51
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
52
|
Liu L, Wu Y, Zhang C, Zhou C, Li Y, Zeng Y, Zhang C, Li R, Luo D, Wang L, Zhang L, Tu S, Deng H, Luo S, Chen YG, Xiong X, Yan X. Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol 2020; 12:723-737. [PMID: 32242230 PMCID: PMC7749739 DOI: 10.1093/jmcb/mjaa016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Adipocyte is the most predominant cell type in the tumor microenvironment of breast cancer and plays a pivotal role in cancer progression, yet the underlying mechanisms and functional mediators remain elusive. We isolated primary preadipocytes from mammary fat pads of human breast cancer patients and generated mature adipocytes and cancer-associated adipocytes (CAAs) in vitro. The CAAs exhibited significantly different gene expression profiles as assessed by transcriptome sequencing. One of the highly expressed genes in CAAs is granulocyte colony-stimulating factor (G-CSF). Treatment with recombinant human G-CSF protein or stable expression of human G-CSF in triple-negative breast cancer (TNBC) cell lines enhanced epithelial-mesenchymal transition, migration, and invasion of cancer cells, by activating Stat3. Accordantly, targeting G-CSF/Stat3 signaling with G-CSF-neutralizing antibody, a chemical inhibitor, or siRNAs for Stat3 could all abrogate CAA- or G-CSF-induced migration and invasion of breast cancer cells. The pro-invasive genes MMP2 and MMP9 were identified as target genes of G-CSF in TNBC cells. Furthermore, in human breast cancer tissues, elevated G-CSF expression in adipocytes is well correlated with activated Stat3 signal in cancer cells. Together, our results suggest a novel strategy to intervene with invasive breast cancers by targeting CAA-derived G-CSF.
Collapse
Affiliation(s)
- Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yudong Wu
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yining Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yi Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Rong Li
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang 330029, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330003, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Medical College, Nanchang 330006, China
| |
Collapse
|
53
|
Attané C, Milhas D, Hoy AJ, Muller C. Metabolic Remodeling Induced by Adipocytes: A New Achilles' Heel in Invasive Breast Cancer? Curr Med Chem 2020; 27:3984-4001. [PMID: 29708068 DOI: 10.2174/0929867325666180426165001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Camille Attané
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Sydney, Australia
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
54
|
The Role of Adipokines and Bone Marrow Adipocytes in Breast Cancer Bone Metastasis. Int J Mol Sci 2020; 21:ijms21144967. [PMID: 32674405 PMCID: PMC7404398 DOI: 10.3390/ijms21144967] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.
Collapse
|
55
|
Wu Q, Li B, Sun S, Sun S. Unraveling Adipocytes and Cancer Links: Is There a Role for Senescence? Front Cell Dev Biol 2020; 8:282. [PMID: 32411704 PMCID: PMC7198697 DOI: 10.3389/fcell.2020.00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Senescence is characterized by a permanent cell cycle arrest that is elicited in response to different stresses. In addition, senescent cells undergo multiple other phenotypic alterations, such as autophagy modulation, metabolic reprogramming, and the senescence-associated secretory phenotype (SASP). These senescence-related and inflammatory effects prevail within tumors and are strongly controlled by cancer properties, and inflammatory mediators further maintain and propagate the senescence process to adjacent cells. It is important to consider these detrimental effects that may drive tumorigenesis or cancer relapse. Importantly, cancer-associated adipocytes (CAAs) are one of the primary stromal cells in various tumor microenvironments and favor tumor progression by releasing various factors that can mediate local and systemic effects. However, it remains unclear whether CAAs possess senescent features. In this review, we discuss the complex relationship between senescence and CAAs and highlight important considerations for therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Faculty of Medicine, University of Paris Sud-Saclay, Le Kremlin-Bicêtre, France
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
56
|
Piquer-Garcia I, Campderros L, Taxerås SD, Gavaldà-Navarro A, Pardo R, Vila M, Pellitero S, Martínez E, Tarascó J, Moreno P, Villarroya J, Cereijo R, González L, Reyes M, Rodriguez-Fernández S, Vives-Pi M, Lerin C, Elks CM, Stephens JM, Puig-Domingo M, Villarroya F, Villena JA, Sánchez-Infantes D. A Role for Oncostatin M in the Impairment of Glucose Homeostasis in Obesity. J Clin Endocrinol Metab 2020; 105:5586710. [PMID: 31606738 PMCID: PMC7112982 DOI: 10.1210/clinem/dgz090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Oncostatin M (OSM) plays a key role in inflammation, but its regulation and function during obesity is not fully understood. OBJECTIVE The aim of this study was to evaluate the relationship of OSM with the inflammatory state that leads to impaired glucose homeostasis in obesity. We also assessed whether OSM immunoneutralization could revert metabolic disturbances caused by a high-fat diet (HFD) in mice. DESIGN 28 patients with severe obesity were included and stratified into two groups: (1) glucose levels <100 mg/dL and (2) glucose levels >100 mg/dL. White adipose tissue was obtained to examine OSM gene expression. Human adipocytes were used to evaluate the effect of OSM in the inflammatory response, and HFD-fed C57BL/6J mice were injected with anti-OSM antibody to evaluate its effects. RESULTS OSM expression was elevated in subcutaneous and visceral fat from patients with obesity and hyperglycemia, and correlated with Glut4 mRNA levels, serum insulin, homeostatic model assessment of insulin resistance, and inflammatory markers. OSM inhibited adipogenesis and induced inflammation in human adipocytes. Finally, OSM receptor knockout mice had increased Glut4 mRNA levels in adipose tissue, and OSM immunoneutralization resulted in a reduction of glucose levels and Ccl2 expression in adipose tissue from HFD-fed mice. CONCLUSIONS OSM contributes to the inflammatory state during obesity and may be involved in the development of insulin resistance.
