51
|
Petushkova AI, Savvateeva LV, Korolev DO, Zamyatnin AA. Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. BIOCHEMISTRY (MOSCOW) 2019; 84:746-761. [PMID: 31509726 DOI: 10.1134/s000629791907006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine cathepsins are proteolytic enzymes involved in protein degradation in lysosomes and endosomes. Cysteine cathepsins have been also found in the tumor microenvironment during carcinogenesis, where they are implicated in proliferation, invasion and metastasis of tumor cells through the degradation of extracellular matrix, suppression of cell-cell interactions, and promotion of angiogenesis. In this regard, cathepsins can have a diagnostic value and represent promising targets for antitumor drugs aimed at inhibition of these proteases. Moreover, cysteine cathepsins can be used as activators of novel targeted therapeutic agents. This review summarizes recent discovered roles of cysteine cathepsins in carcinogenesis and discusses new trends in cancer therapy and diagnostics using cysteine cathepsins as markers, targets, or activators.
Collapse
Affiliation(s)
- A I Petushkova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - L V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D O Korolev
- Sechenov First Moscow State Medical University, Institute of Uronephrology and Human Reproductive Health, Moscow, 119991, Russia
| | - A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
52
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorg Chem 2019; 91:103144. [PMID: 31377388 PMCID: PMC7065667 DOI: 10.1016/j.bioorg.2019.103144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
A series of pyrene-benzothiazolium dyes (1a-1d) were experimentally investigated to study their internalization mechanism into cellular lysosomes as well as their potential imaging applications for live cell imaging. The lysosome selectivity of the probes was further compared by using fluorescently tagged lysosome associated membrane protein-1 (LAMP-1) expression-dependent visualization in both normal (COS-7, HEK293) and cancer (A549, Huh 7.5) cell lines. These probes were successfully employed as reliable lysosome markers in tumor cell models, thus providing an attractive alternative to LAMP-1 expression-dependent visualization methods. One advantage of these probes is the elimination of significant background fluorescence arising from fluorescently tagged protein expression on the cell surface when cells were transfected with LAMP-1 expression plasmids. Probes exhibited remarkable ability to stain cellular lysosomes for long-term experiments (up to 24 h) and the highly lipophilic nature of the probe design allowed their accumulation in hydrophobic regions of the cellular lysosomes. Experimental evidences indicated that the probes are likely to be internalized into lysosomes via endocytosis and accumulated in the hydrophobic regions of the lysosomes rather than in the acidic lysosomal lumen. These probes also demonstrated significant stability and lysosome staining for fixed cell imaging applications as well. Lastly, the benzothiazolium moiety of the probes was identified as the key component for lysosome selectivity.
Collapse
Affiliation(s)
| | - Kaveesha J Wijesinghe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA; Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
53
|
Varol C. Tumorigenic Interplay Between Macrophages and Collagenous Matrix in the Tumor Microenvironment. Methods Mol Biol 2019; 1944:203-220. [PMID: 30840245 DOI: 10.1007/978-1-4939-9095-5_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is a heterogeneous tissue that in addition to tumor cells, contain tumor-associated cell types such as immune cells, fibroblasts, and endothelial cells. Considerably important in the tumor microenvironment is its noncellular component, namely, the extracellular matrix (ECM). In particular, the collagenous matrix is subjected to significant alterations in its composition and structure that create a permissive environment for tumor growth, invasion, and dissemination. Among tumor-infiltrating immune cells, tumor-associated macrophages (TAMs) are numerous in the tumor stroma and are locally educated to mediate important biological functions that profoundly affect tumor initiation, growth, and dissemination. While the influence of TAMs and mechanical properties of the collagenous matrix on tumor invasion and progression have been comprehensively investigated individually, their interaction within the complex tumor microenvironment was overlooked. This review summarizes accumulating evidence that indicate the existence of an intricate tumorigenic crosstalk between TAMs and collagenous matrix. A better mechanistic comprehension of this reciprocal interplay may open a novel arena for cancer therapeutics.
Collapse
Affiliation(s)
- Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
54
|
Poreba M, Groborz K, Vizovisek M, Maruggi M, Turk D, Turk B, Powis G, Drag M, Salvesen GS. Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chem Sci 2019; 10:8461-8477. [PMID: 31803426 PMCID: PMC6839509 DOI: 10.1039/c9sc00997c] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Highly selective fluorescent activity-based probe for the visualization of cathepsin B in cancer cells.
Human cysteine cathepsins constitute an 11-membered family of proteases responsible for degradation of proteins in cellular endosomal–lysosomal compartments as such, they play important roles in antigen processing, cellular stress signaling, autophagy, and senescence. Moreover, for many years these enzymes were also linked to tumor growth, invasion, angiogenesis and metastasis when upregulated. Individual biological roles of each cathepsin are difficult to establish, because of their redundancy and similar substrate specificities. Selective chemical tools that enable imaging of individual cathepsin activities in living cells, tumors, and the tumor microenvironment may provide a better insight into their functions. In this work, we used HyCoSuL technology to profile the substrate specificity of human cathepsin B. The use of unnatural amino acids in the substrate library enabled us to uncover the broad cathepsin B preferences that we utilized to design highly-selective substrates and fluorescent activity-based probes (ABPs). We further demonstrated that Cy5-labeled MP-CB-2 probe can selectively label cathepsin B in eighteen cancer cell lines tested, making this ABP highly suitable for other biological setups. Moreover, using Cy5-labelled MP-CB-2 we were able to demonstrate by fluorescence microscopy that in cancer cells cathepsins B and L share overlapping, but not identical subcellular localization.
Collapse
Affiliation(s)
- Marcin Poreba
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ; .,Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Matej Vizovisek
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia
| | - Marco Maruggi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| | - Dusan Turk
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology , Jožef Stefan Institute , SI-1000 Ljubljana , Slovenia.,Faculty of Chemistry and Chemical Technology , University of Ljubljana , SI-1000 Ljubljana , Slovenia
| | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| | - Marcin Drag
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ; .,Department of Bioorganic Chemistry , Faculty of Chemistry , Wroclaw University of Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA . ; ;
| |
Collapse
|
55
|
Rudzińska M, Parodi A, Soond SM, Vinarov AZ, Korolev DO, Morozov AO, Daglioglu C, Tutar Y, Zamyatnin AA. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. Int J Mol Sci 2019; 20:3602. [PMID: 31340550 PMCID: PMC6678516 DOI: 10.3390/ijms20143602] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Dmitry O Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Cenk Daglioglu
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
56
|
McGuire CM, Collins MP, Sun-Wada G, Wada Y, Forgac M. Isoform-specific gene disruptions reveal a role for the V-ATPase subunit a4 isoform in the invasiveness of 4T1-12B breast cancer cells. J Biol Chem 2019; 294:11248-11258. [PMID: 31167791 PMCID: PMC6643023 DOI: 10.1074/jbc.ra119.007713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump present in various intracellular membranes and at the plasma membrane of specialized cell types. Previous work has reported that plasma membrane V-ATPases are key players in breast cancer cell invasiveness. The two subunit a-isoforms known to target the V-ATPase to the plasma membrane are a3 and a4, and expression of a3 has been shown to correlate with plasma membrane localization of the V-ATPase in various invasive human breast cancer cell lines. Here we analyzed the role of subunit a-isoforms in the invasive mouse breast cancer cell line, 4T1-12B. Quantitation of mRNA levels for each isoform by quantitative RT-PCR revealed that a4 is the dominant isoform expressed in these cells. Using a CRISPR/Cas9-based approach to disrupt the genes encoding each of the four V-ATPase subunit a-isoforms, we found that ablation of only the a4-encoding gene significantly inhibits invasion and migration of 4T1-12B cells. Additionally, cells with disrupted a4 exhibited reduced V-ATPase expression at the leading edge, suggesting that the a4 isoform is primarily responsible for targeting the V-ATPase to the plasma membrane in 4T1-12B cells. These findings suggest that different subunit a-isoforms may direct V-ATPases to the plasma membrane of different invasive breast cancer cell lines. They further suggest that expression of V-ATPases at the cell surface is the primary factor that promotes an invasive cancer cell phenotype.
