51
|
Zhang T, Wang F, Wu JY, Qiu ZC, Wang Y, Liu F, Ge XS, Qi XW, Mao Y, Hua D. Clinical correlation of B7-H3 and B3GALT4 with the prognosis of colorectal cancer. World J Gastroenterol 2018; 24:3538-3546. [PMID: 30131660 PMCID: PMC6102500 DOI: 10.3748/wjg.v24.i31.3538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression and clinical significance of B7 homolog 3 (B7-H3) and β-1,3-galactosyltransferase-4 (B3GALT4) in colorectal cancer (CRC) patients.
METHODS Using tissue microarray, we identified the expression of B7-H3 and B3GALT4 in 223 CRC patient samples by immunohistochemistry and evaluated the possible correlation between B7-H3 and B3GALT4 and clinical outcomes. Further, the mRNA and protein expression were identified to establish the regulatory relationship of B7-H3 with B3GALT4 in vitro.
RESULTS A significant positive correlation between B7-H3 and B3GALT4 was observed in CRC specimens (r = 0.219, P = 0.001). High expression of B7-H3 was identified as a significant independent predictor of poor overall survival (OS) [hazard ratio (HR) = 1.781; 95%CI: 1.027-3.089; P = 0.040]. Moreover, high expression of B3GALT4 was also recognized as an independent predictor of inferior OS (HR = 1.597; 95%CI: 1.007-2.533; P = 0.047). Additionally, CRC patients expressing both high B7-H3 and high B3GALT4 contributed to a significant decrease in OS (HR = 2.283; 95%CI: 1.289-4.042; P = 0.005). In CRC cell lines with stable expression of high B7-H3, the mRNA and protein expressions of B3GALT4 were significantly upregulated. Similarly, the expression of B3GALT4 was significantly reduced when expression of B7-H3 was knocked down.
CONCLUSION The expression of B3GALT4 in CRC is positively correlated with B7-H3 expression in vitro. B7-H3/B3GLAT4 may be used as dual prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Fang Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jing-Yi Wu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhi-Chao Qiu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yan Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Fen Liu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Xiao-Song Ge
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Xiao-Wei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Dong Hua
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| |
Collapse
|
52
|
Detection of Glycoproteins in Polyacrylamide Gels Using Pro-Q Emerald 300 Dye, a Fluorescent Periodate Schiff-Base Stain. Methods Mol Biol 2018. [PMID: 30097936 DOI: 10.1007/978-1-4939-8745-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pro-Q Emerald 300 glycoprotein stain generates a bright-green fluorescent signal upon reacting with periodic acid-oxidized carbohydrate groups on proteins. With this dye it is possible to detect proteins directly in the gel without the need to transfer them to a membrane. This dye is more sensitive than the standard periodic-acid Schiff's base which uses acidic fuchsin dye.
Collapse
|
53
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
54
|
The Thomsen-Friedenreich Antigen-Specific Antibody Signatures in Patients with Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9579828. [PMID: 30105268 PMCID: PMC6076901 DOI: 10.1155/2018/9579828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Alterations in the glycosylation of serum total immunoglobulins show these antibodies to have a diagnostic potential for cancer but the disease-related Abs to the tumor-associated antigens, including glycans, have still poorly been investigated in this respect. We analysed serum samples from patients with breast carcinoma (n = 196) and controls (n = 64) for the level of Thomsen-Friedenreich (TF) antigen-specific antibody isotypes, their sialylation, interrelationships, and the avidity by using ELISA with the synthetic TF-polyacrylamide conjugate as an antigen and the sialic acid-specific Sambucus nigra agglutinin (SNA) and ammonium thiocyanate as a chaotrope. An increased sialylation of IgG and IgM, but a lower SNA reactivity of IgA TF antibodies, and a higher level and avidity of the TF-specific IgA were found in cancer patients. Other cancer-related signatures were the highly significant increase of the IgG/IgA ratio and the very low SNA/IgA index in cancer, including patients with an early stage of the disease. These changes showed a good diagnostic potential with about 80% accuracy. Thus, the level of naturally occurring anti-TF antigen antibodies, their sialylation profile, isotype distribution, and avidity displayed cancer-specific changes that could serve as novel noninvasive Ab-based biomarkers for early breast cancer.