Collapse
Affiliation(s)
- Irene Piquer-Garcia
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Laura Campderros
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIII, Madrid, Spain
| | - Siri D Taxerås
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIII, Madrid, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Vila
- Laboratory of Metabolism and Obesity, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIII, Madrid, Spain
| | - Eva Martínez
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Jordi Tarascó
- Department of Surgery, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Pau Moreno
- Department of Surgery, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Joan Villarroya
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIII, Madrid, Spain
| | - Lorena González
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Marjorie Reyes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | | | - Marta Vives-Pi
- BiomedicalResearch Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIII, Madrid, Spain
- Immunology Section, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Carles Lerin
- Endocrinology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Carrie M Elks
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIII, Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIII, Madrid, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIII, Madrid, Spain
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
- BiomedicalResearch Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIII, Madrid, Spain
- Correspondence and Reprint Requests: David Sánchez-Infantes, PhD, Obesity and Type 2 Diabetes: Adipose Tissue Biology Group Leader, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain. E-mail:
| |
Collapse
|
57
|
Park JY, Kang SE, Ahn KS, Um JY, Yang WM, Yun M, Lee SG. Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. J Cancer 2020; 11:2552-2559. [PMID: 32201525 PMCID: PMC7065999 DOI: 10.7150/jca.37975] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Although it is well known that adipocyte significantly affects breast cancer progression, its mechanism has not been fully understood. Here, we analyzed the effect of adipocytes on breast cancer progression including cell proliferation and migration. Materials and Methods: We treated the conditioned media obtained from mouse 3T3-L1-derived or human adipose tissue-derived mesenchymal stem cells (hAMSC)-derived adipocytes to breast cancer cells, MCF-7 and MDA-MB-231. And then, cells viability and proliferation were analyzed using MTT assays and colony forming assays, respectively. Also mRNA expression of inflammatory cytokines and proteins expression in main signal pathway were analyzed by RT-qPCR and immunoblotting, respectively. Results: Adipocyte-derived conditioned media increased the proliferation and migration of MCF-7 and MDA-MB-231 cells while little effects in a human normal immortalized mammary epithelial cell line MCF10A. In addition, adipocyte-derived conditioned media induced phosphorylation of AKT and mTOR and upregulated the expression of target genes of the PI3K-AKT-mTOR pathway including IL6, IL1β, IL1α and TNFα in breast cancer cells. Furthermore, BEZ235 a dual inhibitor of PI3K and mTOR significantly decreased the adipocyte-mediated the proliferation and migration of breast cancer cells. Conclusion: Adipocyte-derived conditioned media enhance the proliferation and migration of breast cancer cells through the PI3K-AKT-mTOR pathway, supporting the importance of heterotypic interactions between breast cancer cells and adipocytes in the tumor microenvironment.
Collapse
Affiliation(s)
- Jae-Yeo Park
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Shi-Eun Kang
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Miyong Yun
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea.,Sejong Arctic Research Center, Sejong University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine and Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.,Bionanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
58
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
59
|
Lee Isla Crake R, Phillips E, Kleffmann T, Currie MJ. Co-culture With Human Breast Adipocytes Differentially Regulates Protein Abundance in Breast Cancer Cells. Cancer Genomics Proteomics 2020; 16:319-332. [PMID: 31467226 DOI: 10.21873/cgp.20137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIM Recent research highlights the role of cancer-associated adipocytes (CAA) in promoting breast cancer cell migration, invasion and resistance to therapy. This study aimed at identifying cellular proteins differentially regulated in breast cancer cells co-cultured with CAA. MATERIALS AND METHODS Adipocytes isolated from human breast adipose tissue were co-cultured with hormone receptor-positive (MCF-7) or -negative (MDA-MB-231) breast cancer cells using a transwell co-culture system. Proteomes of co-cultured and control breast cancer cells were compared quantitatively using iTRAQ labelling and tandem mass spectrometry, and the results were validated by western blotting. RESULTS A total of 1,126 and 1,218 proteins were identified in MCF-7 and MDA-MB-231 cells, respectively. Among these, 85 (MCF-7) and 63 (MDA-MB-231) had an average fold change >1.5 following co-culture. Pathway analysis revealed that CAA-induced enrichment of proteins involved in metabolism, the ubiquitin proteasome, and purine synthesis. CONCLUSION This study provides a proteomic platform for investigating the paracrine role of CAA in promoting breast cancer cell metastasis and resistance to therapy.
Collapse
Affiliation(s)
- Rebekah Lee Isla Crake
- Department of Pathology and Biomedical Science, Mackenzie Cancer Research Group, University of Otago Christchurch, Christchurch, New Zealand
| | - Elisabeth Phillips
- Department of Pathology and Biomedical Science, Mackenzie Cancer Research Group, University of Otago Christchurch, Christchurch, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, Mackenzie Cancer Research Group, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
60
|
Jiramongkol Y, Lam EWF. Multifaceted Oncogenic Role of Adipocytes in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:125-142. [PMID: 32130697 DOI: 10.1007/978-3-030-34025-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has for decades been recognised as one of the major health concerns. Recently accumulated evidence has established that obesity or being overweight is strongly linked to an increased risk of cancer. However, it is still not completely clear how adipose tissue (fat), along with other stromal connective tissues and cells, contribute to tumour initiation and progression. In the tumour microenvironment, the adipose tissue cells, in particular the adipocytes, secrete a number of adipokines, including growth factors, hormones, collagens, fatty acids, and other metabolites as well as extracellular vesicles to shape and condition the tumour and its microenvironment. In fact, the adipocytes, through releasing these factors and materials, can directly and indirectly facilitate cancer cell proliferation, apoptosis, metabolism, angiogenesis, metastasis and even chemotherapy resistance. In this chapter, the multidimensional role played by adipocytes, a major and functional component of the adipose tissue, in promoting cancer development and progression within the tumour microenvironment will be discussed.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
61
|
Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers (Basel) 2019; 11:cancers11122012. [PMID: 31847105 PMCID: PMC6966437 DOI: 10.3390/cancers11122012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Breast adiposity is correlated with body mass index, menopausal status and mammary density. We here wish to establish how these factors influence the cross-talk between breast adipocytes and normal or malignant breast cells. Adipocyte-derived stem cells (ASCs) were obtained from healthy women and classified into six distinct groups based on body mass index, menopausal status and mammary density. The ASCs were induced to differentiate, and the influence of their conditioned media (ACM) was determined. Unexpectedly, there were no detectable differences in adipogenic differentiation and secretion between the six ASC groups, while their corresponding ACMs had no detectable influence on normal breast cells. In clear contrast, all ACMs profoundly influenced the proliferation, migration and invasiveness of malignant breast cells and increased the number of lipid droplets in their cytoplasm via increased expression of the fatty acid receptor CD36, thereby increasing fatty acid uptake. Importantly, inhibition of CD36 reduced lipid droplet accumulation and attenuated the migration and invasion of the breast cancer cells. These findings suggest that breast-associated adipocytes potentiate the invasiveness of breast cancer cells which, at least in part, is mediated by metabolic reprogramming via CD36-mediated fatty acid uptake.
