51
|
Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet 2012; 8:e1003110. [PMID: 23236293 PMCID: PMC3516565 DOI: 10.1371/journal.pgen.1003110] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022] Open
Abstract
Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo. Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. Consistent with this idea, previous studies have identified genetic variants in Tibetan highlanders associated with reduction in hemoglobin levels, an advantageous phenotype at high altitude. To compare the genetic bases of adaptations to high altitude, we collected genetic and epigenetic data in Ethiopians living at high and low altitude, respectively. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, we find a different variant that is significantly associated with hemoglobin levels in Ethiopians. Approaches based on the difference in allele frequency between high- and lowlanders detected strong signals in genes with a clear role in defense from pathogens, consistent with known differences in pathogens between altitudes. Finally, we found a few genome-wide significant epigenetic differences between altitudes. These results taken together imply that Ethiopian and Tibetan highlanders adapted to the same environmental stress through different variants and genetic loci.
Collapse
Affiliation(s)
- Gorka Alkorta-Aranburu
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia M. Beall
- Department of Anthropology, Case Western Research University, Cleveland, Ohio, United States of America
- * E-mail: (CMB); (ADR)
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Amha Gebremedhin
- Department of Internal Medicine, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan K. Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (CMB); (ADR)
| |
Collapse
|
52
|
Yang N, Tang Y, Wang F, Zhang H, Xu D, Shen Y, Sun S, Yang G. Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 2012; 330:163-9. [PMID: 23211538 DOI: 10.1016/j.canlet.2012.11.040] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 10/29/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a main Ca(2+) influx pathway controlling the intracellular Ca(2+) concentration in normal hepatocytes and hepatocellular carcinoma (HCC) cells. Ca(2+) influx has been demonstrated to be involved in liver oncogenesis. Stromal interacting molecule (STIM) 1 acts as a sensor for the level of Ca(2+) stored in the endoplasmic reticulum, and Orai1 protein constitutes the pore-forming subunit of the store-operated channels. Recently, STIM1 and Orai1 were found critical for breast tumor cell migration and metastasis. However, the effects of Ca(2+) influx pathway on migration and metastasis have not been studied in hepatocellular carcinoma. Here, we found that STIM1 had a higher expression in hepatoma tissues than in precancerous tissues of the same patients. In general, STIM expression is elevated in HCC cell lines compared to a normal hepatocyte cell line. HCC-LM3 cell, which has a higher migration ability, expresses five times higher level of STIM than other HCC cell lines. STIM1 could then be explored as a prognostic marker to screen liver cancer patients with high metastatic potential. Inhibition of SOCE and STIM1 enhance focal adhesions and decrease the focal adhesion turnover, suggesting the therapeutic potential of SOCE and STIM1 as new molecular targets for metastatic HCC.
Collapse
Affiliation(s)
- Ning Yang
- Hepatic Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Hoekstra AS, Bayley JP. The role of complex II in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:543-51. [PMID: 23174333 DOI: 10.1016/j.bbabio.2012.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 01/11/2023]
Abstract
Genetically defined mitochondrial deficiencies that result in the loss of complex II function lead to a range of clinical conditions. An array of tumor syndromes caused by complex II-associated gene mutations, in both succinate dehydrogenase and associated accessory factor genes (SDHA, SDHB, SDHC, SDHD, SDHAF1, SDHAF2), have been identified over the last 12 years and include hereditary paraganglioma-pheochromocytomas, a diverse group of renal cell carcinomas, and a specific subtype of gastrointestinal stromal tumors (GIST). In addition, congenital complex II deficiencies due to inherited homozygous mutations of the catalytic components of complex II (SDHA and SDHB) and the SDHAF1 assembly factor lead to childhood disease including Leigh syndrome, cardiomyopathy and infantile leukodystrophies. The role of complex II subunit gene mutations in tumorigenesis has been the subject of intensive research and these data have led to a variety of compelling hypotheses. Among the most widely researched are the stabilization of hypoxia inducible factor 1 under normoxia, and the generation of reactive oxygen species due to defective succinate:ubiquinone oxidoreductase function. Further progress in understanding the role of complex II in disease, and in the development of new therapeutic approaches, is now being hampered by the lack of relevant cell and animal models. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
54
|
Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L, Neuzil J. Mitochondrial complex II, a novel target for anti-cancer agents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:552-64. [PMID: 23142170 DOI: 10.1016/j.bbabio.2012.10.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
With the arrival of the third millennium, in spite of unprecedented progress in molecular medicine, cancer remains as untamed as ever. The complexity of tumours, dictating the potential response of cancer cells to anti-cancer agents, has been recently highlighted in a landmark paper by Weinberg and Hanahan on hallmarks of cancer [1]. Together with the recently published papers on the complexity of tumours in patients and even within the same tumour (see below), the cure for this pathology seems to be an elusive goal. Indisputably, the strategy ought to be changed, searching for targets that are generally invariant across the landscape of neoplastic diseases. One such target appears to be the mitochondrial complex II (CII) of the electron transfer chain, a recent focus of research. We document and highlight this particularly intriguing target in this review paper and give examples of drugs that use CII as their molecular target. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
55
|
Succinate dehydrogenase B subunit immunohistochemical expression predicts aggressiveness in well differentiated neuroendocrine tumors of the ileum. Cancers (Basel) 2012; 4:808-20. [PMID: 24213468 PMCID: PMC3712706 DOI: 10.3390/cancers4030808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022] Open
Abstract
Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene.