Collapse
Affiliation(s)
- Christina M McGuire
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Michael P Collins
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - GeHong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
57
|
de Almeida AS, Rigo FK, De Prá SDT, Milioli AM, Dalenogare DP, Pereira GC, Ritter CDS, Peres DS, Antoniazzi CTDD, Stein C, Moresco RN, Oliveira SM, Trevisan G. Characterization of Cancer-Induced Nociception in a Murine Model of Breast Carcinoma. Cell Mol Neurobiol 2019; 39:605-617. [PMID: 30850915 PMCID: PMC11462836 DOI: 10.1007/s10571-019-00666-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Severe and poorly treated pain often accompanies breast cancer. Thus, novel mechanisms involved in breast cancer-induced pain should be investigated. Then, it is necessary to characterize animal models that are reliable with the symptoms and progression of the disease as observed in humans. Explaining cancer-induced nociception in a murine model of breast carcinoma was the aim of this study. 4T1 (104) lineage cells were inoculated in the right fourth mammary fat pad of female BALB/c mice; after this, mechanical and cold allodynia, or mouse grimace scale (MGS) were observed for 30 days. To determine the presence of bone metastasis, we performed the metastatic clonogenic test and measure calcium serum levels. At 20 days after tumor induction, the antinociceptive effect of analgesics used to relieve pain in cancer patients (acetaminophen, naproxen, codeine or morphine) or a cannabinoid agonist (WIN 55,212-2) was tested. Mice inoculated with 4T1 cells developed mechanical and cold allodynia and increased MGS. Bone metastasis was confirmed using the clonogenic assay, and hypercalcemia was observed 20 days after cells inoculation. All analgesic drugs reduced the mechanical and cold allodynia, while the MGS was decreased only by the administration of naproxen, codeine, or morphine. Also, WIN 55,212-2 improved all nociceptive measures. This pain model could be a reliable form to observe the mechanisms of breast cancer-induced pain or to observe the efficacy of novel analgesic compounds.
Collapse
Affiliation(s)
- Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil
| | - Diéssica Padilha Dalenogare
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriele Cheiran Pereira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Camila Dos Santos Ritter
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Diulle Spat Peres
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | | | - Carolina Stein
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Rafael Noal Moresco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), Criciúma, SC, 88006-000, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
58
|
Cho N, Shokeen M. Changing landscape of optical imaging in skeletal metastases. J Bone Oncol 2019; 17:100249. [PMID: 31316892 PMCID: PMC6611980 DOI: 10.1016/j.jbo.2019.100249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Optical imaging is an emerging strategy for in vitro and in vivo visualization of the molecular mechanisms of cancer over time. An increasing number of optical imaging contrast agents and techniques have been developed in recent years specifically for bone research and skeletal metastases. Visualizing molecular processes in relation to bone remodeling in metastasized cancers provides valuable information for understanding disease mechanisms and monitoring expression of primary molecular targets and therapeutic efficacy. This review is intended to provide an overview of tumor-specific and non-specific contrast agents in the first near-infrared window (NIR-I) window from 650 nm to 950 nm that can be used to study functional and structural aspects of skeletal remodeling of cancer in preclinical animal models. Near-infrared (NIR) optical imaging techniques, specifically NIR spectroscopy and photoacoustic imaging, and their use in skeletal metastases will also be discussed. Perspectives on the promises and challenges facing this exciting field are then given.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States.,Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, MO 63110, United States
| |
Collapse
|
59
|
Soond SM, Kozhevnikova MV, Zamyatnin AA. 'Patchiness' and basic cancer research: unravelling the proteases. Cell Cycle 2019; 18:1687-1701. [PMID: 31213124 DOI: 10.1080/15384101.2019.1632639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent developments in Cathepsin protease research have unveiled a number of key observations which are fundamental to further our understanding of normal cellular homeostasis and disease. By far, the most interesting and promising area of Cathepsin biology stems from how these proteins are linked to the fate of living cells through the phenomenon of Lysosomal Leakage and Lysosomal Membrane Permeabilisation. While extracellular Cathepsins are generally believed to be of central importance in tumour progression, through their ability to modulate the architecture of the Extracellular Matrix, intracellular Cathepsins have been established as being of extreme significance in mediating cell death through Apoptosis. With these two juxtaposed key research areas in mind, the focus of this review highlights recent advancements in how this fast-paced area of Cathepsin research has recently evolved in the context of their mechanistic regulation in cancer research. Abbreviations : ECM, Extracellular Matrix; MMP, Matrix Metalloproteases; LL, Lysosomal Leakage; LMP, Lysosomal Membrane Permeabilisation; LMA, Lysosomorphic Agents; BC, Breast Cancer; ASM, Acid Sphingomyelinase; TNF-α, Tumor Necrosis Factor-alpha; LAMP, Lysosomal Associated membrane Protein; PCD, Programmed Cell Death; PDAC, Pancreatic Ductal Adenocarcinoma; ROS, Reactive Oxygen Species; aa, amino acids.
Collapse
Affiliation(s)
- Surinder M Soond
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Maria V Kozhevnikova
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation
| | - Andrey A Zamyatnin
- a Institute of Molecular Medicine , Sechenov First Moscow State Medical University , Moscow , Russian Federation.,b Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
60
|
Anderson RL, Balasas T, Callaghan J, Coombes RC, Evans J, Hall JA, Kinrade S, Jones D, Jones PS, Jones R, Marshall JF, Panico MB, Shaw JA, Steeg PS, Sullivan M, Tong W, Westwell AD, Ritchie JWA. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol 2019; 16:185-204. [PMID: 30514977 PMCID: PMC7136167 DOI: 10.1038/s41571-018-0134-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cancer-related deaths are a result of metastasis, and thus the importance of this process as a target of therapy cannot be understated. By asking 'how can we effectively treat cancer?', we do not capture the complexity of a disease encompassing >200 different cancer types - many consisting of multiple subtypes - with considerable intratumoural heterogeneity, which can result in variable responses to a specific therapy. Moreover, we have much less information on the pathophysiological characteristics of metastases than is available for the primary tumour. Most disseminated tumour cells that arrive in distant tissues, surrounded by unfamiliar cells and a foreign microenvironment, are likely to die; however, those that survive can generate metastatic tumours with a markedly different biology from that of the primary tumour. To treat metastasis effectively, we must inhibit fundamental metastatic processes and develop specific preclinical and clinical strategies that do not rely on primary tumour responses. To address this crucial issue, Cancer Research UK and Cancer Therapeutics CRC Australia formed a Metastasis Working Group with representatives from not-for-profit, academic, government, industry and regulatory bodies in order to develop recommendations on how to tackle the challenges associated with treating (micro)metastatic disease. Herein, we describe the challenges identified as well as the proposed approaches for discovering and developing anticancer agents designed specifically to prevent or delay the metastatic outgrowth of cancer.
Collapse
Affiliation(s)
- Robin L Anderson
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
| | - Theo Balasas
- Commercial Partnerships, Cancer Research UK (CRUK), London, UK
| | - Juliana Callaghan
- Research and Innovation Services, University of Portsmouth, Portsmouth, Hampshire, UK
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Jeff Evans
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Jacqueline A Hall
- Research and Development, Vivacitv Ltd, Chesham, Buckinghamshire, UK
| | - Sally Kinrade
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - David Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | | | - Rob Jones
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - John F Marshall
- Queen Mary University of London, Barts Cancer Institute, London, UK
| | | | - Jacqui A Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester, Leicestershire, UK
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Sullivan
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - Warwick Tong
- Cancer Therapeutics Cooperative Research Centre (CTx), Melbourne, Victoria, Australia
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - James W A Ritchie
- Commercial Partnerships, Cancer Research UK (CRUK), London, UK.