Collapse
|
62
|
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Wang C, Li J, Sun S. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte 2019; 8:31-45. [PMID: 30474469 PMCID: PMC6768245 DOI: 10.1080/21623945.2018.1551688] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cancer-secreted exosomes are emerging mediators of cancer-associated cachexia. Here, we show that miR-155 secreted by breast cancer cells is a potent role on the catabolism of adipocytes and muscle cells through targeting the PPARγ. After cocultivated with mature adipocytes or C2C12, tumour cells exhibit an aggressive phenotype via inducing epithelial-mesenchymal transition while breast cancer-derived exosomes increased catabolism and release the metabolites in adipocytes and muscle cells. In adipocytes, cancer cell-secreted miR-155 promotes beige/brown differentiation and remodel metabolism in resident adipocytes by downregulating the PPARγ expression, but does not significantly affect biological conversion in C2C12. Likewise, propranolol ameliorates tumour exosomes-associated cachectic wasting through upregulating the PPARγ expression. In summary, we have demonstrated that the transfer of miR-155 from exosomes acts as an oncogenic signal reprograming systemic energy metabolism and leading to cancer-associated cachexia in breast cancer.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Qian Yang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shan Zhu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Lijun Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Changhua Wang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| |
Collapse
|
63
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Nikolaos Spyrou
- 251 Airforce General Hospital, 3 Kanellopoulou, 11525, Athens, Greece
| | - Jona Kadillari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| | - Sotiria Psallida
- Laboratory of Microbiology, KAT Hospital, 2 Nikis, Kifisia, 14561, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece.
| |
Collapse
|
64
|
Expression of Oncostatin M in Early Gastric Cancer and Precancerous Lesions. Gastroenterol Res Pract 2019; 2019:3616140. [PMID: 31871447 PMCID: PMC6913316 DOI: 10.1155/2019/3616140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To detect the expression of the Oncostatin M (OSM) gene and encoded protein in the mucosal epithelium of chronic gastritis, intestinal metaplasia (IM), low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), early gastric cancer (EGC), and advanced gastric cancer (AGC) samples and to explore the correlation and clinicopathological significance of OSM expression in the process of gastric carcinogenesis. Methods The expression levels of OSM in chronic gastritis, IM, LGIN, HGIN, EGC, and AGC samples were detected by gene chip, real-time quantitative PCR, and immunohistochemical methods. The expression levels of OSM in the gastric mucosa were analyzed, and its correlation with clinical pathology was studied. Results The expression level of OSM in gastric HGIN and EGC tissues was significantly higher than that in LGIN tissues based on expression profiling (P < 0.001). The expression of the OSM gene in EGC was higher than that in HGIN (unpaired t test, P < 0.05) and LGIN (unpaired t test, P < 0.01) by qPCR. The expression of OSM in LGIN was significantly lower than that in HGIN (P = 0.008) and EGC (P = 0.044) by immunohistochemical staining. The expression of OSM in HGIN tissues was significantly higher than that in AGC (P = 0.007). Conclusion Alterations in the expression of the OSM gene may be involved in the malignant transformation of the gastric mucosal epithelium. Because of the significant difference in the cancerization rate and clinical management between LGIN and HGIN, the difference in the staining intensity of OSM between LGIN and HGIN may be one of the early markers of gastric intraepithelial neoplasia.
Collapse
|
65
|
Fan JJ, Hsu WH, Lee KH, Chen KC, Lin CW, Lee YLA, Ko TP, Lee LT, Lee MT, Chang MS, Cheng CH. Dietary Flavonoids Luteolin and Quercetin Inhibit Migration and Invasion of Squamous Carcinoma through Reduction of Src/Stat3/S100A7 Signaling. Antioxidants (Basel) 2019; 8:antiox8110557. [PMID: 31731716 PMCID: PMC6912538 DOI: 10.3390/antiox8110557] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Flavonoids are well-known antioxidants and have shown the ability to prevent tumor formation and recurrence. Especially in dietary flavonoids, they have provided convenience and consistence of intake for long-term prevention of tumor formation. Previous reports suggested that S100 calcium-binding protein A7 (S100A7) might activate epithelial–mesenchymal transition (EMT) signaling and promote the metastasis of tumor cells; however, the regulatory signaling was unclear. In this study, we found that S100A7 was highly expressed in cancer cells and could be reduced by luteolin (Lu) and quercetin (Qu) through Src/Stat3 signaling. We found that the protein levels of S100A7, phosphorylated Src (p-Src), and p-Stat3 were increased in A431-III cells. Flavonoids Lu and Qu reduce protein levels of p-Src, p-Stat3 and S100A7 in A431-III cells. Treatment of A431-III cells with Src inhibitor SU6656 and Stat3 inhibitor S3I-201 also reduced the protein levels of S100A7. Transactivation activity of 5′-upstream regions of S100A7 was activated by Stat3 but was reduced by treatment with Lu, Qu, SU6656 and S3I-201. The treatment also reduced the migratory and invasive abilities of A431-III cells. In a further analysis of EMT markers, the protein level of E-cad increased and that of Twist decreased after treatment with the inhibitors and flavonoids. Overexpression of S100A7 decreased the protein level of E-cad and increased the Twist level, whereas knockdown of S100A7 had the opposite effects. Treatment with S3I-201, Lu and Qu, compared to the control, were found to decrease metastasis of tumor cells in zebrafish larvae. These results suggest that Lu and Qu may inhibit Src/Stat3/S100A7 signaling to reduce tumorigenesis of cancer cells.