Collapse
|
56
|
Fliedner SMJ, Kaludercic N, Jiang XS, Hansikova H, Hajkova Z, Sladkova J, Limpuangthip A, Backlund PS, Wesley R, Martiniova L, Jochmanova I, Lendvai NK, Breza J, Yergey AL, Paolocci N, Tischler AS, Zeman J, Porter FD, Lehnert H, Pacak K. Warburg effect's manifestation in aggressive pheochromocytomas and paragangliomas: insights from a mouse cell model applied to human tumor tissue. PLoS One 2012; 7:e40949. [PMID: 22859959 PMCID: PMC3409208 DOI: 10.1371/journal.pone.0040949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
A glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown. Recently, however, an excellent model to study aggressive PHEOs (mouse tumor tissue (MTT) cells) has been developed from mouse PHEO cells (MPC). We employed this model for a proteomics based approach to identify changes characteristic for tumor aggressiveness, which we then explored in a homogeneous set of human SDHB- and VHL-PHEOs/PGLs. The increase of glucose transporter 1 in VHL, and of hexokinase 2 in VHL and SDHB, confirmed their glycolytic profile. In agreement with the cell model and in support of decoupling of glycolysis, the Krebs cycle and oxidative phosphorylation (OXPHOS), SDHB tumors showed increased lactate dehydrogenase levels. In SDHB-PGLs OXPHOS complex activity was increased at complex III and, as expected, decreased at complex II. Moreover, protein and mRNA expression of all tested OXPHOS-related genes were higher in SDHB- than in VHL-derived tumors. Although there was no direct evidence for increased reactive oxygen species production, elevated superoxide dismutase 2 expression may reflect elevated oxidative stress in SDHB-derived PHEOs/PGLs. For the first time, we show that despite dysfunction in complex II and evidence for a glycolytic phenotype, the Warburg effect does not seem to fully apply to SDHB-PHEOs/PGLs with respect to decreased OXPHOS. In addition, we present evidence for increased LDHA and SOD2 expression in SDHB-PHEOs/PGLs, proteins that have been proposed as promising therapeutic targets in other cancers. This study provides new insight into pathogenic mechanisms in aggressive human PHEOs/PGLs, which may lead to identifying new diagnostic and prognostic markers in the near future.
Collapse
Affiliation(s)
- Stephanie M. J. Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Nina Kaludercic
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Xiao-Sheng Jiang
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zuzana Hajkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Sladkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Limpuangthip
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. Backlund
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Wesley
- Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucia Martiniova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivana Jochmanova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1st Department of Internal Medicine Medical Faculty, P.J.Šafárik University, Košice, Slovakia
| | - Nikoletta K. Lendvai
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jan Breza
- Department of Urology, School of Medicine, Comenius University, Bratislava, Slovakia
| | - Alfred L. Yergey
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Clinical Medicine, Section of Pathology, University of Perugia, Perugia, Italy
| | - Arthur S. Tischler
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hendrik Lehnert
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
57
|
Gillombardo CB, Yamauchi M, Adams MD, Dostal J, Chai S, Moore MW, Donovan LM, Han F, Strohl KP. Identification of novel mouse genes conferring posthypoxic pauses. J Appl Physiol (1985) 2012; 113:167-74. [PMID: 22539170 PMCID: PMC3404832 DOI: 10.1152/japplphysiol.01394.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/23/2012] [Indexed: 11/22/2022] Open
Abstract
Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1(A/J)/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1(A/J)/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis.