Collapse
|
55
|
Samraj AN, Bertrand KA, Luben R, Khedri Z, Yu H, Nguyen D, Gregg CJ, Diaz SL, Sawyer S, Chen X, Eliassen H, Padler-Karavani V, Wu K, Khaw KT, Willett W, Varki A. Polyclonal human antibodies against glycans bearing red meat-derived non-human sialic acid N-glycolylneuraminic acid are stable, reproducible, complex and vary between individuals: Total antibody levels are associated with colorectal cancer risk. PLoS One 2018; 13:e0197464. [PMID: 29912879 PMCID: PMC6005533 DOI: 10.1371/journal.pone.0197464] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-glycolylneuraminic acid (Neu5Gc) is a non-human red-meat-derived sialic acid immunogenic to humans. Neu5Gc can be metabolically incorporated into glycan chains on human endothelial and epithelial surfaces. This represents the first example of a "xeno-autoantigen", against which circulating human "xeno-autoantibodies" can react. The resulting inflammation ("xenosialitis") has been demonstrated in human-like Neu5Gc-deficient mice and contributed to carcinoma progression via antibody-mediated inflammation. Anti-Neu5Gc antibodies have potential as biomarkers for diseases associated with red meat consumption such as carcinomas, atherosclerosis, and type 2 diabetes. METHODS ELISA assays measured antibodies against Neu5Gc or Neu5Gc-glycans in plasma or serum samples from the Nurses' Health Studies, the Health Professionals Follow-up Study, and the European Prospective Investigation into Cancer and Nutrition, including inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over 1-3 years in archived samples. We also assessed associations between antibody levels and coronary artery disease risk (CAD) or red meat intake. A glycan microarray was used to detected antibodies against multiple Neu5Gc-glycan epitopes. A nested case-control study design assessed the association between total anti-Neu5Gc antibodies detected in the glycan array assay and the risk of colorectal cancer (CRC). RESULTS ELISA assays showed a wide range of anti-Neu5Gc responses and good inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over time, but these antibody levels did not correlate with CAD risk or red meat intake. Antibodies against Neu5Gc alone or against individual Neu5Gc-bearing epitopes were also not associated with colorectal cancer (CRC) risk. However, a sialoglycan microarray study demonstrated positive association with CRC risk when the total antibody responses against all Neu5Gc-glycans were combined. Individuals in the top quartile of total anti-Neu5Gc IgG antibody concentrations had nearly three times the risk compared to those in the bottom quartile (Multivariate Odds Ratio comparing top to bottom quartile: 2.98, 95% CI: 0.80, 11.1; P for trend = 0.02). CONCLUSIONS Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red meat-associated diseases must consider diversity in individual antibody profiles against different Neu5Gc-bearing glycans. Traditional ELISA assays for antibodies directed against Neu5Gc alone, or against specific Neu5Gc-glycans may not be adequate to define risk associations. Our finding of a positive association of total anti-Neu5Gc antibodies with CRC risk also warrants confirmation in larger prospective studies.
Collapse
Affiliation(s)
- Annie N. Samraj
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kimberly A. Bertrand
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Zahra Khedri
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Dzung Nguyen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Christopher J. Gregg
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sandra L. Diaz
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Sherilyn Sawyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vered Padler-Karavani
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Walter Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ajit Varki
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, California, United States of America
| |
Collapse
|
56
|
Yin Z, Wu X, Kaczanowska K, Sungsuwan S, Comellas Aragones M, Pett C, Yu J, Baniel C, Westerlind U, Finn M, Huang X. Antitumor Humoral and T Cell Responses by Mucin-1 Conjugates of Bacteriophage Qβ in Wild-type Mice. ACS Chem Biol 2018; 13:1668-1676. [PMID: 29782143 DOI: 10.1021/acschembio.8b00313] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucin-1 (MUC1) is one of the top ranked tumor associated antigens. In order to generate effective anti-MUC1 immune responses as potential anticancer vaccines, MUC1 peptides and glycopeptides have been covalently conjugated to bacteriophage Qβ. Immunization of mice with these constructs led to highly potent antibody responses with IgG titers over one million, which are among the highest anti-MUC1 IgG titers reported to date. Furthermore, the high IgG antibody levels persisted for more than six months. The constructs also elicited MUC1 specific cytotoxic T cells, which can selectively kill MUC1 positive tumor cells. The unique abilities of Qβ-MUC1 conjugates to powerfully induce both antibody and cytotoxic T cell immunity targeting tumor cells bode well for future translation of the constructs as anticancer vaccines.