- Centre for Drug Development, CRUK, London, UK.
| |
Collapse
|
61
|
Discovery of a novel cathepsin inhibitor with dual autophagy-inducing and metastasis-inhibiting effects on breast cancer cells. Bioorg Chem 2019; 84:239-253. [DOI: 10.1016/j.bioorg.2018.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 11/17/2022]
|
62
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
63
|
Inhibition mechanism of cathepsin B by curcumin molecule: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
64
|
Tulotta C, Groenewoud A, Snaar-Jagalska BE, Ottewell P. Animal Models of Breast Cancer Bone Metastasis. Methods Mol Biol 2019; 1914:309-330. [PMID: 30729473 DOI: 10.1007/978-1-4939-8997-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter is designed to provide a comprehensive overview outlining the different in vivo models available for research into breast cancer bone metastasis. The main focus is to guide the researcher through the methodological processes required to establish and utilize these models within their own laboratory. These detailed methods are designed to enable the acquisition of accurate and meaningful results that can be used for publication and future translation into clinical benefit for women with breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Penelope Ottewell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| |
Collapse
|
65
|
Frazao A, Messaoudene M, Nunez N, Dulphy N, Roussin F, Sedlik C, Zitvogel L, Piaggio E, Toubert A, Caignard A. CD16 +NKG2A high Natural Killer Cells Infiltrate Breast Cancer-Draining Lymph Nodes. Cancer Immunol Res 2018; 7:208-218. [PMID: 30514793 DOI: 10.1158/2326-6066.cir-18-0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
Tumor-draining lymph nodes (TD-LNs) are the first site of metastasis of breast cancer. Natural killer (NK) cells that infiltrate TD-LNs [including noninvaded (NI) or metastatic (M)-LNs from breast cancer patients] and NK cells from healthy donor (HD)-LNs were characterized, and their phenotype analyzed by flow cytometry. Low percentages of tumor cells invaded M-LNs, and these cells expressed ULBP2 and HLA class I molecules. Although NK cells from paired NI and M-LNs were similar, they expressed different markers compared with HD-LN NK cells. Compared with HD-LNs, TD-LN NK cells expressed activating DNAM-1, NKG2C and inhibitory NKG2A receptors, and exhibited elevated CXCR3 expression. CD16, NKG2A, and NKp46 expression were shown to be increased in stage IIIA breast cancer patients. TD-LNs contained a large proportion of activated CD56brightCD16+ NK cells with high expression of NKG2A. We also showed that a subset of LN NK cells expressed PD-1, expression of which was correlated with NKp30 and NKG2C expression. LN NK cell activation status was evaluated by degranulation potential and lytic capacity toward breast cancer cells. NK cells from TD-LNs degranulated after coculture with breast cancer cell lines. Cytokine-activated TD-LN NK cells exerted greater lysis of breast cancer cell lines than HD-LN NK cells and preferentially lysed the HLA class Ilow MCF-7 breast cancer cell line. TD-LNs from breast cancer patients, thus, contained activated lytic NK cells. The expression of inhibitory receptor NKG2A and checkpoint PD-1 by NK cells infiltrating breast cancer-draining LNs supports their potential as targets for immunotherapies using anti-NKG2A and/or anti-PD-1.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Meriem Messaoudene
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Nicolas Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - France Roussin
- Service d'Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France.,Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.
| |
Collapse
|
66
|
Pišlar A, Jewett A, Kos J. Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Semin Cancer Biol 2018; 53:168-177. [DOI: 10.1016/j.semcancer.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
|
67
|
Arora K, Herroon M, Al-Afyouni MH, Toupin NP, Rohrabaugh TN, Loftus LM, Podgorski I, Turro C, Kodanko JJ. Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers. J Am Chem Soc 2018; 140:14367-14380. [PMID: 30278123 DOI: 10.1021/jacs.8b08853] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual action agents containing a cysteine protease inhibitor and Ru-based photosensitizer for photodynamic therapy (PDT) were designed, synthesized, and validated in 2D culture and 3D functional imaging assays of triple-negative human breast cancer (TNBC). These combination agents deliver and release Ru-based PDT agents to tumor cells and cause cancer cell death upon irradiation with visible light, while at the same time inactivating cathespin B (CTSB), a cysteine protease strongly associated with invasive and metastatic behavior. In total five Ru-based complexes were synthesized with the formula [Ru(bpy)2(1)](O2CCF3)2 (3), where bpy = 2,2'-bipyridine and 1 = a bipyridine-based epoxysuccinyl inhibitor; [Ru(tpy)(NN)(2)](PF6)2, where tpy = terpiridine, 2 = a pyridine-based epoxysuccinyl inhibitor and NN = 2,2'-bipyridine (4); 6,6'-dimethyl-2,2'-bipyridine (5); benzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (6); and 3,6-dimethylbenzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (7). Compound 3 contains a [Ru(bpy)3]2+ fluorophore and was designed to track the subcellular localization of the conjugates, whereas compounds 4-7 were designed to undergo either photoactivated ligand dissociation and/or singlet oxygen generation. Photochemical studies confirmed that complexes 5 and 7 undergo photoactivated ligand dissociation, whereas 6 and 7 generate singlet oxygen. Inhibitors 1-7 all potently and irreversibly inhibit CTSB. Compounds 4-7 were evaluated against MDA-MB-231 TNBC and MCF-10A breast epithelial cells in 2D and 3D culture for effects on proteolysis and cell viability under dark and light conditions. Collectively, these data reveal that 4-7 potently inhibit dye-quenched (DQ) collagen degradation, whereas only compound 7 causes efficient cell death under light conditions, consistent with its ability to release a Ru(II)-based photosensitizer and to also generate 1O2.
Collapse
Affiliation(s)
- Karan Arora
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Nicholas P Toupin
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jeremy J Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
68
|
Kumar A, Dhar S, Campanelli G, Butt NA, Schallheim JM, Gomez CR, Levenson AS. MTA1 drives malignant progression and bone metastasis in prostate cancer. Mol Oncol 2018; 12:1596-1607. [PMID: 30027683 PMCID: PMC6120234 DOI: 10.1002/1878-0261.12360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer often metastasizes to the bone, leading to morbidity and mortality. While metastasis-associated protein 1 (MTA1) is highly overexpressed in metastatic tumors and bone metastatic lesions, its exact role in the development of metastasis is unknown. Here, we report the role of MTA1 in prostate cancer progression and bone metastasis in vitro and in vivo. We found that MTA1 silencing diminished formation of bone metastases and impaired tumor growth in intracardiac and subcutaneous prostate cancer xenografts, respectively. This was attributed to reduced colony formation, invasion, and migration capabilities of MTA1 knockdown cells. Mechanistic studies revealed that MTA1 silencing led to a significant decrease in the expression of cathepsin B (CTSB), a cysteine protease critical for bone metastasis, with an expected increase in the levels of E-cadherin in both cells and xenograft tumors. Moreover, meta-analysis of clinical samples indicated a positive correlation between MTA1 and CTSB. Together, these results demonstrate the critical role of MTA1 as an upstream regulator of CTSB-mediated events associated with cell invasiveness and raise the possibility that targeting MTA1/CTSB signaling in the tumor may prevent the development of bone metastasis in prostate cancer.
Collapse
Affiliation(s)
- Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health SciencesLong Island UniversityBrooklynNYUSA
- Cancer InstituteUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Swati Dhar
- Cancer InstituteUniversity of Mississippi Medical CenterJacksonMSUSA
- Present address:
Department of PediatricsFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Gisella Campanelli
- Arnold & Marie Schwartz College of Pharmacy and Health SciencesLong Island UniversityBrooklynNYUSA
| | - Nasir A. Butt
- Cancer InstituteUniversity of Mississippi Medical CenterJacksonMSUSA
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Jason M. Schallheim
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Present address:
Anne Arundel Medical CenterAnnapolisMDUSA
| | - Christian R. Gomez
- Cancer InstituteUniversity of Mississippi Medical CenterJacksonMSUSA
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Department of Radiation OncologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Anait S. Levenson
- Arnold & Marie Schwartz College of Pharmacy and Health SciencesLong Island UniversityBrooklynNYUSA
- Cancer InstituteUniversity of Mississippi Medical CenterJacksonMSUSA
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Present address:
Veterinary MedicineLong Island UniversityBrookvilleNYUSA
| |
Collapse
|
69
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Typical and Atypical Inducers of Lysosomal Cell Death: A Promising Anticancer Strategy. Int J Mol Sci 2018; 19:ijms19082256. [PMID: 30071644 PMCID: PMC6121368 DOI: 10.3390/ijms19082256] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are conservative organelles with an indispensable role in cellular degradation and the recycling of macromolecules. However, in light of recent findings, it has emerged that the role of lysosomes in cancer cells extends far beyond cellular catabolism and includes a variety of cellular pathways, such as proliferation, metastatic potential, and drug resistance. It has been well described that malignant transformation leads to alterations in lysosomal structure and function, which, paradoxically, renders cancer cells more sensitive to lysosomal destabilization. Furthermore, lysosomes are implicated in the regulation and execution of cell death in response to diverse stimuli and it has been shown that lysosome-dependent cell death can be utilized to overcome apoptosis and drug resistance. Thus, the purpose of this review is to characterize the role of lysosome in cancer therapy and to describe how these organelles impact treatment resistance. We summarized the characteristics of typical inducers of lysosomal cell death, which exert its function primarily via alterations in the lysosomal compartment. The review also presents other anticancer agents with the predominant mechanism of action different from lysosomal destabilization, the activity of which is influenced by lysosomal signaling, including classical chemotherapeutics, kinase inhibitors, monoclonal antibodies, as well as photodynamic therapy.