Collapse
Affiliation(s)
- C Barton Gillombardo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospital Case Medical Center and the Louis Stokes Cleveland DVA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 2011; 35:1712-21. [PMID: 21997692 PMCID: PMC3193596 DOI: 10.1097/pas.0b013e3182260752] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most gastrointestinal stromal tumors (GISTs) are driven by KIT or PDGFRA-activating mutations, but a small subset is associated with loss of function of the succinate dehydrogenase (SDH) complex of mitochondrial inner membrane proteins. This occurs by germline mutations of the SDH subunit genes and hitherto unknown mechanisms. SDH-deficient GISTs especially include pediatric GISTs and those associated with Carney triad (CT) or Carney-Stratakis syndromes (CSSs); the latter 2 also include paraganglioma as a component. SDH-deficient GISTs were identified in this study on the basis of immunohistochemical loss of succinate dehydrogenase subunit B (SDHB), which signals functional loss of the SDH complex. We found 66 SDH-deficient GISTs among 756 gastric GISTs, with an estimated frequency of 7.5% of unselected cases. Nearly, all gastric GISTs in patients <20 years, and a substantial percentage of those in patients <40 years, but only rare GISTs in older adults were SDH deficient. There was a female predominance of over 2:1. Two patients each had either pulmonary chondroma or paraganglioma (CT), but none of the examined cases had SDH germline mutations (CSS) or somatic KIT/PDGFRA or BRAF mutations. SDH-deficient GISTs were often multiple and typically showed plexiform muscularis propria involvement and epithelioid hypercellular morphology. They were consistently KIT-positive and DOG1/Ano 1-positive and almost always smooth muscle actin negative. Tumor size and mitotic activity varied, and the tumors were somewhat unpredictable with low mitotic rates developing metastases. Gastric recurrences occurred in 11 patients, and peritoneal and liver metastases occurred in 8 and 10 patients, respectively. Lymph node metastases were detected in 5 patients, but lymphovascular invasion was present in >50% of cases studied; these 2 were not related to adverse outcome. Seven patients died of disease, but many had long survivals, even with peritoneal or liver metastases. All 378 nongastric GISTs and 34 gastric non-GIST mesenchymal tumors were SDHB positive. SDH-deficient GISTs constitute a small subgroup of gastric GISTs; they usually occur in children and young adults, often have a chronic course similar to that of pediatric and CT GISTs, and have potential association with paraganglioma, necessitating long-term follow-up.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, 20892, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
The WHO classification of endocrine tumors defines pheochromocytoma as a tumor arising from chromaffin cells in the adrenal medulla - an intra-adrenal paraganglioma. Closely related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal paragangliomas. Almost all pheochromocytomas and paragangliomas produce catecholamines. The concentrations of catecholamines in pheochromocytoma tissues are enormous, potentially creating a volcano that can erupt at any time. Significant eruptions result in catecholamine storms called "attacks" or "spells". Acute catecholamine crisis can strike unexpectedly, leaving traumatic memories of acute medical disaster that champions any intensive care unit. A very well-defined genotype-biochemical phenotype relationship exists, guiding proper and cost-effective genetic testing of patients with these tumors. Currently, the production of norepinephrine and epinephrine is optimally assessed by the measurement of their O-methylated metabolites, normetanephrine or metanephrine, respectively. Dopamine is a minor component, but some paragangliomas produce only this catecholamine or this together with norepinephrine. Methoxytyramine, the O-methylated metabolite of dopamine, is the best biochemical marker of these tumors. In those patients with equivocal biochemical results, a modified clonidine suppression test coupled with the measurement of plasma normetanephrine has recently been introduced. In addition to differences in catecholamine enzyme expression, the presence of either constitutive or regulated secretory pathways contributes further to the very unique mutation-dependent catecholamine production and release, resulting in various clinical presentations. Oxidative stress results from a significant imbalance between levels of prooxidants, generated during oxidative phosphorylation, and antioxidants. The gradual accumulation of prooxidants due to metabolic oxidative stress results in proto-oncogene activation, tumor suppressor gene inactivation, DNA damage, and genomic instability. Since the mitochondria serves as the main source of prooxidants, any mitochondrial impairment leads to severe oxidative stress, a major outcome of which is tumor development. In terms of cancer pathogenesis, pheochromocytomas and paragangliomas represent tumors where the oxidative phosphorylation defect due to the mutation of succinate dehydrogenase is the cause, not a consequence, of tumor development. Any succinate dehydrogenase pathogenic mutation results in the shift from oxidative phosphorylation to aerobic glycolysis in the cytoplasm (also called anaerobic glycolysis if hypoxia is the main cause of such a shift). This phenomenon, also called the Warburg effect, is well demonstrated by a positive [18F]-fluorodeoxyglycose positron emission tomography scan. Microarray studies, genome-wide association studies, proteomics and protein arrays, metabolomics, transcriptomics, and bioinformatics approaches will remain powerful tools to further uncover the pathogenesis of these tumors and their unique markers, with the ultimate goal to introduce new therapeutic options for those with metastatic or malignant pheochromocytoma and paraganglioma. Soon oxidative stress will be tightly linked to a multistep cancer process in which the mutation of various genes (perhaps in a logistic way) ultimately results in uncontrolled growth, proliferation, and metastatic potential of practically any cell. Targeting the mTORC, IGF-1, HIF and other pathways, topoisomerases, protein degradation by proteosomes, balancing the activity of protein kinases and phosphatases or even synchronizing the cell cycle before any exposure to any kind of therapy will soon become a reality. Facing such a reality today will favor our chances to "beat" this disease tomorrow.