Collapse
Affiliation(s)
- Jhen-Jia Fan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
- Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Wen-Hsien Hsu
- Department of Surgery, Wan-Fang Hospital, Taipei Medical University, Taipei 11034, Taiwan;
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11034, Taiwan;
- Cancer Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11034, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11034, Taiwan; (K.-C.C.); (C.-W.L.)
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11034, Taiwan; (K.-C.C.); (C.-W.L.)
| | - Yu-Lin A Lee
- Departments of Medicine and Pediatrics, Duke University Hospital, Durham, NC 27704, USA;
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (T.-P.K.); (M.-T.L.)
| | - Lang-Ta Lee
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
| | - Ming-Ting Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (T.-P.K.); (M.-T.L.)
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: (C.-H.C.); (M.-S.C.); Tel.: +886-2-27361661 (ext. 3156) (C.-H.C.); +886-2-33669837 (M.-S.C.)
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11034, Taiwan; (K.-C.C.); (C.-W.L.)
- Correspondence: (C.-H.C.); (M.-S.C.); Tel.: +886-2-27361661 (ext. 3156) (C.-H.C.); +886-2-33669837 (M.-S.C.)
| |
Collapse
|
66
|
Polak KL, Chernosky NM, Smigiel JM, Tamagno I, Jackson MW. Balancing STAT Activity as a Therapeutic Strategy. Cancers (Basel) 2019; 11:cancers11111716. [PMID: 31684144 PMCID: PMC6895889 DOI: 10.3390/cancers11111716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Driven by dysregulated IL-6 family member cytokine signaling in the tumor microenvironment (TME), aberrant signal transducer and activator of transcription (STAT3) and (STAT5) activation have been identified as key contributors to tumorigenesis. Following transformation, persistent STAT3 activation drives the emergence of mesenchymal/cancer-stem cell (CSC) properties, important determinants of metastatic potential and therapy failure. Moreover, STAT3 signaling within tumor-associated macrophages and neutrophils drives secretion of factors that facilitate metastasis and suppress immune cell function. Persistent STAT5 activation is responsible for cancer cell maintenance through suppression of apoptosis and tumor suppressor signaling. Furthermore, STAT5-mediated CD4+/CD25+ regulatory T cells (Tregs) have been implicated in suppression of immunosurveillance. We discuss these roles for STAT3 and STAT5, and weigh the attractiveness of different modes of targeting each cancer therapy. Moreover, we discuss how anti-tumorigenic STATs, including STAT1 and STAT2, may be leveraged to suppress the pro-tumorigenic functions of STAT3/STAT5 signaling.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Jacob M Smigiel
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
67
|
Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol 2019; 12:95. [PMID: 31500658 PMCID: PMC6734503 DOI: 10.1186/s13045-019-0778-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Adipocytes are one of the primary stromal cells in many tissues, and they are considered to play an active role in the tumor microenvironment. Cancer-associated adipocytes (CAAs) are not only found adjacent to cancer cells, but also communicate with cancer cells through releasing various factors that can mediate local and systemic effects. The adipocyte-cancer cell crosstalk leads to phenotypical and functional changes of both cell types, which can further enhance tumor progression. Indeed, obesity, which is associated with an increase in adipose mass and an alteration of adipose tissue, is becoming pandemic in some countries and it is now considered to be an independent risk factor for cancer progression. In this review, we focus on the potential mechanisms involved with special attention to the adipocyte-cancer cell circle in breast cancer. We envisage that besides having a direct impact on tumor cells, CAAs systemically preconditions the tumor microenvironment by favoring anti-tumor immunity. A better understanding of cancer-associated adipocytes and the key molecular events in the adipocyte-cancer cell crosstalk will provide insights into tumor biology and permit the optimization of therapeutic strategies.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
68
|
Wang J, Gao WJ, Deng SL, Liu X, Jia H, Ma WZ. High temperature suppressed SSC self-renewal through S phase cell cycle arrest but not apoptosis. Stem Cell Res Ther 2019; 10:227. [PMID: 31358059 PMCID: PMC6664773 DOI: 10.1186/s13287-019-1335-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High temperature has a very adverse effect on mammalian spermatogenesis and eventually leads to sub- or infertility through either apoptosis or DNA damage. However, the direct effects of heat stress on the development of spermatogonial stem cells (SSCs) are still unknown because SSCs are rare in the testes. METHODS In the present study, we first used in vitro-cultured SSCs to study the effect of heat shock treatment on SSC development. Then, we used RNA-Seq analysis to identify new genes or signalling pathways implicated in the heat stress response. RESULTS We found that 45 min of 43 °C heat shock treatment significantly inhibited the proliferation of SSCs 2 h after treatment but did not lead to apoptosis. In total, 17,822 genes were identified by RNA-Seq after SSC heat shock treatment. Among these genes, we found that 200 of them had significantly changed expression, with 173 upregulated and 27 downregulated genes. The number of differentially expressed genes in environmental information processing pathways was 37, which was the largest number. We screened the candidate JAK-STAT signalling pathway on the basis of inhibition of cell cycle progression and found that the JAK-STAT pathway was inhibited after heat shock treatment. The flow cytometry results further confirmed that heat stress caused S phase cycle arrest of SSCs. CONCLUSION Our results showed that heat shock treatment at 43 °C for 45 min significantly inhibited SSC self-renewal through S phase cell cycle arrest but not apoptosis.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei-Jun Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Hua Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China. .,Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China. .,Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