Collapse
|
71
|
Yang KM, Bae E, Ahn SG, Pang K, Park Y, Park J, Lee J, Ooshima A, Park B, Kim J, Jung Y, Takahashi S, Jeong J, Park SH, Kim SJ. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells. Cell Rep 2018; 21:2952-2964. [PMID: 29212038 DOI: 10.1016/j.celrep.2017.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/14/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2), which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer.
Collapse
Affiliation(s)
- Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea.
| | - Eunjin Bae
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University Medical College, 712 Eonjuro, Gangnam-Gu, Seoul 135-720, Republic of Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Yuna Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Bora Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Junil Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Yunshin Jung
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University Medical College, 712 Eonjuro, Gangnam-Gu, Seoul 135-720, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; TheragenEtex Bio Institute, TheragenEtex, Co., Suwon, Gyeonggi-do 16229, Republic of Korea.
| |
Collapse
|
72
|
Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie 2018; 151:85-106. [PMID: 29870804 DOI: 10.1016/j.biochi.2018.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Cysteine cathepsins (CTS), being involved in both physiological and pathological processes, play an important role in the human body. During the last 30 years, it has been shown that CTS are highly upregulated in a wide variety of cancer types although they have received a little attention as a potential therapeutic target as compared to serine or metalloproteinases. Studies on the increasing problem of neoplastic progression have revealed that secretion of cell-surface- and intracellular cysteine proteases is aberrant in tumor cells and has an impact on their growth, invasion, and metastasis by taking part in tumor angiogenesis, in apoptosis, and in events of inflammatory and immune responses. Considering the role of CTS in carcinogenesis, inhibition of these enzymes becomes an attractive strategy for cancer therapy. The downregulation of natural CTS inhibitors (CTSsis), such as cystatins, observed in various types of cancer, supports this claim. The intention of this review is to highlight the relationship of CTS with cancer and to present illustrations that explain how some of their inhibitors affect processes related to neoplastic progression.
Collapse
|
73
|
Abstract
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
74
|
Luan H, Mohapatra B, Bielecki TA, Mushtaq I, Mirza S, Jennings TA, Clubb RJ, An W, Ahmed D, El-Ansari R, Storck MD, Mishra NK, Guda C, Sheinin YM, Meza JL, Raja S, Rakha EA, Band V, Band H. Loss of the Nuclear Pool of Ubiquitin Ligase CHIP/STUB1 in Breast Cancer Unleashes the MZF1-Cathepsin Pro-oncogenic Program. Cancer Res 2018; 78:2524-2535. [PMID: 29510992 DOI: 10.1158/0008-5472.can-16-2140] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 01/23/2023]
Abstract
CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two thirds of ErbB2+ and triple-negative breast cancers (TNBC) and in one third of ER+ breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2+ and TNBC cell lines. Ectopic CHIP expression in ErbB2+ lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up- or downregulated by CHIP. We characterized myeloid zinc finger 1 (MZF1) as a CHIP target, given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2+ and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2+ breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression.Significance: These findings reveal a novel targetable pathway of breast oncogenesis unleashed by the loss of tumor suppressor ubiquitin ligase CHIP/STUB1. Cancer Res; 78(10); 2524-35. ©2018 AACR.
Collapse
Affiliation(s)
- Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sameer Mirza
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tameka A Jennings
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert J Clubb
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dena Ahmed
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Rokaya El-Ansari
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nitish K Mishra
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chittibabu Guda
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuri M Sheinin
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jane L Meza
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Srikumar Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
75
|
Lowe DB, Bivens CK, Mobley AS, Herrera CE, McCormick AL, Wichner T, Sabnani MK, Wood LM, Weidanz JA. TCR-like antibody drug conjugates mediate killing of tumor cells with low peptide/HLA targets. MAbs 2018; 9:603-614. [PMID: 28273004 DOI: 10.1080/19420862.2017.1302630] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The currently marketed antibody-drug conjugates (ADC) destabilize microtubule assembly in cancer cells and initiate apoptosis in patients. However, few tumor antigens (TA) are expressed at high densities on cancer lesions, potentially minimizing the therapeutic index of current ADC regimens. The peptide/human leukocyte antigen (HLA) complex can be specifically targeted by therapeutic antibodies (designated T cell receptor [TCR]-like antibodies) and adequately distinguish malignant cells, but has not been the focus of ADC development. We analyzed the killing potential of TCR-like ADCs when cross-linked to the DNA alkylating compound duocarmycin. Our data comprise proof-of-principle results that TCR-like ADCs mediate potent tumor cytotoxicity, particularly under common scenarios of low TA/HLA density, and support their continued development alongside agents that disrupt DNA replication. Additionally, TCR-like antibody ligand binding appears to play an important role in ADC functionality and should be addressed during therapy development to avoid binding patterns that negate ADC killing efficacy.
Collapse
Affiliation(s)
- Devin B Lowe
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Camille K Bivens
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Alexis S Mobley
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Christian E Herrera
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Amanda L McCormick
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Timea Wichner
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Manoj K Sabnani
- b Department of Biology , College of Science, University of Texas at Arlington , Arlington , TX , USA
| | - Laurence M Wood
- a Department of Immunotherapeutics and Biotechnology , School of Pharmacy, Texas Tech University Health Sciences Center , Abilene , TX , USA
| | - Jon A Weidanz
- b Department of Biology , College of Science, University of Texas at Arlington , Arlington , TX , USA
| |
Collapse
|
76
|
Wang Y, Jia L, Shen J, Wang Y, Fu Z, Su SA, Cai Z, Wang JA, Xiang M. Cathepsin B aggravates coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting pyroptosis. PLoS Pathog 2018; 14:e1006872. [PMID: 29360865 PMCID: PMC5809100 DOI: 10.1371/journal.ppat.1006872] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/12/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3 (CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltration, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, without altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Furthermore, compared with the control, we found the inflammasome was activated in the hearts of wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB aggravates CVB3-induced VMC probably through activating the inflammasome and promoting pyroptosis. This finding might provide a novel strategy for VMC treatment. Severe VMC could lead to sudden cardiac death especially in youths, and is also the most common cause of secondary dilated cardiomyopathy. However, we still lack effective and specific clinical treatments currently. Therefore, further exploration of the pathogenesis and new therapeutic targets are urgently needed. Our results implied that CatB, a cysteine protease mainly located in the lysosome, is activated in the hearts of mice with VMC induced by intraperitoneal injection of CVB3. Genetic deletion of CatB significantly improves survival, attenuates cardiac inflammation, decreases serum cardiac troponin I levels and alleviates cardiac dysfunction, without altering virus titers in hearts. However, ablation of its main endogenous inhibitor, cystatin C, distinctly exaggerates the disease severity. Mechanistically, we found that CatB influences VMC probably by activating the NLRP3 inflammasome and promoting caspase-1-induced pyroptosis. This may provide a potential new therapeutic strategy for VMC.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liangliang Jia
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zurong Fu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Sheng-an Su
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| | - Jian-an Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (MX); (ZC)
| |
Collapse
|
77
|