Collapse
Affiliation(s)
- K Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
60
|
Amoêdo ND, Rodrigues MF, Pezzuto P, Galina A, da Costa RM, de Almeida FCL, El-Bacha T, Rumjanek FD. Energy metabolism in H460 lung cancer cells: effects of histone deacetylase inhibitors. PLoS One 2011; 6:e22264. [PMID: 21789245 PMCID: PMC3138778 DOI: 10.1371/journal.pone.0022264] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. METHODOLOGY/PRINCIPAL FINDINGS Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O(2) consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. CONCLUSION NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype.
Collapse
Affiliation(s)
- Nívea Dias Amoêdo
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Mariana Figueiredo Rodrigues
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rodrigo Madeiro da Costa
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | - Tatiana El-Bacha
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Franklin David Rumjanek
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1432-43. [PMID: 21771581 DOI: 10.1016/j.bbabio.2011.07.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 01/30/2023]
Abstract
The SDHA, SDHB, SDHC, SDHD genes encode the four subunits of succinate dehydrogenase (SDH; mitochondrial complex II), a mitochondrial enzyme involved in two essential energy-producing metabolic processes of the cell, the Krebs cycle and the electron transport chain. Germline loss-of-function mutations in any of the SDH genes or assembly factor (SDHAF2) cause hereditary paraganglioma/phaeochromocytoma syndrome (HPGL/PCC) through a mechanism which is largely unknown. Owing to the central function of SDH in cellular energy metabolism it is important to understand its role in tumor suppression. Here is reported an overview of genetics, clinical and molecular progress recently performed in understanding the basis of HPGL/PCC tumorigenesis.
Collapse
Affiliation(s)
- Chiara Bardella
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | |
Collapse
|
62
|
Abstract
Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.
Collapse
|
63
|
Frezza C, Pollard PJ, Gottlieb E. Inborn and acquired metabolic defects in cancer. J Mol Med (Berl) 2011; 89:213-20. [PMID: 21301796 PMCID: PMC3043233 DOI: 10.1007/s00109-011-0728-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 01/27/2023]
Abstract
The observation that altered metabolism is the fundamental cause of cancer was made by Otto Warburg nearly a century ago. However, the subsequent identification of oncogenes and tumor suppressor genes has displaced Warburg's theory pointing towards genetic aberrations as the underlining cause of cancer. Nevertheless, in the last decade, cancer-associated mutations have been identified in genes coding for tricarboxylic acid cycle (TCA cycle, also known as Krebs cycle) and closely related enzymes that have essential roles in cellular metabolism. These observations have revived interest in Warburg's hypothesis and prompted a flurry of functional studies in the hope of gaining mechanistic insight into the links between mitochondrial dysfunction, metabolic alterations, and cancer. In this review, we discuss the potential pro-oncogenic signaling role of some TCA cycle metabolites and their derivatives (oncometabolites). In particular, we focus on their effects on dioxygenases, a family of oxygen and α-ketoglutarate-dependent enzymes that control, among other things, the levels and activity of the hypoxia-inducible transcription factors and the activity of DNA and histone demethylases.
Collapse
Affiliation(s)
- Christian Frezza
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
64
|
Dong LF, Jameson VJA, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286:3717-28. [PMID: 21059645 PMCID: PMC3030374 DOI: 10.1074/jbc.m110.186643] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/28/2010] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 μM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.
Collapse
Affiliation(s)
| | | | - David Tilly
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Elahe Mahdavian
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Alvaro Marín-Hernández
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Luz Hernández-Esquivel
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Sara Rodríguez-Enríquez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Jan Stursa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Paul K. Witting
- the Discipline of Pathology, Bosch Research Institute, Sydney Medical School, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Bela Stantic
- Institute for Integrated and Intelligent Systems, and
| | | | | | | | - Jeffrey C. Dyason
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Miroslav Ledvina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Brian A. Salvatore
- the Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115
| | - Rafael Moreno-Sánchez
- the Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, and
| | - Mark J. Coster
- the Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Queensland, Australia
| | | | - Robin A. J. Smith
- the Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Jiri Neuzil
- From the School of Medical Science
- Institute for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| |
Collapse
|
65
|
Abstract
Paragangliomas (PGLs) are chromaffin cell tumors arising from ganglia; when arising in the adrenal gland they are called pheochromocytomas. In recent years the opinion that metastatic disease is rare in PGL had to be revised, particularly in patients presenting with extra-adrenal PGL, with PGLs exceeding 5 cm in diameter, and/or those carrying an SDHB germline mutation. Metastases are expected to be present at the time of diagnosis in more than 10% of these patients. Measurement of plasma and urinary metanephrine levels is well established in diagnosing PGL. Recently, a dopaminergic phenotype (excess dopamine or methoxytyramine) was recognized as a good indicator of metastatic disease. Vast progress in targeted positron emission tomography (PET) imaging (eg, (18)F-FDA, (18)F-FDOPA, (18)F-FDG) now allows for reliable early detection of metastatic disease. However, once metastases are present, treatment options are limited. Survival of patients with metastatic PGL is variable, and frequently short. Here we review recent advances involving findings about the genetic background, the molecular pathogenesis, new diagnostic indicators, pathologic markers, and emerging treatment options for metastatic PGL.