Collapse
Affiliation(s)
| | | | - Katarzyna Kaczanowska
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Marta Comellas Aragones
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
| | | | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227, Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - M.G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Chemistry & Biochemistry and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
57
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
58
|
Wang J, Shewell LK, Paton AW, Paton JC, Day CJ, Jennings MP. Specificity and utility of SubB2M, a new N-glycolylneuraminic acid lectin. Biochem Biophys Res Commun 2018; 500:765-771. [PMID: 29684349 DOI: 10.1016/j.bbrc.2018.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/29/2023]
Abstract
The B subunit of the subtilase cytotoxin (SubB) recognises N-glycolylneuraminic acid (Neu5Gc) containing glycans, the most prominent form of aberrant glycosylation in human cancers. We have previously engineered SubB by construction of a SubBΔS106/ΔT107 mutant (SubB2M) for greater specificity and enhanced recognition of Neu5Gc containing glycans. In this study, we further explore the utility of SubB2M as a Neu5Gc lectin by showing its improved specificity and recognition for Neu5Gc containing glycans over the wild-type SubB protein and an anti-Neu5Gc IgY antibody in a N-acetylneuraminic acid (Neu5Ac)/Neu5Gc glycan array and by surface plasmon resonance. Far-western blot analysis showed that SubB2M preferentially binds to bovine serum glycoproteins over human serum glycoproteins. SubB2M was also able to detect Neu5Gc containing bovine glycoproteins spiked into normal human serum with greater sensitivity than the wild-type SubB and the anti-Neu5Gc IgY antibody. These results suggest that SubB2M will be a useful tool for the testing of serum and other bodily fluids for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, S.A., 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, S.A., 5005, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
59
|
Nakajima K, Nangia-Makker P, Hogan V, Raz A. Cancer Self-Defense: An Immune Stealth. Cancer Res 2017; 77:5441-5444. [PMID: 28838888 DOI: 10.1158/0008-5472.can-17-1324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
The hurdles in realizing successful cancer immunotherapy stem from the fact that cancer patients are either refractory to immune response and/or develop resistance. Here, we propose that these phenomena are due, in part, to the deployment/secretion of a "decoy flare," for example, anomalous cancer-associated antigens by the tumor cells. The cancer secretome, which resembles the parent cell make-up, is composed of soluble macromolecules (proteins, glycans, lipids, DNAs, RNAs, etc.) and insoluble vesicles (exosomes), thus hindering cancer detection/recognition by immunotherapeutic agents, resulting in a "cancer-stealth" effect. Immunotherapy, or any treatment that relies on antigens' expression/function, could be improved by the understanding of the properties of the cancer secretome, as its clinical evaluation may change the therapeutic landscape. Cancer Res; 77(20); 5441-4. ©2017 AACR.
Collapse
Affiliation(s)
- Kosei Nakajima
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Pratima Nangia-Makker
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Victor Hogan
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Avraham Raz
- Department of Oncology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan. .,Department of Pathology, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
60
|
Yadav S, Masud MK, Islam MN, Gopalan V, Lam AKY, Tanaka S, Nguyen NT, Hossain MSA, Li C, Yamauchi Y, Shiddiky MJA. Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum. NANOSCALE 2017. [PMID: 28627551 DOI: 10.1039/c7nr03006a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Autoantibodies are produced against tumor associated antigens (TAAs) long before the appearance of any symptoms and thus can serve as promising, non-invasive biomarkers for early diagnosis of cancer. Current conventional methods for autoantibody detection are highly invasive and mostly provide diagnosis in the later stages of cancer. Herein we report a new electrochemical method for early detection of p53 autoantibodies against colon cancer using a strategy that combines the strength of gold-loaded nanoporous iron oxide nanocube (Au@NPFe2O3NC)-based capture and purification while incorporating the inherent simplicity, inexpensive, and portable nature of the electrochemical and naked-eye colorimetric readouts. After the functionalisation of Au@NPFe2O3NC with p53 antigens, our method utilises a two-step strategy that involves (i) magnetic capture and isolation of autoantibodies using p53/Au@NPFe2O3NC as 'dispersible nanocapture agents' in serum samples and (ii) subsequent detection of autoantibodies through a peroxidase-catalyzed reaction on a commercially available disposable screen-printed electrode or naked-eye detection in an Eppendorf tube. This method has demonstrated a good sensitivity (LOD = 0.02 U mL-1) and reproducibility (relative standard deviation, %RSD = <5%, for n = 3) for detecting p53 autoantibodies in serum and has also been successfully applied to analyse a small cohort of clinical samples obtained from colorectal cancer. We believe that the highly inexpensive, rapid, sensitive, and specific nature of our assay could potentially aid in the development of an early diagnostic tool for cancer and related diseases.
Collapse
Affiliation(s)
- Sharda Yadav
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hidden IgG Antibodies to the Tumor-Associated Thomsen-Friedenreich Antigen in Gastric Cancer Patients: Lectin Reactivity, Avidity, and Clinical Relevance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6097647. [PMID: 28316982 PMCID: PMC5339540 DOI: 10.1155/2017/6097647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
Natural antibodies to the tumor-associated Thomsen-Friedenreich antigen (TF) are related to tumor immunosurveillance and cancer patients' survival. Hidden IgG antibodies (HAbs) to TF, their lectin reactivity, avidity, and clinical relevance were studied. HAbs were present in cancer patients and controls. A decreased level of IgG HAbs was detected in cancer. The HAbs level positively correlated with the sialospecific SNA lectin binding in purified total IgG (tIgG) in donors and cancer patients, indicating that HAbs are higher sialylated. The avidity of anti-TF IgG in tIgG samples was lower in cancer patients (P = 0.025) while no difference in the avidity of free anti-TF IgG was established. A negative correlation between the avidity of anti-TF IgG in tIgG and SNA binding in both groups was observed (P < 0.0001). The HAbs level negatively correlated with the anti-TF IgG avidity in tIgG only in donors (P = 0.003). Changes in the level of HAbs and Abs avidity showed a rather good stage- and gender-dependent diagnostic accuracy. Cancer patients with a lower anti-TF IgG avidity in tIgG showed a benefit in survival. Thus the TF-specific HAbs represent a particular subset of anti-TF IgG that differ from free serum anti-TF IgG in SNA reactivity, avidity, diagnostic potential, and relation to survival.
