 (Col1a1), Prolyl 4-hydroxylase, and Survivin, up-regulation of peroxisome proliferator activated receptor gamma (Ppar-γ) which is associated with quiescence, and reduced migration; additionally, CBP/β-catenin antagonism also suppresses PSC-induced migration of cancer cells. Conclusion: CBP/β-catenin antagonism represents a novel therapeutic strategy for suppressing PSC activation and may be effective at countering PSC promotion of pancreatic cancer.
Collapse
Affiliation(s)
- Mingtian Che
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Soo-Mi Kweon
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (M.C.); (S.-M.K.); (J.-L.T.)
| | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Richard T. Waldron
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aurelia Lugea
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Raul A. Urrutia
- Department of Surgery and the Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Stephen J. Pandol
- Pancreatic Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.T.W.); (A.L.); (S.J.P.)
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Keane K. Y. Lai
- Department of Pathology, City of Hope National Medical Center, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
100
|
Pothula SP, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology 2020; 20:409-418. [PMID: 31928917 DOI: 10.1016/j.pan.2020.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Tumour-stromal interactions have now been acknowledged to play a major role in pancreatic cancer (PC) progression. The abundant collagenous stroma is produced by a specific cell type in the pancreas-the pancreatic stellate cell (PSC). Pancreatic stellate cells (PSCs) are a unique resident cell type of pancreas and with a critical role in both healthy and diseased pancreas. Accumulating evidence indicates that PSCs interact closely with cancer cells as well as with other cell types of the stroma such as immune cells, endothelial cells and neuronal cells, to set up a growth permissive microenvironment for pancreatic tumours, which facilitates local tumour growth as well as distant metastasis. Consequently, recent work in the field has focused on the development of novel therapeutic approaches targeting the stroma to inhibit PC progression. Such a multi-pronged approach targeting both tumour and stromal elements of PC has been successfully applied in pre-clinical settings. The challenge now is to translate the pre-clinical findings into the clinical setting to achieve better outcomes for pancreatic cancer patients.
Collapse
Affiliation(s)
- Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, and the Ingham Institute for Applied Medical Research, Liverpool, Australia.
| |
Collapse
|