Collapse
Affiliation(s)
- Stephanie M J Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892–1109, USA
| | | | | |
Collapse
|
66
|
Abstract
Hypoxia and pheochromocytoma/paraganglioma have a long common history. Since the description, almost 40 years ago, of an increased incidence of head and neck paragangliomas in chronic hypoxia, discoveries on oxygen-sensing and on hereditary paraganglioma in the beginning of years 2000 provided the proof of concept of a strong link between these neuroendocrine tumors and the hypoxic pathway. It was demonstrated that both SDH and VHL genes mutations lead to the abnormal stabilization and activation of hypoxia-inducible factors, and to the subsequent regulation of multiple target genes, the products of which are implicated in proliferation, apoptosis, angiogenesis, energy metabolism or invasiveness and metastases. Altogether, physiological, genetic, cellular and molecular data collected over years all point to a central role of the hypoxic or pseudohypoxic pathway in pheochromocytoma and paraganglioma tumorigenesis.
Collapse
Affiliation(s)
- Judith Favier
- INSERM, U970, Paris Cardiovascular Research Center - PARCC, Paris, France.
| | | |
Collapse
|
67
|
López-Jiménez E, Gómez-López G, Leandro-García LJ, Muñoz I, Schiavi F, Montero-Conde C, de Cubas AA, Ramires R, Landa I, Leskelä S, Maliszewska A, Inglada-Pérez L, de la Vega L, Rodríguez-Antona C, Letón R, Bernal C, de Campos JM, Diez-Tascón C, Fraga MF, Boullosa C, Pisano DG, Opocher G, Robledo M, Cascón A. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010; 24:2382-91. [PMID: 20980436 PMCID: PMC5417372 DOI: 10.1210/me.2010-0256] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/30/2010] [Indexed: 12/18/2022] Open
Abstract
The six major genes involved in hereditary susceptibility for pheochromocytoma (PCC)/paraganglioma (PGL) (RET, VHL, NF1, SDHB, SDHC, and SDHD) have been recently integrated into the same neuronal apoptotic pathway where mutations in any of these genes lead to cell death. In this model, prolyl hydroxylase 3 (EglN3) abrogation plays a pivotal role, but the molecular mechanisms underlying its inactivation are currently unknown. The aim of the study was to decipher specific alterations associated with the different genetic classes of PCCs/PGLs. With this purpose, 84 genetically characterized tumors were analyzed by means of transcriptional profiling. The analysis revealed a hypoxia-inducible factor (HIF)-related signature common to succinate dehydrogenase (SDH) and von Hippel-Lindau (VHL) tumors, that differentiated them from RET and neurofibromatosis type 1 cases. Both canonical HIF-1α and HIF-2α target genes were overexpressed in the SDH/VHL cluster, suggesting that a global HIF deregulation accounts for this common profile. Nevertheless, when we compared VHL tumors with SDHB cases, which often exhibit a malignant behavior, we found that HIF-1α target genes showed a predominant activation in the VHL PCCs. Expression data from 67 HIF target genes was sufficient to cluster SDHB and VHL tumors into two different groups, demonstrating different pseudo-hypoxic signatures. In addition, VHL-mutated tumors showed an unexpected overexpression of EglN3 mRNA that did not lead to significantly different EglN3 protein levels. These findings pave the way for more specific therapeutic approaches for malignant PCCs/PGLs management based on the patient's genetic alteration.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 2010; 28:1132-42. [PMID: 20506541 DOI: 10.1002/stem.441] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence points to reactive oxygen species (ROS) as important signaling molecules for cardiomyocyte differentiation in embryonic stem (ES) cells. Given that ES cells are normally maintained and differentiated in medium containing supraphysiological levels of glucose (25 mM), a condition which is known to result in enhanced cellular ROS formation, we questioned whether this high glucose concentration was necessary for cardiomyocyte lineage potential. We show here that ES cells cultured in physiological glucose (5 mM), maintained their general stemness qualities but displayed an altered mitochondrial metabolism, which resulted in decreased ROS production. Furthermore, ES and induced pluripotent stem (iPS) cells differentiated in lower glucose concentrations failed to generate cardiomyocyte structures; an effect mimicked with antioxidant treatments using catalase, N-acetyl cysteine and mitoubiquinone, under high glucose conditions in ES cells. Molecular analysis revealed that ES cells differentiated in 5 mM glucose had reduced expression of the pro-cardiac NOX4 gene and diminished phosphorylation of p38 mitogen-activated protein kinase (MAPK), together with specific changes in the cardiac transcriptional network. These outcomes could be reversed by supplementation of low glucose cultures with ascorbic acid, paradoxically acting as a pro-oxidant. Furthermore, forced expression of an upstream p38 MAPK kinase (MKK6) could bypass the requirement for ROS during differentiation to cardiomyocytes under low glucose conditions, illustrating a key role for p38 in the cardiac differentiation program. Together these data demonstrate that endogenous ROS control is important for cardiomyocyte formation from ES cells, and furthermore that supraphysiological glucose, by supplying ROS, is absolutely required.