69
|
Wei X, Li S, He J, Du H, Liu Y, Yu W, Hu H, Han L, Wang C, Li H, Shi X, Zhan M, Lu L, Yuan S, Sun L. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal 2019; 17:58. [PMID: 31170987 PMCID: PMC6554964 DOI: 10.1186/s12964-019-0373-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Breast cancer cells recruit surrounding stromal cells, such as cancer-associated fibroblasts (CAFs), to remodel collagen and promote tumor metastasis. Adipocytes are the most abundant stromal partners in breast tissue, local invasion of breast cancer leads to the proximity of cancer cells and adipocytes, which respond to generate cancer-associated adipocytes (CAAs). These cells exhibit enhanced secretion of extracellular matrix related proteins, including collagens. However, the role of adipocyte-derived collagen on breast cancer progression still remains unclear. Methods Adipocytes were cocultured with breast cancer cells for 3D collagen invasion and collagen organization exploration. Breast cancer cells and adipose tissue co- implanted mouse model, clinical breast cancer samples analysis were used to study the crosstalk between adipose and breast cancer cells in vivo. A combination of proteomics, enzyme-linked immunosorbent assay, loss of function assay, qPCR, western blot, database analysis and chromatin immunoprecipitation assays were performed to study the mechanism mediated the activation of PLOD2 in adipocytes. Results It was found that CAAs remodeled collagen alignment during crosstalk with breast cancer cells in vitro and in vivo, which further promoted breast cancer metastasis. Tumor-derived PAI-1 was required to activate the expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in CAAs. Pharmacologic blockade of PAI-1 or PLOD2 disrupted the collagen reorganization in CAAs. Mechanistically, it was observed that PI3K/AKT pathway was activated in adipocytes upon co-culturing with breast cancer cells or treatment with recombinant PAI-1, which could promote the translocation of transcription factor FOXP1 into the nucleus and further enhanced the promoter activity of PLOD2 in CAAs. In addition, collagen reorganization at the tumor-adipose periphery, as well as the positive relevance between PAI-1 and PLOD2 in invasive breast carcinoma were confirmed in clinical specimens of breast cancer. Conclusion In summary, our findings revealed a new stromal collagen network that favors tumor invasion and metastasis establish between breast cancer cells and surrounding adipocytes at the tumor invasive front, and identified PLOD2 as a therapeutic target for metastatic breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12964-019-0373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Sijing Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Jinyong He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Wei Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Haolin Hu
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Lifei Han
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Chenfei Wang
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Shi
- Department of General Surgery, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China.
| |
Collapse
|
70
|
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, Wu J, Yuan J, Zhang Y, Sun S, Wang C. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:223. [PMID: 31138258 PMCID: PMC6537177 DOI: 10.1186/s13046-019-1210-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emerging evidence supports the pivotal roles of adipocytes in breast cancer progression. Tumour induced beige/brown adipose tissue differentiation contributes to the hypermetabolic state of the breast cancer. However, the mediators and mechanisms remain unclear. METHODS Survival probabilities were estimated using the Kaplan-Meier method based on immunohistochemistry results. Biochemical studies were performed to characterize the novel interrelation between breast cancer cells and adipocytes. RESULTS We show that tumour-surrounding adipocytes exhibit an altered phenotype in terms of upregulated beige/brown characteristics and increased catabolism associated with an activated state characterized by the release of metabolites, including free fatty acids, pyruvate, lactate and ketone bodies. Likewise, tumour cells cocultivated with mature adipocytes exhibit metabolic adaptation and an aggressive phenotype in vitro and in vivo. Mechanistically, we show that tumour cells induce beige/brown differentiation and remodel metabolism in resident adipocytes by exosomes from the co-culture system that carry high levels of miRNA-144 and miRNA-126. miRNA-144 promotes beige/brown adipocyte characteristics by downregulating the MAP3K8/ERK1/2/PPARγ axis, and exosomal miRNA-126 remodels metabolism by disrupting IRS/Glut-4 signalling, activating the AMPK/autophagy pathway and stabilizing HIF1α expression in imminent adipocytes. In vivo inhibition of miRNA-144 or miRNA-126 decreases adipocyte-induced tumour growth. CONCLUSIONS These results demonstrate that by inducing beige/brown differentiation and enhancing catabolism in recipient adipocytes, exosomal miRNA-144 and miRNA-126 from the tumour-adipocyte interaction reprogram systemic energy metabolism to facilitate tumour progression.