Collapse
|
62
|
Pochechueva T, Alam S, Schötzau A, Chinarev A, Bovin NV, Hacker NF, Jacob F, Heinzelmann-Schwarz V. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients. J Ovarian Res 2017; 10:8. [PMID: 28187738 PMCID: PMC5303257 DOI: 10.1186/s13048-017-0305-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/04/2017] [Indexed: 12/26/2022] Open
Abstract
Background Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. Results We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Conclusions Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.
Collapse
Affiliation(s)
- Tatiana Pochechueva
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Shahidul Alam
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Chinarev
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - Nicolai V Bovin
- Shemyakin- Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - Neville F Hacker
- Royal Hospital for Women, Gynecological Cancer Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland. .,Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland. .,Hospital for Women, Department of Gynecology and Gynaecological Oncology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
63
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
64
|
Pochechueva T, Chinarev A, Schoetzau A, Fedier A, Bovin NV, Hacker NF, Jacob F, Heinzelmann-Schwarz V. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients. PLoS One 2016; 11:e0164230. [PMID: 27764122 PMCID: PMC5072665 DOI: 10.1371/journal.pone.0164230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.
Collapse
Affiliation(s)
- Tatiana Pochechueva
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. MIklukho-Maklaya, 16/10, 117997, Moscow, Russian Federation
| | - Andreas Schoetzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Nicolai V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. MIklukho-Maklaya, 16/10, 117997, Moscow, Russian Federation
| | - Neville F. Hacker
- Royal Hospital for Women, Gynecological Cancer Centre, School of Women’s and Children’s Health, University of New South Wales, NSW 2031, Sydney, Australia
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Hospital for Women, Department of Gynecology and Gynecological Oncology, University Hospital Basel and University of Basel, Spitalstrasse 21, 4021, Basel, Switzerland
- * E-mail:
| |
Collapse
|
65
|
Anti-α-enolase is a prognostic marker in postoperative lung cancer patients. Oncotarget 2016; 6:35073-86. [PMID: 26551021 PMCID: PMC4741510 DOI: 10.18632/oncotarget.5316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/15/2015] [Indexed: 01/21/2023] Open
Abstract
Our previous studies suggest that antibodies against ENO1 (anti-ENO1 Ab) have a protective role in patients with non-small cell lung carcinoma. In this study, we evaluated the prognostic value of anti-ENO1 Ab levels in non-small cell lung carcinoma patients undergoing surgery. Circulating levels of anti-ENO1 Ab were assessed in 85 non-small cell lung carcinoma patients before and after surgery, and were correlated with clinical outcome. After surgery, patients with a higher increase of anti-ENO1 Ab had a lower hazard ratio and a better progression-free survival. Using animal models, we demonstrated that tumor cells reduce the circulating levels of anti-ENO1 Ab through physical absorption and neutralization of anti-ENO1 Ab with surface-expressed and secreted ENO1, respectively. Mice transplanted with ENO1-overexpressing tumors generated ENO1-specific regulatory T cells to suppress the production of anti-ENO1 Ab. Our results suggest that the increase of anti-ENO1 Ab may reflect anti-tumor immune responses and serve as a prognostic marker in postoperative lung cancer patients.
Collapse
|
66
|
Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling). Biomolecules 2016; 6:biom6030034. [PMID: 27483328 PMCID: PMC5039420 DOI: 10.3390/biom6030034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is one of the most abundant post-translational modifications that occur within the cell. Under normal physiological conditions, O-linked glycosylation of extracellular proteins is critical for both structure and function. During the progression of cancer, however, the expression of aberrant and truncated glycans is commonly observed. Mucins are high molecular weight glycoproteins that contain numerous sites of O-glycosylation within their extracellular domains. Transmembrane mucins also play a functional role in monitoring the surrounding microenvironment and transducing these signals into the cell. In cancer, these mucins often take on an oncogenic role and promote a number of pro-tumorigenic effects, including pro-survival, migratory, and invasive behaviors. Within this review, we highlight both the processes involved in the expression of aberrant glycan structures on mucins, as well as the potential downstream impacts on cellular signaling.
Collapse
|
67
|
Sterner E, Flanagan N, Gildersleeve JC. Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem Biol 2016; 11:1773-83. [PMID: 27220698 PMCID: PMC4949583 DOI: 10.1021/acschembio.6b00244] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Antibodies are used
extensively for a wide range of basic research
and clinical applications. While an abundant and diverse collection
of antibodies to protein antigens have been developed, good monoclonal
antibodies to carbohydrates are much less common. Moreover, it can
be difficult to determine if a particular antibody has the appropriate
specificity, which antibody is best suited for a given application,
and where to obtain that antibody. Herein, we provide an overview
of the current state of the field, discuss challenges for selecting
and using antiglycan antibodies, and summarize deficiencies in the
existing repertoire of antiglycan antibodies. This perspective was
enabled by collecting information from publications, databases, and
commercial entities and assembling it into a single database, referred
to as the Database of Anti-Glycan Reagents (DAGR). DAGR is a publicly
available, comprehensive resource for anticarbohydrate antibodies,
their applications, availability, and quality.