Duivenvoorden HM, Rautela J, Edgington‐Mitchell LE, Spurling A, Greening DW, Nowell CJ, Molloy TJ, Robbins E, Brockwell NK, Lee CS, Chen M, Holliday A, Selinger CI, Hu M, Britt KL, Stroud DA, Bogyo M, Möller A, Polyak K, Sloane BF, O'Toole SA, Parker BS. Myoepithelial cell‐specific expression of stefin A as a suppressor of early breast cancer invasion. J Pathol 2017; 243:496-509. [DOI: 10.1002/path.4990] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Hendrika M Duivenvoorden
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| | - Jai Rautela
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne VIC Australia
- The Walter and Eliza Hall Institute of Medical Research Melbourne VIC Australia
- Department of Medical Biology University of Melbourne VIC Australia
| | - Laura E Edgington‐Mitchell
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Monash University Melbourne VIC Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| | - David W Greening
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Monash University Melbourne VIC Australia
| | | | - Elizabeth Robbins
- Department of Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital Camperdown NSW Australia
| | - Natasha K Brockwell
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| | - Cheok Soon Lee
- Department of Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital Camperdown NSW Australia
- Sydney Medical School University of Sydney NSW Australia
- Cancer Pathology and Cell Biology Laboratory Ingham Institute for Applied Medical Research, and University of New South Wales NSW Australia
- Cancer Pathology, Bosch Institute University of Sydney NSW Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| | - Anne Holliday
- Department of Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital Camperdown NSW Australia
| | - Cristina I Selinger
- Department of Tissue Pathology and Diagnostic Oncology Royal Prince Alfred Hospital Camperdown NSW Australia
| | - Min Hu
- Department of Medical Oncology Dana‐Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| | - Kara L Britt
- Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute Monash University Melbourne VIC Australia
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine California USA
| | - Andreas Möller
- Immunology Department QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Kornelia Polyak
- Department of Medical Oncology Dana‐Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| | - Bonnie F Sloane
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
- Barbara Ann Karmanos Cancer Institute Wayne State University School of Medicine Detroit Michigan USA
| | - Sandra A O'Toole
- Sydney Medical School University of Sydney NSW Australia
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- Australian Clinical Labs Bella Vista NSW Australia
| | - Belinda S Parker
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science Melbourne VIC Australia
| |
Collapse
|
78
|
Gulumian M, Andraos C. In Search of a Converging Cellular Mechanism in Nanotoxicology and Nanomedicine in the Treatment of Cancer. Toxicol Pathol 2017; 46:4-13. [PMID: 29034767 DOI: 10.1177/0192623317735776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple applications of nanomaterials have raised concern with regard to their toxicity. With increasing research into nanomaterial safety, mechanisms involved in the toxic effects of nanomaterials have begun to emerge. The importance of nanomaterial-induced lysosomal membrane permeabilization through overloading or direct damage of the lysosomal compartment, resulting in the blockade of autophagosome-lysosome fusion and autophagy dysfunction, as well as inflammasome activation were cited as emerging mechanisms of nanomaterial toxicity. It has recently been proposed that these very mechanisms leading to nanomaterial toxicity may be utilized in nanotherapeutics. This review discusses these nanomaterial-induced mechanisms in detail and how it has been exploited in cancer research. This review also addresses certain considerations that need to be kept in mind when using nanomaterials in therapeutics.
Collapse
Affiliation(s)
- Mary Gulumian
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa.,2 Haematology and Molecular Medicine Department, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Charlene Andraos
- 1 National Institute for Occupational Health (NIOH), Johannesburg, South Africa
| |
Collapse
|
79
|
Dykes SS, Steffan JJ, Cardelli JA. Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers. BMC Cancer 2017; 17:672. [PMID: 28978320 PMCID: PMC5628462 DOI: 10.1186/s12885-017-3660-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Background Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Methods Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. Results EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. Conclusions These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking. Electronic supplementary material The online version of this article (10.1186/s12885-017-3660-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA.,Present Address: Department of Radiation Oncology, University of Florida, Gainesville, FL, 32608, USA
| | - Joshua J Steffan
- Department of Natural Sciences, Dickinson State University, 291 Campus Dr, Dickinson, ND, 58601, USA.
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA
| |
Collapse
|
80
|
Uhlman A, Folkers K, Liston J, Pancholi H, Hinton A. Effects of Vacuolar H +-ATPase Inhibition on Activation of Cathepsin B and Cathepsin L Secreted from MDA-MB231 Breast Cancer Cells. CANCER MICROENVIRONMENT 2017; 10:49-56. [PMID: 28766149 PMCID: PMC5750200 DOI: 10.1007/s12307-017-0196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
Studies indicate secreted cathepsins are involved in metastasis. V-ATPases, which are necessary for activating intracellular cathepsins, also play a role in metastasis and are targeted to the plasma membrane of metastatic breast cancer cells. We are interested in a connection between cell surface V-ATPases, activation of secreted cathepsins and the metastatic phenotype of MDA-MB231 cells. We investigated whether V-ATPase inhibition would reduce the activity of secreted cathepsin B and cathepsin L. Using cell lysates and conditioned media, we measured cathepsin B and L activity within and outside of the cells. We found different forms of cathepsin B and L were secreted representing the pre-pro, pro and active forms of the proteases. Cathepsin B activity was higher than cathepsin L in conditioned media and in cell lysates. V-ATPase inhibition by concanamycin A decreased cathepsin B activity in conditioned media and significantly decreased cathepsin B activity in cell lysates. Cathepsin L activity showed a slight decrease in cell lysates. Changes in the activity of secreted and intracellular cathepsins following V-ATPase inhibition were supported by changes in the amounts of pro and active forms of cathepsin B in conditioned media and cathepsins B and L in cell lysates. Overall, our data shows that inactive forms of cathepsins B and L are secreted from the MB231 cells and V-ATPase activity is important for the activation of secreted cathepsin B. This indicates a connection between cell surface V-ATPases in metastatic breast cancer cells and the function of secreted cathepsin B.
Collapse
Affiliation(s)
- Andrew Uhlman
- Biology Department, Denison University, 100 W. College St, Granville, OH, 43023, USA
| | - Kelly Folkers
- Biology Department, Denison University, 100 W. College St, Granville, OH, 43023, USA
| | - Jared Liston
- Biology Department, Denison University, 100 W. College St, Granville, OH, 43023, USA
| | - Harshida Pancholi
- Biology Department, Denison University, 100 W. College St, Granville, OH, 43023, USA
| | - Ayana Hinton
- Biology Department, Denison University, 100 W. College St, Granville, OH, 43023, USA.
| |
Collapse
|
81
|
Kramer L, Renko M, Završnik J, Turk D, Seeger MA, Vasiljeva O, Grütter MG, Turk V, Turk B. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Am J Cancer Res 2017; 7:2806-2821. [PMID: 28824717 PMCID: PMC5562217 DOI: 10.7150/thno.19081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023] Open
Abstract
Cysteine cathepsins often contribute to cancer progression due to their overexpression in the tumour microenvironment and therefore present attractive targets for non-invasive diagnostic imaging. However, the development of highly selective and versatile small molecule probes for cathepsins has been challenging. Here, we targeted tumour-associated cathepsin B using designed ankyrin repeat proteins (DARPins). The selective DARPin 8h6 inhibited cathepsin B with picomolar affinity (Ki = 35 pM) by binding to a site with low structural conservation in cathepsins, as revealed by the X-ray structure of the complex. DARPin 8h6 blocked cathepsin B activity in tumours ex vivo and was successfully applied in in vivo optical imaging in two mouse breast cancer models, in which cathepsin B was bound to the cell membrane or secreted to the extracellular milieu by tumour and stromal cells. Our approach validates cathepsin B as a promising diagnostic and theranostic target in cancer and other inflammation-associated diseases.
Collapse
|
82
|
Kramer L, Turk D, Turk B. The Future of Cysteine Cathepsins in Disease Management. Trends Pharmacol Sci 2017; 38:873-898. [PMID: 28668224 DOI: 10.1016/j.tips.2017.06.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions.