Collapse
Affiliation(s)
- Qi Wu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juanjuan Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Zhiyu Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Si Sun
- 0000 0004 1758 2270grid.412632.0Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Shan Zhu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Lijun Wang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juan Wu
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Jingping Yuan
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Yimin Zhang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Shengrong Sun
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Changhua Wang
- 0000 0001 2331 6153grid.49470.3eDepartment of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430060 Hubei Province People’s Republic of China
| |
Collapse
|
71
|
Doherty MR, Parvani JG, Tamagno I, Junk DJ, Bryson BL, Cheon HJ, Stark GR, Jackson MW. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Breast Cancer Res 2019; 21:54. [PMID: 31036052 PMCID: PMC6489282 DOI: 10.1186/s13058-019-1136-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Background Highly aggressive, metastatic and therapeutically resistant triple-negative breast cancers (TNBCs) are often enriched for cancer stem cells (CSC). Cytokines within the breast tumor microenvironment (TME) influence the CSC state by regulating tumor cell differentiation programs. Two prevalent breast TME cytokines are oncostatin-M (OSM) and interferon-β (IFN-β). OSM is a member of the IL-6 family of cytokines and can drive the de-differentiation of TNBC cells to a highly aggressive CSC state. Conversely, IFN-β induces the differentiation of TNBC, resulting in the repression of CSC properties. Here, we assess how these breast TME cytokines influence CSC plasticity and clinical outcome. Methods Using transformed human mammary epithelial cell (HMEC) and TNBC cell models, we assessed the CSC markers and properties following exposure to OSM and/or IFN-β. CSC markers included CD24, CD44, and SNAIL; CSC properties included tumor sphere formation, migratory capacity, and tumor initiation. Results There are three major findings from our study. First, exposure of purified, non-CSC to IFN-β prevents OSM-mediated CD44 and SNAIL expression and represses tumor sphere formation and migratory capacity. Second, during OSM-induced de-differentiation, OSM represses endogenous IFN-β mRNA expression and autocrine/paracrine IFN-β signaling. Restoring IFN-β signaling to OSM-driven CSC re-engages IFN-β-mediated differentiation by repressing OSM/STAT3/SMAD3-mediated SNAIL expression, tumor initiation, and growth. Finally, the therapeutic use of IFN-β to treat OSM-driven tumors significantly suppresses tumor growth. Conclusions Our findings suggest that the levels of IFN-β and OSM in TNBC dictate the abundance of cells with a CSC phenotype. Indeed, TNBCs with elevated IFN-β signaling have repressed CSC properties and a better clinical outcome. Conversely, TNBCs with elevated OSM signaling have a worse clinical outcome. Likewise, since OSM suppresses IFN-β expression and signaling, our studies suggest that strategies to limit OSM signaling or activate IFN-β signaling will disengage the de-differentiation programs responsible for the aggressiveness of TNBCs. Electronic supplementary material The online version of this article (10.1186/s13058-019-1136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary R Doherty
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jenny G Parvani
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Damian J Junk
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Benjamin L Bryson
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hyeon Joo Cheon
- Department of Cancer Biology, the Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - George R Stark
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Cancer Biology, the Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Mark W Jackson
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
72
|
Tawara K, Scott H, Emathinger J, Wolf C, LaJoie D, Hedeen D, Bond L, Montgomery P, Jorcyk C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10:2068-2085. [PMID: 31007849 PMCID: PMC6459341 DOI: 10.18632/oncotarget.26699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1β) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1β therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1β and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10−23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER−) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1β promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER− MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER’s interaction with STAT3 is reduced by 50% through both OSM and IL-1β treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, Boise, ID, USA
| | | | - Cody Wolf
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Laura Bond
- Boise State University, Biomolecular Research Center, Boise, ID, USA
| | | | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| |
Collapse
|
73
|
Interleukin-8 Activates Breast Cancer-Associated Adipocytes and Promotes Their Angiogenesis- and Tumorigenesis-Promoting Effects. Mol Cell Biol 2019; 39:MCB.00332-18. [PMID: 30397072 DOI: 10.1128/mcb.00332-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence supports the critical role of active stromal adipocytes in breast cancer development and spread. However, the mediators and the mechanisms of action are still elusive. We show here that cancer-associated adipocytes (CAAs) isolated from 10 invasive breast carcinomas are proinflammatory and exhibit active phenotypes, including higher proliferative, invasive, and migratory capacities compared to their adjacent tumor-counterpart adipocytes (TCAs). Furthermore, all CAAs secreted higher level of interleukin-8 (IL-8), which is critical in mediating the paracrine procarcinogenic effects of these cells. Importantly, ectopic expression of IL-8 in TCA cells activated them and enhanced their procarcinogenic effects both in vitro, in a STAT3-dependent manner, and in vivo In contrast, inhibition of the IL-8 signaling using specific short hairpin RNA, anti-IL-8 antibody, or reparixin suppressed the active features of CAAs, including their non-cell-autonomous tumor-promoting activities both on breast luminal cells and in orthotopic tumor xenografts in mice. IL-8 played also an important role in enhancing the proangiogenic effects of breast adipocytes. These results provide clear indication that IL-8 plays key roles in the activation of breast CAAs and acts as a major mediator for their paracrine protumorigenic effects. Thus, targeting CAAs by inhibiting the IL-8 pathway could have great therapeutic value.
Collapse
|
74
|
IL-8 Secreted from M2 Macrophages Promoted Prostate Tumorigenesis via STAT3/MALAT1 Pathway. Int J Mol Sci 2018; 20:ijms20010098. [PMID: 30591689 PMCID: PMC6337597 DOI: 10.3390/ijms20010098] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is a major health problem in males. Metastasis-associated with lung adenocarcinoma transcript-1 (MALAT1), which is overexpressed in PCa tissue, is associated with physiological and pathological conditions of PCa. M2 macrophages are major immune cells abundant in the tumor microenvironment. However, it remains unknown whether M2 macrophages are involved in the effects or not, and molecular mechanisms of MALAT1 on PCa progression have not yet been comprehensively explored. Here we reported that, M2 macrophages (PMA/IL-4 treated THP1) induced MALAT1 expression in PCa cell lines. Knockdown MALAT1 expression level in PCa cell lines inhibited cellular proliferation, invasion, and tumor formation. Further mechanistic dissection revealed that M2 macrophages secreted IL-8 was sufficient to drive up MALAT1 expression level via activating STAT3 signaling pathway. Additional chromatin immunoprecipitation (ChIP) and luciferase reporter assays displayed that STAT3 could bind to the MALAT1 promoter region and transcriptionally stimulate the MALAT1 expression. In summary, our present study identified the IL-8/STAT3/MALAT1 axis as key regulators during prostate tumorigenesis and therefore demonstrated a new mechanism for the MALAT1 transcriptional regulation.