Collapse
Affiliation(s)
- Francisco Luna Crespo
- Laboratory of Cellular Signaling, Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, (CNIC) Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
69
|
Philimonenko AA, Janacek J, Snyers L, Almeder M, Berger W, Schmidt W, Schöfer C, Hozák P, Weipoltshammer K. Chromosomal dynamics of cell cycle regulator gene p21 during transcriptional activation. J Struct Biol 2010; 173:382-90. [PMID: 20974257 DOI: 10.1016/j.jsb.2010.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
The radial position of a gene within its chromosome territory (CT) in the interphase nucleus is thought to depend on the transcriptional activity of the gene and on transcriptional activity, gene density, and conformation of the chromosomal surrounding. In this study we analyzed the position of the cell cycle regulator gene p21 within the CT of human chromosome 6 (HSA6) upon transcriptional activation. Whereas the majority of active p21 genes is located in the interior of the CT of HSA6, induction of p21 transcription correlates with increased variation of gene localization within the CT and with a higher percentage of p21 genes located at the periphery of the CT. Additionally it demonstrates once more that transcription can take place throughout CTs. Comparison of the p21 locus with two non-coding regions on HSA6 showed that both non-coding sequences are located more frequently in the interior of the CT than p21 genes although they are situated in chromosomal neighborhoods with widely differing gene density and regional transcriptional activity. Thus our data support models describing an influence of the transcriptional activity of a gene on the localization within its CT. However, our data also indicate that additional factors such as chromatin remodeling are implicated in the positioning of genes within the respective chromosome territory.
Collapse
Affiliation(s)
- Anatoly A Philimonenko
- Department of the Biology of the Cell Nucleus, Institute of Molecular Genetics, vvi, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 2010; 12:352-361. [PMID: 20889127 DOI: 10.1016/j.cmet.2010.09.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 04/07/2010] [Accepted: 06/23/2010] [Indexed: 01/09/2023]
Abstract
Cancer cell metabolism is often characterized by a shift from an oxidative to a glycolytic bioenergetics pathway, a phenomenon known as the Warburg effect. miR-378(∗) is embedded within PPARGC1b which encodes PGC-1β, a transcriptional regulator of oxidative energy metabolism. Here we show that miR-378(∗) expression is regulated by ERBB2 and induces a metabolic shift in breast cancer cells. miR-378(∗) performs this function by inhibiting the expression of two PGC-1β partners, ERRγ and GABPA, leading to a reduction in tricarboxylic acid cycle gene expression and oxygen consumption as well as an increase in lactate production and in cell proliferation. In situ hybridization experiments show that miR-378(∗) expression correlates with progression of human breast cancer. These results identify miR-378(∗) as a molecular switch involved in the orchestration of the Warburg effect in breast cancer cells via interference with a well-integrated bioenergetics transcriptional pathway.
Collapse
|
71
|
Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 2010; 18:338-49. [PMID: 20706275 DOI: 10.1038/cdd.2010.93] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation of reactive oxygen species (ROS) and the change of the intracellular pH (pH(i)) are common phenomena during apoptosis. How they are interconnected, however, is poorly understood. Here we show that numerous anticancer drugs and cytokines such as Fas ligand and tumour necrosis factor α provoke intracellular acidification and cause the formation of mitochondrial ROS. In parallel, we found that the succinate:ubiquinone oxidoreductase (SQR) activity of the mitochondrial respiratory complex II is specifically impaired without affecting the second enzymatic activity of this complex as a succinate dehydrogenase (SDH). Only in this configuration is complex II an apoptosis mediator and generates superoxides for cell death. This is achieved by the pH(i) decline that leads to the specific dissociation of the SDHA/SDHB subunits, which encompass the SDH activity, from the membrane-bound components of complex II that are required for the SQR activity.