Collapse
Affiliation(s)
- Eric Sterner
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
68
|
A transplant “immunome” screening platform defines a targetable epitope fingerprint of multiple myeloma. Blood 2016; 127:3202-14. [DOI: 10.1182/blood-2015-10-676536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
Key Points
The myeloma transplant B-cell immunome is predictive for response to treatment. It may be exploited by immunosequencing and library technology as a source for unique target structures and antibodies for immunotherapy.
Collapse
|
69
|
Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity 2016; 44:1444-54. [PMID: 27332733 PMCID: PMC5358667 DOI: 10.1016/j.immuni.2016.05.014] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/30/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.
Collapse
Affiliation(s)
- Avery D Posey
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert D Schwab
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina C Boesteanu
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Boris Engels
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jennifer D Stone
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Kathleen M Haines
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria P Cogdill
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor J Chen
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Decheng Song
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael D Feldman
- Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Regina Young
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Keith
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Laura A Johnson
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
70
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
71
|
Haugstad KE, Hadjialirezaei S, Stokke BT, Brewer CF, Gerken TA, Burchell J, Picco G, Sletmoen M. Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc-GalNAc interactions. Glycobiology 2016; 26:1338-1350. [PMID: 27282157 DOI: 10.1093/glycob/cww065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanism(s) underlying the enhanced self-interactions of mucins possessing the Tn (GalNAcα1-Ser/Thr) or STn (NeuNAcα2-6GalNAcα1-Ser/Thr) cancer markers were investigated using optical tweezers (OT). The mucins examined included modified porcine submaxillary mucin containing the Tn epitope (Tn-PSM), ovine submaxillary mucin with the STn epitope (STn-OSM), and recombinant MUC1 analogs with either the Tn and STn epitope. OT experiments in which the mucins were immobilized onto polystyrene beads revealed identical self-interaction characteristics for all mucins. Identical binding strength and energy landscape characteristics were also observed for synthetic polymers displaying multiple GalNAc decorations. Polystyrene beads without immobilized mucins showed no self-interactions and also no interactions with mucin-decorated polystyrene beads. Taken together, the experimental data suggest that in these molecules, the GalNAc residue mediates interactions independent of the anchoring polymer backbone. Furthermore, GalNAc-GalNAc interactions appear to be responsible for self-interactions of mucins decorated with the STn epitope. Hence, Tn-MUC1 and STn-MUC1 undergo self-interactions mediated by the GalNAc residue in both epitopes, suggesting a possible molecular role in cancer. MUC1 possessing the T (Galβ1-3GalNAcα1-Ser/Thr) or ST antigen (NeuNAcα2-3Galβ1-3GalNAcα1-Ser/Thr) failed to show self-interactions. However, in the case of ST-MUC1, self-interactions were observed after subsequent treatment with neuraminidase and β-galactosidase. This enzymatic treatment is expected to introduce Tn-epitopes and these observations thus further strengthen the conclusion that the observed interactions are mediated by the GalNAc groups.
Collapse
Affiliation(s)
- Kristin E Haugstad
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Soosan Hadjialirezaei
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bjørn T Stokke
- Department of Physics, Biophysics and Medical Technology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas A Gerken
- Departments of Pediatrics, Biochemistry and Chemistry, W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4948, USA
| | - Joy Burchell
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Gianfranco Picco
- Breast Cancer Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Marit Sletmoen
- Department of Biotechnology, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
72
|
Xia J, Shi J, Wang P, Song C, Wang K, Zhang J, Ye H. Tumour-Associated Autoantibodies as Diagnostic Biomarkers for Breast Cancer: A Systematic Review and Meta-Analysis. Scand J Immunol 2016; 83:393-408. [PMID: 26991924 DOI: 10.1111/sji.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Tumour-associated autoantibodies may be promising biomarkers that could facilitate breast cancer (BC) diagnosis and improve patient outcomes. This review aims to identify the tumour-associated autoantibodies with the greatest diagnostic potential. Systematic searches were conducted using PubMed and Web of Science. The most studied tumour-associated autoantibody was included in a meta-analysis, and its clinical value was determined using Fagan's nomogram. The analysis included 84 studies regarding tumour-associated autoantibodies with the diagnostic value. Anti-p53 antibody was the most frequently studied autoantibody, followed by autoantibodies against MUC1, HER2 and cyclin B1. Although individual tumour-associated autoantibodies showed low diagnostic sensitivity, combinations of autoantibodies offered relatively high sensitivity. Enzyme-linked immunosorbent assay (ELISA) was the most common detection method, and nucleic acid programmable protein microarrays appeared preferable to common protein microarrays. As the most commonly studied autoantibody, anti-p53 antibody was included in a meta-analysis. When it had been detected using ELISA and cut-off values were defined as the mean +2 or 3 standard deviations, the summary area under the receiver operating characteristic curve for the presence of BC was 0.78. Fagan's nomogram showed post-test probabilities of 32% and 6% for positive and negative results, respectively. Mammography might be supplemented by the use of tumour-associated autoantibodies as biomarkers for BC diagnosis in younger women with increased risks of BC. Even though several studies have investigated the diagnostic use of tumour-associated autoantibodies as biomarkers for BC detection, a high-quality prospective study is needed to validate their diagnostic value in practice.