Collapse
Affiliation(s)
- Lovro Kramer
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
83
|
Pinheiro M, Drigo SA, Tonhosolo R, Andrade SC, Marchi FA, Jurisica I, Kowalski LP, Achatz MI, Rogatto SR. HABP2 p.G534E variant in patients with family history of thyroid and breast cancer. Oncotarget 2017; 8:40896-40905. [PMID: 28402931 PMCID: PMC5522276 DOI: 10.18632/oncotarget.16639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
Familial Papillary Thyroid Carcinoma (PTC) has been described as a hereditary predisposition cancer syndrome associated with mutations in candidate genes including HABP2. Two of 20 probands from families with history of PTC and breast carcinoma (BC) were evaluated by whole exome sequencing (WES) revealing HABP2 p.G534E. Sanger sequencing was used to confirm the involvement of this variant in three families (F1: 7 relatives; F2: 3 and F3: 3). The proband and his sister (with no malignant tumor so far) from F1 were homozygous for the variant whereas one relative with PTC from F2 was negative for the variant. Although the proband of the F3 with PTC was HABP2 wild type, three relatives presented the variant. Five of 170 healthy Brazilian individuals with no family history of BC or PTC and three of 50 sporadic PTC presented the p.G534E. These findings suggested no association of this variant with our familial PTC cases. Genes potentially associated with deregulation of the extracellular matrix organization pathway (CTSB, TNXB, COL4A3, COL16A1, COL24A1, COL5A2, NID1, LOXL2, MMP11, TRIM24 and MUSK) and DNA repair function (NBN and MSH2) were detected by WES, suggesting that other cancer-associated genes have pathogenic effects in the risk of familial PTC development.
Collapse
Affiliation(s)
- Maisa Pinheiro
- CIPE - International Research Center, A. C. Camargo Cancer Center, Sao Paulo, SP, Brazil
- Department of Urology, Faculty of Medicine, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Sandra Aparecida Drigo
- Department of Urology, Faculty of Medicine, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Renata Tonhosolo
- CIPE - International Research Center, A. C. Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Sonia C.S. Andrade
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, USP, Sao Paulo, SP, Brazil
| | | | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network and The University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Maria Isabel Achatz
- CIPE - International Research Center, A. C. Camargo Cancer Center, Sao Paulo, SP, Brazil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA
| | - Silvia Regina Rogatto
- CIPE - International Research Center, A. C. Camargo Cancer Center, Sao Paulo, SP, Brazil
- Department of Urology, Faculty of Medicine, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| |
Collapse
|
84
|
Manchanda M, Das P, Gahlot GPS, Singh R, Roeb E, Roderfeld M, Datta Gupta S, Saraya A, Pandey RM, Chauhan SS. Cathepsin L and B as Potential Markers for Liver Fibrosis: Insights From Patients and Experimental Models. Clin Transl Gastroenterol 2017; 8:e99. [PMID: 28617446 PMCID: PMC5518948 DOI: 10.1038/ctg.2017.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cathepsin L (CTSL) and B (CTSB) have a crucial role in extracellular matrix (ECM) degradation and tissue remodeling, which is a prominent feature of fibrogenesis. The aim of this study was to determine the role and clinical significance of these cathepsins in liver fibrosis. METHODS Hepatic histological CTSL and CTSB expression were assessed in experimental models of liver fibrosis, patients with liver cirrhosis, chronic viral hepatitis, and controls by real-time PCR and immunohistochemistry. Plasma levels of CTSL and CTSB were analyzed in 51 liver cirrhosis patients (Child-Pugh stages A, B and C) and 15 controls. RESULTS Significantly enhanced CTSL mRNA (P=0.02) and protein (P=0.01) levels were observed in the liver of carbon tetrachloride-treated mice compared with controls. Similarly, hepatic CTSL and CTSB mRNA levels (P=0.02) were markedly increased in Abcb4-/- (ATP-binding cassette transporter knockout) mice compared with wild-type littermates. Elevated levels of CTSL and CTSB were also found in the liver (P=0.001) and plasma (P<0.0001) of patients with hepatic cirrhosis compared with healthy controls. Furthermore, CTSL and CTSB levels correlated well with the hepatic collagen (r=0.5, P=0.007; r=0.64, P=0.0001). CTSL and CTSB levels increased with the Child-Pugh stage of liver cirrhosis and correlated with total bilirubin content (r=0.4/0.2; P≤0.05). CTSL, CTSB, and their combination had a high diagnostic accuracy (area under the curve: 0.91, 0.89 and 0.96, respectively) for distinguishing patients from controls. CONCLUSIONS Our data demonstrate the overexpression of CTSL and CTSB in patients and experimental mouse models, suggesting their potential as diagnostic biomarkers for chronic liver diseases.
Collapse
Affiliation(s)
- Mansi Manchanda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav P S Gahlot
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratnakar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | | | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
85
|
Zhang X, Yang X, Wang H, Li S, Guo K, Jiang D, Xiao J, Liang D. Design, Synthesis, and Structure-Activity Relationship Study of Epoxysuccinyl-Peptide Derivatives as Cathepsin B Inhibitors. Biol Pharm Bull 2017; 40:1240-1246. [PMID: 28502922 DOI: 10.1248/bpb.b17-00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin B is a lysosomal cysteine protease involved in many diseases. The present research demonstrates that derivatives of epoxysuccinyl-peptide are effective and selective cathepsin B inhibitors. We synthesized a series of epoxysuccinyl-peptide derivatives based on the well-known cathepsin B inhibitor E64d. Specifically, we substituted the 2-methylpropane group at the R1 position of E64d with a sulfane, such as ethyl(methyl) sulfane or benzyl(methyl) sulfane. We also designed and synthesized a library of molecules with various substituents at the R2 position of E64d to replace 2-methylbutane. By studying the structure-activity relationships of these newly synthesized molecules as cathepsin B inhibitors, we demonstrated that substituting ethyl(methyl) sulfane for 2-methylbutane (R2) of E64d improves the inhibitory activity and selectivity for cathepsin B inhibition. Our new cathepsin B inhibitors were highly effective and selective.
Collapse
Affiliation(s)
- Xiaoye Zhang
- School of Pharmaceutical Sciences, Jilin University
| | | | | | - Song Li
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology
| | - Kun Guo
- Shaanxi University of Chinese Medicine, College of Humanities and Management
| | - Dan Jiang
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology
| | - Junhai Xiao
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University
| |
Collapse
|
86
|
Abdulla MH, Valli-Mohammed MA, Al-Khayal K, Al Shkieh A, Zubaidi A, Ahmad R, Al-Saleh K, Al-Obeed O, McKerrow J. Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages. Oncol Rep 2017; 37:3175-3180. [PMID: 28440429 PMCID: PMC5442396 DOI: 10.3892/or.2017.5576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023] Open
Abstract
Cathepsin B (CTSB), is a cysteine protease belonging to the cathepsin (Clan CA) family. The diagnostic and prognostic significance of increased CTSB in the serum of cancer patients have been evaluated for some tumor types. CTSB serum and protein levels have also been reported previously in colorectal cancer (CRC) with contradictory results. The aim of the present study was to investigate CTSB expression in CRC patients and the association of CTSB expression with various tumor stages in a Middle East population. Serum CTSB levels were evaluated in 70 patients and 20 healthy control subjects using enzyme-linked immunosorbant assay (ELISA) technique. CTSB expression was determined in 100 pairs of CRC tumor and adjacent normal colonic tissue using quantitative PCR for mRNA levels. Detection of CTSB protein expression in tissues was carried out using both immunohistochemistry and western blotting techniques. ELISA analysis showed that in sera obtained from CRC patients, the CTSB concentration was significantly higher in late stage patients with lymph node metastases when compared to early stage patients with values of 2.9 and 0.33 ng/ml, respectively (P=0.001). The majority of tumors studied had detectable CTSB protein expression with significant increased positive staining in tumors cells when compared with matched normal colon subjects (P=0.006). The mRNA expression in early stage CRC compared to late stage CRC was 0.04±0.01 and 0.07±0.02, respectively. Increased mRNA expression was more frequently observed in the advanced cancer stages with lymph node metastases when compared with the control (P=0.002). Mann-Whitney test and paired t-test were used to compare serum CTSB and mRNA levels in early and late tumor stage. A subset of four paired tissue extracts were analyzed by western blotting. The result confirmed a consistent increase in the CTSB protein expression level in tumor tissues compared with that noted in the adjacent normal mucosal cells. These findings indicate that CTSB may be an important prognostic biomarker for late stage CRC and cases with lymph node metastases in the Middle Eastern population. Monitoring serum CTSB in CRC patients may predict and/or diagnose cases with lymph node metastases.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Mansoor-Ali Valli-Mohammed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Abdulmalik Al Shkieh
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh 11472, Kingdom of Saudi Arabia
| | - Ahmad Zubaidi
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Khalid Al-Saleh
- Medical Oncology Unit, Department of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - James McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
87
|
Yan Y, Zhou K, Wang L, Wang F, Chen X, Fan Q. Clinical significance of serum cathepsin B and cystatin C levels and their ratio in the prognosis of patients with esophageal cancer. Onco Targets Ther 2017; 10:1947-1954. [PMID: 28435284 PMCID: PMC5388217 DOI: 10.2147/ott.s123042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The main purpose of this study was to analyze the serum cathepsin B (CTSB) and cystatin C (CysC) levels in patients with esophageal carcinoma and their correlation with the clinical indices and prognosis. METHODS The serum levels of CTSB and CysC from 56 patients with esophageal carcinoma and 30 healthy donors were determined preoperatively by using enzyme-linked immunosor-bent assay. The correlation between CTSB and CysC was evaluated by Spearman correlation coefficient test. Kaplan-Meier survival curves were plotted, while the survival rates were compared using the log-rank test. Univariate and multivariate analyses of prognostic factors for survival were performed using the Cox proportional hazard regression model with a 95% confidence interval. RESULTS CTSB (38.35±4.3 ng/mL) and CysC (703.96±23.6 ng/mL) levels were significantly higher in the sera of the patients than in controls. A significant correlation was observed between CTSB and CysC (r=0.754, P<0.001). The levels of CTSB and CysC/CTSB in the patient serum significantly correlated with the T status. CysC/CTSB ratio was also found to be significantly correlated with lymph node metastasis. None of the parameters were observed to be related to CysC, including age, gender, pathologic type, tumor differentiation and tumor invasion depth. Kaplan-Meier analysis showed that patients with higher levels of CysC/CTSB and negative lymph node metastasis experienced significantly longer overall survival time, whereas patients with higher CSTB levels tended to live shorter, although the difference was not statistically significant (P=0.081). CONCLUSION Serum CTSB and CysC levels are of diagnostic significance in esophageal cancer. The ratio of serum CysC/CTSB is prognostic for the survival of esophageal carcinoma patients.