Collapse
|
75
|
Bolf EL, Sprague BL, Carr FE. A Linkage Between Thyroid and Breast Cancer: A Common Etiology? Cancer Epidemiol Biomarkers Prev 2018; 28:643-649. [PMID: 30541751 DOI: 10.1158/1055-9965.epi-18-0877] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Breast and thyroid cancers are two malignancies with highest incidence in women. These cancers often occur metachronously. Women with thyroid cancer are at increased risk for subsequent breast cancer; women with breast cancer have an increased incidence of later development of thyroid cancer, suggesting a common etiology. This bidirectional relationship is reported worldwide; however, the underlying reasons for this co-occurrence are unknown. In this review, we summarize the current epidemiologic evidence and putative mechanisms of these metachronous or synchronous cancers. Key potential causative factors are chemotherapy and radiotherapy of the primary tumor, genetic variants linking the two diseases, hormonal signaling both from the thyroid gland and from estrogens, and lifestyle and environmental factors. There is a critical need for additional epidemiologic studies focused on gender and regional incidence together with molecular investigations on common tumorigenic pathways in these endocrine cancers. Understanding the putative mechanisms will aid in the diagnosis and clinical management of both diseases.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Brian L Sprague
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont. .,University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
76
|
Spyrou N, Avgerinos KI, Mantzoros CS, Dalamaga M. Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 2018; 7:260-275. [PMID: 30145771 DOI: 10.1007/s13679-018-0318-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development. RECENT FINDINGS Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in cancers and are considered protective against carcinogenesis. Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the development of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered therapeutic interventions may pave the way for targeted oncotherapy.
Collapse
Affiliation(s)
- Nikolaos Spyrou
- 251 Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Section of Endocrinology, VA Boston Healthcare System, Boston, MA, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
77
|
Li FF, Zhang H, Li JJ, Cao YN, Dong X, Gao C. Interaction with adipocytes induces lung adenocarcinoma A549 cell migration and tumor growth. Mol Med Rep 2018; 18:1973-1980. [PMID: 29956800 PMCID: PMC6072224 DOI: 10.3892/mmr.2018.9226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Adipocytes have been demonstrated to promote the progression of various tumors through modulation of cancer cell metabolism. However, their role in lung cancer progression remains undetermined. In the present study, adipocytes and lung adenocarcinoma A549 cells were cultured in a Transwell co‑culture system. Cancer cells were additionally cultured in conditioned medium, obtained from adipocytes or co‑cultured cells. A MTT and colony formation assay were performed to assess A549 cell proliferation. The expression of epithelial‑mesenchymal transition protein markers E‑cadherin and vimentin were measured by western blotting. A549 cell migration and invasion was determined with wound healing, Transwell and Matrigel assays. Oil Red‑O staining was used to evaluate intracellular lipid content. Colorimetric assays were utilized to detect free fatty acid, glucose uptake, lactate production and triglyceride content in cells. The results revealed a reciprocal interaction between adipocytes and A549 cells, which significantly enhanced A549 cell proliferation and metastasis; whereas, the expression of E‑cadherin was decreased and vimentin was increased in A549 cells. Additionally, A549 cells exhibited metabolic reprogramming in vitro following co‑culture with adipocytes. It was demonstrated that lipid droplets accumulation, glucose consumption and lactate production increased in tumor cells exposed to adipocytes. Furthermore, adipocytes co‑cultured with A549 cells exhibited a decrease in the number and size of lipid droplets, a decrease in the intracellular triglyceride content and a significant increase in the release of free fatty acids. These findings highlighted the crucial role of adipocytes in the modulation of lung adenocarcinoma A549 cell metabolism and suggested the involvement of adipocytes in lung cancer progression.
Collapse
Affiliation(s)
- Fan-Fan Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hang Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jing-Jing Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Ya-Nan Cao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiang Dong
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Cong Gao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
78
|
pSTAT3 Levels Have Divergent Expression Patterns and Associations with Survival in Squamous Cell Carcinoma and Adenocarcinoma of the Oesophagus. Int J Mol Sci 2018; 19:ijms19061720. [PMID: 29890775 PMCID: PMC6032321 DOI: 10.3390/ijms19061720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022] Open
Abstract
Signal transducers and activator of transcription (STAT)-3 is activated in cancers, where it promotes growth, inflammation, angiogenesis, and inhibits apoptosis. Tissue microarrays were generated using tissues from 154 patients, with oesophageal adenocarcinoma (OAC) (n = 116) or squamous cell carcinoma (SCC) (n = 38) tumours. The tissues were stained for pSTAT3 and IL-6R using immunohistochemistry. The OE33 (OAC) and OE21 (SCC) cell lines were treated with the STAT3 inhibitor, STATTIC. The Univariate cox regression analysis revealed that a positive pSTAT3 in SCC was adversely associated with survival (Hazard ratio (HR) 6.382, 95% CI 1.266–32.184), while a protective effect was demonstrated with the higher pSTAT3 levels in OAC epithelium (HR 0.74, 95% CI 0.574–0.953). The IL-6R intensity levels were higher in the SCC tumours compared with the OAC tumours for the core and leading edge tumour tissue. The pSTAT3 levels correlated positively with the IL-6R levels in both the OAC and SCC. The treatment of OE21 and OE33 cells with the STAT3 inhibitor STATTIC in vitro resulted in decreased survival, proliferation, migration, and increased apoptosis. The pSTAT3 expression was associated with adverse survival in SCC, but not in the OAC patients. The inhibition of STAT3 in both of the tumour subtypes resulted in alterations in the survival, proliferation, migration, and apoptosis, suggesting a potential role for therapeutically targeting STAT3.