Collapse
Affiliation(s)
- J Xia
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - J Shi
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - P Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - C Song
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - K Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - J Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Province Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - H Ye
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
73
|
Gaudreau PO, Stagg J, Soulières D, Saad F. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements. BIOMARKERS IN CANCER 2016; 8:15-33. [PMID: 27168728 PMCID: PMC4859450 DOI: 10.4137/bic.s31802] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreau
- Hematologist and Medical Oncologist, Notre-Dame Hospital, CHUM Research Center, Montreal, QC, Canada
| | - John Stagg
- Associate Professor, Department of Pharmacy, Cancer Axis—Montreal Cancer Institute, Montreal, QC, Canada
| | - Denis Soulières
- Hematologist and Medical Oncologist, Notre-Dame Hospital, CHUM Research Center, Montreal, QC, Canada
- Associate Professor, Department of Medicine, University of Montreal, QC, Canada
| | - Fred Saad
- Professor and Chief of Urology, CHUM—Pavillon R, Montreal, QC, Canada
| |
Collapse
|
74
|
Liesche F, Kölbl AC, Ilmer M, Hutter S, Jeschke U, Andergassen U. Role of N-acetylgalactosaminyltransferase 6 in early tumorigenesis and formation of metastasis. Mol Med Rep 2016; 13:4309-14. [PMID: 27035742 DOI: 10.3892/mmr.2016.5044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/18/2016] [Indexed: 11/05/2022] Open
Abstract
Glycosylation is one of the most important posttranslational modifications of proteins and lipids that contributes to the structural diversity of cellular molecules. Enzymes of the glycosyltransferase class are responsible for altering glycosylation patterns by adding carbohydrate chains to the respective acceptor molecules. It is well known that glycosylation is commonly altered in cancerous tissue. Therefore, the present study aimed to determine the incidence of N‑acetylgalactosaminyltransferase 6 (GALNT6), a prominent member of the glycosyltransferase class, in breast cancer tissue of different developmental stages by immunohistochemistry. Although no correlation was identified between tumour characteristics and GALNT6 staining intensity, to the best of our knowledge, this is the first study to demonstrate that tissue from carcinoma in situ‑tumours and metastases were more heavily stained than late‑stage breast cancers. This may indicate an important role of glycosylation aberration in escaping the immune system at early phases of tumour development. The present study also hypothesised that nascent or early metastasizing tumours are normally recognized by the immune system of the patient, but glycosylation pattern changes may facilitate tumor escape from immune recognition. In follow‑up studies, our group will aim to confirm and consolidate these results in a larger patient cohort that may give greater insight into breast cancer characterization as well as tumour treatment.
Collapse
Affiliation(s)
- Friederike Liesche
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Matthias Ilmer
- Department of Surgery, Klinikum Grosshadern, Ludwig Maximilians University Munich, D-81377 Munich, Germany
| | - Stefan Hutter
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| |
Collapse
|
75
|
Zaenker P, Gray E, Ziman M. Autoantibody Production in Cancer—The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun Rev 2016; 15:477-83. [DOI: 10.1016/j.autrev.2016.01.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
|
76
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
77
|
Mir AR, Moinuddin, Habib S, Khan F, Alam K, Ali A. Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology 2016; 26:129-141. [PMID: 26408820 DOI: 10.1093/glycob/cwv082] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
Abstract
The role of aberrant protein modifications in cancer and its diagnosis have emerged as a promising research field. Nonenzymatic glyco-oxidation of proteins under oxidative stress has been associated with carcinogenesis through advanced glycation end products (AGE)-receptors for advanced glycation end products (RAGE) axis. Modified proteins that are immunogenic and stimulate cellular and humoral immune responses are being studied to develop early detection markers of cancer. This study has probed the structural alternations; leading to the formation of adducts and aggregates, in histone H2A upon in vitro modification by methylglyoxal (MG). The immunogenicity of modified histone H2A and its binding with cancer autoantibodies was also assessed. MG induced lysine side chain modifications, blocking of free amino groups and the formation of condensed cross structures in histone H2A; and its effect was inhibited by carbonyl scavengers. It led to the adduct formation and generation of N-epsilon-(carboxyethyl)lysine (CEL) and its decomposition forms as revealed by Matrix-assisted laser desorption ionization-mass spectrometry, high-performance liquid chromatography and LC-MS. MG-H2A showed amorphous aggregate formation under electron microscopy and altered binding with DNA in circular dichroism studies. The modified histone elicited high titer immunogen-specific antibodies in rabbits when compared with the native, thus pointing toward the generation of neo-epitopes in MG-H2A. The autoantibodies derived from cancer patients exhibited enhanced binding with MG-H2A as compared with the native histone in enzyme-linked immunosorbent assay and gel retardation assay. This reflects sharing of epitopes on MG-H2A and histones in cancer patients. The neo-epitopes on H2A may be responsible for induction and elevated levels of antibodies in cancer patients. Thus, MG-H2A may be considered as potential antigenic candidate for auto-immune response in cancer.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Farzana Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, AMU, Aligarh, Uttar Pradesh, India
| |
Collapse
|
78
|