Collapse
Affiliation(s)
| | | | | | | | - Xinfeng Chen
- Department of Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | | |
Collapse
|
88
|
Abstract
Cells depend on the lysosome for sequestration and degradation of macromolecules in order to maintain metabolic homeostasis. These membrane-enclosed organelles can receive intracellular and extracellular cargo through endocytosis, phagocytosis, and autophagy. Lysosomes establish acidic environments to activate enzymes that are able to break down biomolecules engulfed through these various pathways. Recent advances in methods to study the lysosome have allowed the discovery of extended roles for the lysosome in various diseases, including cancer, making it an attractive and targetable node for therapeutic intervention. This review focuses on key aspects of lysosomal biology in the context of cancer and how these properties can be exploited for the development of new therapeutic strategies. This will provide a contextual framework for how advances in methodology could be applied in future translational research.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 777 South Tower PCAM, 34th St. and Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, 777 South Tower PCAM, 34th St. and Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
89
|
Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, Fujita K, Sodeoka M. Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein. J Am Chem Soc 2016; 138:13901-13910. [DOI: 10.1021/jacs.6b06003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ando
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Miwako Asanuma
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Kosuke Dodo
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Hiroyuki Yamakoshi
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Satoshi Kawata
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- AMED-CREST, Japan Agency for Medical Research and Development, Saitama 351-0198, Japan
- Sodeoka
Live Cell Chemistry Project, ERATO, Japan Science and Technology Agency, Saitama 351-0198, Japan
- Synthetic
Organic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
90
|
Edgington-Mitchell LE, Rautela J, Duivenvoorden HM, Jayatilleke KM, van der Linden WA, Verdoes M, Bogyo M, Parker BS. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer. Oncotarget 2016; 6:27008-22. [PMID: 26308073 PMCID: PMC4694970 DOI: 10.18632/oncotarget.4714] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/06/2015] [Indexed: 12/15/2022] Open
Abstract
Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.
Collapse
Affiliation(s)
- Laura E Edgington-Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Australia
| | - Jai Rautela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Hendrika M Duivenvoorden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Martijn Verdoes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, California, USA
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
91
|
Kędzior M, Seredyński R, Gutowicz J. Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [PMID: 27048482 DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Rafał Seredyński
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Gutowicz
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
92
|
Murine models of breast cancer bone metastasis. BONEKEY REPORTS 2016; 5:804. [PMID: 27867497 DOI: 10.1038/bonekey.2016.31] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/02/2016] [Indexed: 01/28/2023]
Abstract
Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone.
Collapse
|
93
|
Yang WE, Ho CC, Yang SF, Lin SH, Yeh KT, Lin CW, Chen MK. Cathepsin B Expression and the Correlation with Clinical Aspects of Oral Squamous Cell Carcinoma. PLoS One 2016; 11:e0152165. [PMID: 27031837 PMCID: PMC4816521 DOI: 10.1371/journal.pone.0152165] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cathepsin B (CTSB), a member of the cathepsin family, is a cysteine protease that is widely distributed in the lysosomes of cells in various tissues. It is overexpressed in several human cancers and may be related to tumorigenesis. The main purpose of this study was to analyze CTSB expression in oral squamous cell carcinoma (OSCC) and its correlation with patient prognosis. Methodology/Principal Findings Tissue microarrays were used to detect CTSB expression in 280 patients and to examine the association between CTSB expression and clinicopathological parameters. In addition, the metastatic effects of the CTSB knockdown on two oral cancer cell lines were investigated by transwell migration assay. Cytoplasmic CTSB expression was detected in 34.6% (97/280) of patients. CTSB expression was correlated with positive lymph node metastasis (p = 0.007) and higher tumor grade (p = 0.008) but not with tumor size and distant metastasis. In addition, multivariate analysis using a Cox proportional hazards model revealed a higher hazard ratio, demonstrating that CTSB expression was an independent unfavorable prognostic factor in buccal mucosa carcinoma patients. Furthermore, the Kaplan–Meier curve revealed that buccal mucosa OSCC patients with positive CTSB expression had significantly shorter overall survival. Moreover, treatment with the CTSB siRNA exerted an inhibitory effect on migration in OC2 and CAL27 oral cancer cells. Conclusions We conclude that CTSB expression may be useful for determining OSCC prognosis, particularly for patients with lymph node metastasis, and may function as a biomarker of the survival of OSCC patients in Taiwan.
Collapse
Affiliation(s)
- Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Chen Ho
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kun-Tu Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chiao-Wen Lin
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- * E-mail: (MKC); (CWL)
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- * E-mail: (MKC); (CWL)
| |
Collapse
|
94
|
Cheng YC, Ding YM, Hueng DY, Chen JY, Chen Y. Caffeine suppresses the progression of human glioblastoma via cathepsin B and MAPK signaling pathway. J Nutr Biochem 2016; 33:63-72. [PMID: 27260469 DOI: 10.1016/j.jnutbio.2016.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Glioblastoma has aggressive proliferative and invasive properties. We investigated the effect of caffeine on the invasion and the anti-cancer effect in human glioblastomas. Caffeine reduced the invasion in U-87MG, GBM8401 and LN229 cells. Caffeine decreased mRNA, protein expression, and activity of cathepsin B. Besides, mRNA and protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) was upregulated by caffeine treatment, whereas matrix metalloproteinase-2 (MMP-2) was downregulated. The expression of Ki67, p-p38, phospforylated extracellular regulated protein kinases (p-ERK), and membranous integrin β1 and β3 was decreased by caffeine. The Rho-associated protein kinase (ROCK) inhibitor, Y27632, blocked the caffeine-mediated reduction of cathepsin B, phosphorylated focal adhesion kinase (p-FAK), and p-ERK, and invasion. Moreover, caffeine decreased the tumor size, cathepsin B and Ki67 expression in animal model. Caffeine reduced the invasion of glioma cells through ROCK-cathepsin B/FAK/ERK signaling pathway and tumor growth in orthotopic xenograft animal model, supporting the anti-cancer potential in glioma therapy.