Collapse
Affiliation(s)
- A Lemarie
- Department of Experimental Medicine and Toxicology, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | |
Collapse
|
72
|
Słomnicki LP, Leśniak W. S100A6 (calcyclin) deficiency induces senescence-like changes in cell cycle, morphology and functional characteristics of mouse NIH 3T3 fibroblasts. J Cell Biochem 2010; 109:576-84. [PMID: 20013795 DOI: 10.1002/jcb.22434] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
S100A6 (calcyclin) is a calcium binding protein with two EF-hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non-transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by beta-galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function.
Collapse
Affiliation(s)
- Lukasz P Słomnicki
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur St, 02-093 Warsaw, Poland
| | | |
Collapse
|
73
|
Bayley JP, Devilee P. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev 2010; 20:324-9. [PMID: 20304625 DOI: 10.1016/j.gde.2010.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 01/29/2010] [Accepted: 02/20/2010] [Indexed: 12/17/2022]
Abstract
The past decade has seen a revival of interest in the metabolic adaptations of tumours, named for their original discoverer, Otto Warburg. Warburg reported a high rate of glycolysis in tumours, and a concurrent defect in mitochondrial respiration. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumours suppressor genes that may conform to Warburg's hypothesis. Succinate dehydrogenase and fumarate hydratase are mitochondrial proteins of the TCA cycle and the respiratory chain and when mutated lead to tumours of the nervous system known as paragangliomas and pheochromocytomas, and in the case of fumarate hydratase, cutaneous and uterine leiomyomas and renal cell cancer. Recently a novel mitochondrial protein, SDHAF2 (SDH5), was also shown to be a paraganglioma-related tumour suppressor gene. Another mitochondrial and TCA cycle-related protein, isocitrate dehydrogenase 2 is, together with IDH1, frequently mutated in the brain tumour glioblastoma. There are currently many competing hypotheses on the role of these genes in tumourigenesis, but frequent themes are the stabilization of hypoxia inducible factor 1 and upregulation of genes involved in angiogenesis, glucose transport and glycolysis. Other postulated mechanisms include the inhibition of developmental apoptosis, altered gene expression due to histone deregulation and the acquisition of novel catalytic properties. Here we discuss these diverse hypotheses and highlight very recent findings on the possible effects of IDH gene mutations.
Collapse
Affiliation(s)
- Jean-Pierre Bayley
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Building 2, Leiden, The Netherlands
| | | |
Collapse
|
74
|
Paranagama MP, Sakamoto K, Amino H, Awano M, Miyoshi H, Kita K. Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 2009; 10:158-65. [PMID: 20006739 DOI: 10.1016/j.mito.2009.12.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/22/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) production from mitochondrial complex II (succinate-quinone reductase, SQR) has become a focus of research recently since it is implicated in carcinogenesis. To date, the FAD site is proposed as the ROS producing site in complex II, based on studies done on Escherichia coli, whereas the quinone binding site is proposed as the site of ROS production based on studies in Saccharomyces cerevisiae. Using the submitochondrial particles from the adult worms and L(3) larvae of the parasitic nematode Ascaris suum, we found that ROS are produced from more than one site in the mitochondrial complex II. Moreover, the succinate-dependent ROS production from the complex II of the A. suum adult worm was significantly higher than that from the complex II of the L(3) larvae. Considering the conservation of amino acids crucial for the SQR activity and the high levels of ROS production from the mitochondrial complex II of the A. suum adult worm together with the absence of complexes III and IV activities in its respiratory chain, it is a good model to examine the reactive oxygen species production from the mitochondrial complex II.
Collapse
Affiliation(s)
- Madhavi P Paranagama
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
75
|
Leśniak W, Słomnicki ŁP, Filipek A. S100A6 – New facts and features. Biochem Biophys Res Commun 2009; 390:1087-92. [DOI: 10.1016/j.bbrc.2009.10.150] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 01/15/2023]
|
76
|
Cervera AM, Bayley JP, Devilee P, McCreath KJ. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 2009; 8:89. [PMID: 19849834 PMCID: PMC2770992 DOI: 10.1186/1476-4598-8-89] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/22/2009] [Indexed: 12/21/2022] Open
Abstract
Remodelling of mitochondrial metabolism is a hallmark of cancer. Mutations in the genes encoding succinate dehydrogenase (SDH), a key Krebs cycle component, are associated with hereditary predisposition to pheochromocytoma and paraganglioma, through mechanisms which are largely unknown. Recently, the jumonji-domain histone demethylases have emerged as a novel family of 2-oxoglutarate-dependent chromatin modifiers with credible functions in tumourigenesis. Using pharmacological and siRNA methodologies we show that increased methylation of histone H3 is a general consequence of SDH loss-of-function in cultured mammalian cells and can be reversed by overexpression of the JMJD3 histone demethylase. ChIP analysis revealed that the core promoter of IGFBP7, which encodes a secreted protein upregulated after loss of SDHB, showed decreased occupancy by H3K27me3 in the absence of SDH. Finally, we provide the first evidence that the chief (type I) cell is the major methylated histone-immunoreactive constituent of paraganglioma. These results support the notion that loss of mitochondrial function alters epigenetic processes and might provide a signature methylation mark for paraganglioma.