Factors Affecting Anti-Glycan IgG and IgM Repertoires in Human Serum. Sci Rep 2016; 6:19509. [PMID: 26781493 PMCID: PMC4726023 DOI: 10.1038/srep19509] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Serum anti-glycan antibodies play important roles in many immune processes and are of particular interest as biomarkers for many diseases. Changes in anti-glycan antibodies can occur with the onset of disease or in response to stimuli such as pathogens and vaccination. Understanding relationships between anti-glycan antibody repertoires and genetic and environment factors is critical for basic research and clinical applications, but little information is available. In this study we evaluated the effects of age, race, gender, and blood type on anti-glycan antibody profiles in the serum of 135 healthy subjects. As expected, IgG and IgM antibody signals to blood group antigens correlated strongly with blood type. Interestingly, antibodies to other non-ABH glycans, such as the alpha-Gal antigen, also correlated with blood type. A statistically significant decline in IgM signals with age was observed for many antibody subpopulations, but not for IgG. Moreover, statistically significant correlations between race and IgG levels to certain LacNAc-containing glycans were observed. The results have important implications for designing studies and interpreting results in the area of biomarker discovery and for the development of vaccines. The study also highlights the importance of collecting and reporting patient information that could affect serum anti-glycan antibody levels.
Collapse
|
79
|
Kurtenkov O, Klaamas K. Increased Avidity of the Sambucus nigra Lectin-Reactive Antibodies to the Thomsen-Friedenreich Antigen as a Potential Biomarker for Gastric Cancer. DISEASE MARKERS 2015; 2015:761908. [PMID: 26663951 PMCID: PMC4667053 DOI: 10.1155/2015/761908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
AIM To determine whether the naturally occurring Thomsen-Friedenreich (TF) antigen-specific antibodies differ in avidity between cancer patients and controls to find a novel biomarker for stomach cancer. METHODS Serum samples were taken from patients with cancer and controls. The level of TF-specific antibodies and their sialylation were determined using ELISA with synthetic TF-polyacrylamide conjugate as antigen and sialic acid-specific Sambucus nigra agglutinin (SNA). The avidity was determined using ammonium thiocyanate as a chaotrope. RESULTS A significantly higher SNA lectin binding to anti-TF antibodies was found in cancer patients irrespective of disease stage. The avidity of only IgM TF-specific antibodies was significantly higher in cancer patients compared to controls. The SNA-positive anti-TF antibodies of cancer patients showed a significantly higher avidity, P < 0.001. The sensitivity and specificity of this increase for gastric cancer were 73.53% and 73.08%, respectively, with a 73.2% diagnostic accuracy. The higher avidity of SNA-reactive anti-TF antibodies was associated with a benefit in survival of stage 3 cancer patients. CONCLUSION The SNA-reactive TF-specific antibodies display a significantly higher avidity in gastric cancer patients compared to controls, which can be used as a potential serologic biomarker for gastric cancer. It appears that IgM is the main target responsible for the above changes.
Collapse
Affiliation(s)
- Oleg Kurtenkov
- Department of Oncology and Immunology, National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Kersti Klaamas
- Department of Oncology and Immunology, National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| |
Collapse
|
80
|
Olofsson S, Blixt O, Bergström T, Frank M, Wandall HH. Viral O-GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins. Rev Med Virol 2015; 26:34-48. [PMID: 26524377 DOI: 10.1002/rmv.1859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have a high potential for antigenic variation. Thus, sera from patients infected with EBV develop individual IgG responses addressing the different possible glycopeptide glycoforms of one short peptide backbone that reflect individual variations in the course of virus infection. In contrast, in HSV type 2 meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural variations at glycosylation sites. In conclusion, the viral O-glycosyl peptide epitopes may be of relevance for development of subunit vaccines and for improved serodiagnosis of viral diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Bergström
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
81
|
Fernandes E, Peixoto A, Neves M, Afonso LP, Santos LL, Ferreira JA. Humoral response against sialyl-Le(a) glycosylated protein species in esophageal cancer: Insights for immunoproteomic studies. Electrophoresis 2015; 36:2902-7. [PMID: 26333169 DOI: 10.1002/elps.201500270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022]
Abstract
Esophageal cancers (ECs) show poor prognosis and decreased overall survival due to late diagnosis and ineffective therapeutics, urging the introduction of novel biomarkers to aid disease management. The levels of sialyl-Lewis(a) antigen (sLe(a) ) are frequently increased in digestive tumours, which has been explored in serological non-invasive prognostication (CA19-9 test); however, with low sensitivity and specificity. Autoantibodies against cancer antigens are considered the next generation biomarkers, as they are present in circulation long before tumour-associated proteins. Based on these observations we have mined the serum of EC patients (n = 7) for antibodies against sLe(a) -glycosylated protein species. All EC were positive for sLe(a) , irrespectively of their histological nature but only two patients showed elevated CA19-9. Moreover, IgG titers, with emphasis on IgG1, were elevated in EC patients in comparison to the control group. SLe(a) -glycoproteins were then extracted from tumours of patients with negative CA19-9, isolated by immunoprecipitation and blotted with patients IgG. Autoantibodies against sLe(a) -glycosylated proteins were detected in all cases. Different SLe(a) -glycoproteins were observed for tumours of distinct histological natures, which now require identification and validation in larger patient sets. This preliminary data suggests that antoantibodies against sLe(a) glycosylated proteins hold potential for non-invasive diagnosis in CA19-9 negative cases and sets the rational for future immunoproteomic studies envisaging highly specific EC biomarkers.