Collapse
Affiliation(s)
- Yu-Chen Cheng
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - You-Ming Ding
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
95
|
Calcaterra NE, Hoeppner DJ, Wei H, Jaffe AE, Maher BJ, Barrow JC. Schizophrenia-Associated hERG channel Kv11.1-3.1 Exhibits a Unique Trafficking Deficit that is Rescued Through Proteasome Inhibition for High Throughput Screening. Sci Rep 2016; 6:19976. [PMID: 26879421 PMCID: PMC4754628 DOI: 10.1038/srep19976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The primate-specific brain voltage-gated potassium channel isoform Kv11.1-3.1 has been identified as a novel therapeutic target for the treatment of schizophrenia. While this ether-a-go-go related K + channel has shown clinical relevance, drug discovery efforts have been hampered due to low and inconsistent activity in cell-based assays. This poor activity is hypothesized to result from poor trafficking via the lack of an intact channel-stabilizing Per-Ant-Sim (PAS) domain. Here we characterize Kv11.1-3.1 cellular localization and show decreased channel expression and cell surface trafficking relative to the PAS-domain containing major isoform, Kv11.1-1A. Using small molecule inhibition of proteasome degradation, cellular expression and plasma membrane trafficking are rescued. These findings implicate the importance of the unfolded-protein response and endoplasmic reticulum associated degradation pathways in the expression and regulation of this schizophrenia risk factor. Utilizing this identified phenomenon, an electrophysiological and high throughput in-vitro fluorescent assay platform has been developed for drug discovery in order to explore a potentially new class of cognitive therapeutics.
Collapse
Affiliation(s)
| | | | - Huijun Wei
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD 21205.,Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, MD 21205.,Departments of Psychiatry and Behavioral Sciences, Baltimore, MD 21205.,Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - James C Barrow
- Departments of Pharmacology and Molecular Sciences, Baltimore, MD 21205.,Lieber Institute for Brain Development, Baltimore, MD 21205
| |
Collapse
|
96
|
Edgington-Mitchell LE. Pathophysiological roles of proteases in gastrointestinal disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G234-9. [PMID: 26702140 DOI: 10.1152/ajpgi.00393.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/31/2023]
Abstract
Gastrointestinal diseases, such as irritable bowel syndrome, inflammatory bowel disease, and colorectal cancer, affect a large proportion of the population and are associated with many unpleasant symptoms. Although the causes of these diseases remain largely unknown, there is increasing evidence to suggest that dysregulated protease activity may be a contributing factor. Proteases are enzymes that cleave other proteins, and their activity is normally very tightly regulated. During disease, however, the balance between proteases and their inhibitors is often shifted, leading to altered spatial and temporal control of substrate cleavage. Evaluating protease levels in normal physiology and disease has relied heavily on the use of chemical tools. Although these tools have greatly advanced the field, they are not without caveats. This review provides an introduction to these tools, their application in the gut, and a summary of the current knowledge on the contribution of protease activity to gastrointestinal disease.
Collapse
|
97
|
Lin YY, Chen ZW, Lin ZP, Lin LB, Yang XM, Xu LY, Xie Q. Tissue Levels of Stefin A and Stefin B in Hepatocellular Carcinoma. Anat Rec (Hoboken) 2016; 299:428-38. [DOI: 10.1002/ar.23311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Yang-Yuan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| | - Zhi-Wei Chen
- Department of Pathology; the Affiliated Hospital of Putian University; Putian Fujian China
| | - Zhi-Ping Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| | - Li-Bin Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| | - Xue-Ming Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| | - Li-Yan Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| | - Qun Xie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Science; Putian University; Putian Fujian China
| |
Collapse
|
98
|
The extracellular matrix in breast cancer. Adv Drug Deliv Rev 2016; 97:41-55. [PMID: 26743193 DOI: 10.1016/j.addr.2015.12.017] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is increasingly recognized as an important regulator in breast cancer. ECM in breast cancer development features numerous changes in composition and organization when compared to the mammary gland under homeostasis. Matrix proteins that are induced in breast cancer include fibrillar collagens, fibronectin, specific laminins and proteoglycans as well as matricellular proteins. Growing evidence suggests that many of these induced ECM proteins play a major functional role in breast cancer progression and metastasis. A number of the induced ECM proteins have moreover been shown to be essential components of metastatic niches, promoting stem/progenitor signaling pathways and metastatic growth. ECM remodeling enzymes are also markedly increased, leading to major changes in the matrix structure and biomechanical properties. Importantly, several ECM components and ECM remodeling enzymes are specifically induced in breast cancer or during tissue regeneration while healthy tissues under homeostasis express exceedingly low levels. This may indicate that ECM and ECM-associated functions may represent promising drug targets against breast cancer, providing important specificity that could be utilized when developing therapies.
Collapse
|
99
|
Withana NP, Ma X, McGuire HM, Verdoes M, van der Linden WA, Ofori LO, Zhang R, Li H, Sanman LE, Wei K, Yao S, Wu P, Li F, Huang H, Xu Z, Wolters PJ, Rosen GD, Collard HR, Zhu Z, Cheng Z, Bogyo M. Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Sci Rep 2016; 6:19755. [PMID: 26797565 DOI: 10.1038/srep19755.sci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/17/2015] [Indexed: 08/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal, chronic, progressive disease characterized by formation of scar tissue within the lungs. Because it is a disease of unknown etiology, it is difficult to diagnose, to predict disease course and to devise treatment strategies. Recent evidence suggests that activated macrophages play key roles in the pathology of IPF. Therefore, imaging probes that specifically recognize these pools of activated immune cells could provide valuable information about how these cells contribute to the pathobiology of the disease. Here we demonstrate that cysteine cathepsin-targeted imaging probes can be used to monitor the contribution of macrophages to fibrotic disease progression in the bleomycin-induced murine model of pulmonary fibrosis. Furthermore, we show that the probes highlight regions of macrophage involvement in fibrosis in human biopsy tissues from IPF patients. Finally, we present first-in-human results demonstrating non-invasive imaging of active cathepsins in fibrotic lesions of patients with IPF. Together, our findings validate small molecule cysteine cathepsin probes for clinical PET imaging and suggest that they have the potential to be used to generate mechanistically-informative molecular information regarding cellular drivers of IPF disease severity and progression.
Collapse
Affiliation(s)
- Nimali P Withana
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xiaowei Ma
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Helen M McGuire
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Martijn Verdoes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | | - Leslie O Ofori
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ruiping Zhang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Hao Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Laura E Sanman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ke Wei
- Department of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shaobo Yao
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Peilin Wu
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Hui Huang
- Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science &Peking Union Medical College, Beijing, 100730, China
| | - Zuojun Xu
- Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science &Peking Union Medical College, Beijing, 100730, China
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
| | - Glenn D Rosen
- Department of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Harold R Collard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
100
|
Withana NP, Ma X, McGuire HM, Verdoes M, van der Linden WA, Ofori LO, Zhang R, Li H, Sanman LE, Wei K, Yao S, Wu P, Li F, Huang H, Xu Z, Wolters PJ, Rosen GD, Collard HR, Zhu Z, Cheng Z, Bogyo M. Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Sci Rep 2016; 6:19755. [PMID: 26797565 PMCID: PMC4726431 DOI: 10.1038/srep19755] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal, chronic, progressive disease characterized by formation of scar tissue within the lungs. Because it is a disease of unknown etiology, it is difficult to diagnose, to predict disease course and to devise treatment strategies. Recent evidence suggests that activated macrophages play key roles in the pathology of IPF. Therefore, imaging probes that specifically recognize these pools of activated immune cells could provide valuable information about how these cells contribute to the pathobiology of the disease. Here we demonstrate that cysteine cathepsin-targeted imaging probes can be used to monitor the contribution of macrophages to fibrotic disease progression in the bleomycin-induced murine model of pulmonary fibrosis. Furthermore, we show that the probes highlight regions of macrophage involvement in fibrosis in human biopsy tissues from IPF patients. Finally, we present first-in-human results demonstrating non-invasive imaging of active cathepsins in fibrotic lesions of patients with IPF. Together, our findings validate small molecule cysteine cathepsin probes for clinical PET imaging and suggest that they have the potential to be used to generate mechanistically-informative molecular information regarding cellular drivers of IPF disease severity and progression.
Collapse
Affiliation(s)
- Nimali P. Withana
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xiaowei Ma
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Helen M. McGuire
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Martijn Verdoes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | | - Leslie O. Ofori
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ruiping Zhang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Hao Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Laura E. Sanman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Ke Wei
- Department of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shaobo Yao
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Peilin Wu
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Hui Huang
- Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zuojun Xu
- Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Paul J. Wolters
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
| | - Glenn D. Rosen
- Department of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Harold R. Collard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143 USA
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Beijing, 100730, China
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|