Collapse
Affiliation(s)
- Ana M Cervera
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | | | | | | |
Collapse
|
77
|
Huang KT, Dobrovic A, Fox SB. No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer. BMC Res Notes 2009; 2:194. [PMID: 19778456 PMCID: PMC2760567 DOI: 10.1186/1756-0500-2-194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 09/25/2009] [Indexed: 01/15/2023] Open
Abstract
Background Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α (HIF-1α) prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA, SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH and FH expression in breast carcinomas. Findings No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC, SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-sensitive high resolution melting which detects both homogeneous and heterogeneous methylation. Conclusion These results show that inactivation via DNA methylation of the promoter CpG islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.
Collapse
Affiliation(s)
- Katie T Huang
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
78
|
Abstract
Paragangliomas have been linked to mutations affecting the succinate dehydrogenase complex. In a recent issue of Science, Rutter and coworkers showed that SDH5 is required for the flavination of SDHA, which is necessary for SDH assembly and function. Moreover, they detected SDH5 mutations in a large kindred with familial paraganglioma.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
79
|
van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EMCA, Sleddens HFBM, Derkx P, Rivière J, Dannenberg H, Petri BJ, Komminoth P, Pacak K, Hop WCJ, Pollard PJ, Mannelli M, Bayley JP, Perren A, Niemann S, Verhofstad AA, de Bruïne AP, Maher ER, Tissier F, Méatchi T, Badoual C, Bertherat J, Amar L, Alataki D, Van Marck E, Ferrau F, François J, de Herder WW, Peeters MPFMV, van Linge A, Lenders JWM, Gimenez-Roqueplo AP, de Krijger RR, Dinjens WNM. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009; 10:764-71. [PMID: 19576851 DOI: 10.1016/s1470-2045(09)70164-0] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Phaeochromocytomas and paragangliomas are neuro-endocrine tumours that occur sporadically and in several hereditary tumour syndromes, including the phaeochromocytoma-paraganglioma syndrome. This syndrome is caused by germline mutations in succinate dehydrogenase B (SDHB), C (SDHC), or D (SDHD) genes. Clinically, the phaeochromocytoma-paraganglioma syndrome is often unrecognised, although 10-30% of apparently sporadic phaeochromocytomas and paragangliomas harbour germline SDH-gene mutations. Despite these figures, the screening of phaeochromocytomas and paragangliomas for mutations in the SDH genes to detect phaeochromocytoma-paraganglioma syndrome is rarely done because of time and financial constraints. We investigated whether SDHB immunohistochemistry could effectively discriminate between SDH-related and non-SDH-related phaeochromocytomas and paragangliomas in large retrospective and prospective tumour series. METHODS Immunohistochemistry for SDHB was done on 220 tumours. Two retrospective series of 175 phaeochromocytomas and paragangliomas with known germline mutation status for phaeochromocytoma-susceptibility or paraganglioma-susceptibility genes were investigated. Additionally, a prospective series of 45 phaeochromocytomas and paragangliomas was investigated for SDHB immunostaining followed by SDHB, SDHC, and SDHD mutation testing. FINDINGS SDHB protein expression was absent in all 102 phaeochromocytomas and paragangliomas with an SDHB, SDHC, or SDHD mutation, but was present in all 65 paraganglionic tumours related to multiple endocrine neoplasia type 2, von Hippel-Lindau disease, and neurofibromatosis type 1. 47 (89%) of the 53 phaeochromocytomas and paragangliomas with no syndromic germline mutation showed SDHB expression. The sensitivity and specificity of the SDHB immunohistochemistry to detect the presence of an SDH mutation in the prospective series were 100% (95% CI 87-100) and 84% (60-97), respectively. INTERPRETATION Phaeochromocytoma-paraganglioma syndrome can be diagnosed reliably by an immunohistochemical procedure. SDHB, SDHC, and SDHD germline mutation testing is indicated only in patients with SDHB-negative tumours. SDHB immunohistochemistry on phaeochromocytomas and paragangliomas could improve the diagnosis of phaeochromocytoma-paraganglioma syndrome. FUNDING The Netherlands Organisation for Scientific Research, Dutch Cancer Society, Vanderes Foundation, Association pour la Recherche contre le Cancer, Institut National de la Santé et de la Recherche Médicale, and a PHRC grant COMETE 3 for the COMETE network.
Collapse
Affiliation(s)
- Francien H van Nederveen
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|