Collapse
Affiliation(s)
- Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Mass Spectrometry Centre, QOPNA, Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| |
Collapse
|
82
|
Chugh S, Gnanapragassam VS, Jain M, Rachagani S, Ponnusamy MP, Batra SK. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim Biophys Acta Rev Cancer 2015; 1856:211-25. [PMID: 26318196 DOI: 10.1016/j.bbcan.2015.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
Abstract
Mucins are large glycoproteins expressed on the epithelia that provide a protective barrier against harsh insults from toxins and pathogenic microbes. These glycoproteins are classified primarily as being secreted and membrane-bound; both forms are involved in pathophysiological functions including inflammation and cancer. The high molecular weight of mucins is attributed to their large polypeptide backbone that is extensively covered by glycan moieties that modulate the function of mucins and, hence, play an important role in physiological functions. Deregulation of glycosylation machinery during malignant transformation results in altered mucin glycosylation. This review describes the functional implications and pathobiological significance of altered mucin glycosylation in cancer. Further, this review delineates various factors such as glycosyltransferases and tumor microenvironment that contribute to dysregulation of mucin glycosylation during cancer. Finally, this review discusses the scope of mucin glycan epitopes as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Vinayaga S Gnanapragassam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
83
|
Mir AR, Uddin M, Khan F, Alam K, Ali A. Dicarbonyl Induced Structural Perturbations Make Histone H1 Highly Immunogenic and Generate an Auto-Immune Response in Cancer. PLoS One 2015; 10:e0136197. [PMID: 26317779 PMCID: PMC4552624 DOI: 10.1371/journal.pone.0136197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/31/2015] [Indexed: 12/28/2022] Open
Abstract
Increased oxidative stress under hyperglycemic conditions, through the interaction of AGEs with RAGE receptors and via activation of interleukin mediated transcription signalling, has been reported in cancer. Proteins modifications are being explored for their roles in the development and progression of cancer and autoantibody response against them is gaining interest as a probe for early detection of the disease. This study has analysed the changes in histone H1 upon modification by methylglyoxal (MG) and its implications in auto-immunopathogenesis of cancer. Modified histone showed modifications in the aromatic residues, changed tyrosine microenvironment, intermolecular cross linking and generation of AGEs. It showed masking of hydrophobic patches and a hypsochromic shift in the in ANS specific fluorescence. MG aggressively oxidized histone H1 leading to the accumulation of reactive carbonyls. Far UV CD measurements showed di-carbonyl induced enhancement of the alpha structure and the induction of beta sheet conformation; and thermal denaturation (Tm) studies confirmed the thermal stability of the modified histone. FTIR analysis showed amide I band shift, generation of a carboxyethyl group and N-Cα vibrations in the modified histone. LCMS analysis confirmed the formation of Nε-(carboxyethyl)lysine and electron microscopic studies revealed the amorphous aggregate formation. The modified histone showed altered cooperative binding with DNA. Modified H1 induced high titre antibodies in rabbits and the IgG isolated form sera of rabbits immunized with modified H1 exhibited specific binding with its immunogen in Western Blot analysis. IgG isolated from the sera of patients with lung cancer, prostate cancer, breast cancer and cancer of head and neck region showed better recognition for neo-epitopes on the modified histone, reflecting the presence of circulating autoantibodies in cancer. Since reports suggest a link between AGE-RAGE axis and carcinogenesis, glycoxidation of histone H1 and its immunogenicity paves ways for understanding role of glycoxidatively damaged nuclear proteins in cancer.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| | - Farzana Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
84
|
|
85
|
|
86
|
|
87
|
|
88
|
|
89
|
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
|
90
|
|
91
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512# hidk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
92
|
|
93
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and (6108=6108)*5040# ieds] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
94
|
|
95
|
|
96
|
|
97
|
|
98
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5081=5081# wakk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
99
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 8055=8055 or not 3512=3512-- sjzm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
100
|
Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira PA. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [PMID: 26270678 DOI: 10.3390/biom5031783;select (case when (7747=1872) then 7747 else 1/(select 0) end)--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
Affiliation(s)
- Liliana R Loureiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Mylène A Carrascal
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Ana Barbas
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
| | - José S Ramalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Carlos Novo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille, Villeneuve d'Ascq 59655, France.
| | - Paula A Videira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|