Collapse
|
79
|
Li Z, Wu Q, Sun S, Wu J, Li J, Zhang Y, Wang C, Yuan J, Sun S. Monocarboxylate transporters in breast cancer and adipose tissue are novel biomarkers and potential therapeutic targets. Biochem Biophys Res Commun 2018; 501:962-967. [PMID: 29775610 DOI: 10.1016/j.bbrc.2018.05.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Monocarboxylate transporters (MCTs) are transmembrane proteins that control the lactate metabolism and associated with poor prognosis in solid tumours including breast cancer (BC). This study aimed to evaluate the clinical and prognostic value of MCTs used by immunohistochemistry and quantum dots-based fluorescent imaging technique in BC and surrounding stroma with emphasis on the interaction between tumour and stroma. Moreover, the data from The Cancer Genome Atlas (TCGA) was analyzed to evaluate the association between MCTs mRNA expression and prognosis of breast cancer patients. Our study found that MCT1 overexpression was observed in hormone receptor-negative and high-proliferation subtypes. High expression of MCT1 and MCT4 in tumour tissues was associated with poor patient outcome; further the correlation between MCT1 expression and poor prognosis in breast cancer was further strengthened when combined with MCT4 overexpression in the adjacent adipose tissue. These results demonstrate that MCTs tend to play a role in the aggressive BC subtypes through the dynamic interaction between breast cancer cells and adipocytes, and developing therapeutics to block this interaction will be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yimin Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Changhua Wang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430060, Hubei Province, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
80
|
Lapeire L, Hendrix A, Lecoutere E, Van Bockstal M, Vandesompele J, Maynard D, Braems G, Van Den Broecke R, Müller C, Bracke M, Cocquyt V, Denys H, De Wever O. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget 2018; 8:47239-47249. [PMID: 28525384 PMCID: PMC5564561 DOI: 10.18632/oncotarget.17592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue secretes a plethora of adipokines as evidenced by characterization of subcutaneous and visceral adipose tissue secretomes. However, adipose tissue composition and secretion pattern is depot and disease dependent, influencing the adipose tissue secretome. We investigated the secretome of cancer-associated adipose tissue (CAAT) explants from breast cancer patients and explored its role in breast cancer proliferation. CAAT proteins were identified by LC-MS/MS and human protein antibody arrays and stimulated proliferation of three breast cancer cell lines. Kinomics and transcriptomics of MCF-7 breast cancer cells treated with the secretome of CAAT revealed activation of Akt-, ERK- and JNK-pathways and differential expression of activator protein 1 (AP-1) and cAMP responsive element-binding protein (CREB) target genes. The cyclin-dependent kinase (CDK)4/6-inhibitor palbociclib significantly abrogated CAAT-enhanced breast cancer cell proliferation. Our work characterizes the specific breast CAAT protein secretome and reveals its pro-proliferative potency in breast cancer.
Collapse
Affiliation(s)
- Lore Lapeire
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | | | - Jo Vandesompele
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn Maynard
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Geert Braems
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | | | - Cathérine Müller
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, UPS, Toulouse, France
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Véronique Cocquyt
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
81
|
Xu LJ, Ma Q, Zhu J, Li J, Xue BX, Gao J, Sun CY, Zang YC, Zhou YB, Yang DR, Shan YX. Combined inhibition of JAK1,2/Stat3‑PD‑L1 signaling pathway suppresses the immune escape of castration‑resistant prostate cancer to NK cells in hypoxia. Mol Med Rep 2018; 17:8111-8120. [PMID: 29693186 PMCID: PMC5983983 DOI: 10.3892/mmr.2018.8905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Castration‑resistant prostate cancer (CRPC) is difficult to treat in current clinical practice. Hypoxia is an important feature of the CRPC microenvironment and is closely associated with the progress of CRPC invasion. However, no research has been performed on the immune escape of CRPC from NK cells. The present study focused on this subject. Firstly, when the CRPC cell lines C4‑2 and CWR22Rv1 were induced by hypoxia, the expression of the UL16 binding protein (ULBP) ligand family of natural killer (NK) group 2D (NKG2D; ULBP‑1, ULBP‑2 and ULBP‑3) and MHC class I chain‑related proteins A and B (MICA/MICB) decreased. NKG2D is the main activating receptor of NK cells. Tumor cells were then co‑cultured with NK cells to conduct NK cell‑mediated cytotoxicity experiments, which revealed the decreased immune cytolytic activity of NK cells on hypoxia‑induced CRPC cells. In exploring the mechanism behind this observation, an increase in programmed death‑ligand 1 (PD‑L1) expression in CRPC cells induced by hypoxia was observed, while the addition of PD‑L1 antibody effectively reversed the expression of NKG2D ligand and enhanced the cytotoxic effect of NK cells on CRPC cells. In the process of exploring the upstream regulatory factors of PD‑L1, inhibition of the Janus kinase (JAK)1,2/signal transducer and activator of transcription 3 (Stat3) signaling pathway decreased the expression of PD‑L1 in CRPC cells. Finally, it was observed that combined inhibition of JAK1,2/PD‑L1 or Stat3/PD‑L1 was more effective than inhibition of a single pathway in enhancing the immune cytolytic activity of NK cells. Taking these results together, it is thought that combined inhibition of the JAK1,2/PD‑L1 and Stat3/PD‑L1 signaling pathways may enhance the immune cytolytic activity of NK cells toward hypoxia‑induced CRPC cells, which is expected to provide novel ideas and targets for the immunotherapy of CRPC.
Collapse
Affiliation(s)
- Li-Jun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jian Li
- First Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Bo-Xin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jie Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chuan-Yang Sun
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ya-Chen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yi-Bin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Dong-Rong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yu-Xi Shan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
82
|
Self-assembling nanoparticles encapsulating zoledronic acid inhibit mesenchymal stromal cells differentiation, migration and secretion of proangiogenic factors and their interactions with prostate cancer cells. Oncotarget 2018; 8:42926-42938. [PMID: 28477013 PMCID: PMC5522116 DOI: 10.18632/oncotarget.17216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022] Open
Abstract
Zoledronic Acid (ZA) rapidly concentrates into the bone and reduces skeletal-related events and pain in bone metastatic prostate cancer (PCa), but exerts only a limited or absent impact as anti-cancer activity. Recently, we developed self-assembling nanoparticles (NPS) encapsulating zoledronic acid (NZ) that allowed a higher intratumor delivery of the drug compared with free zoledronic acid (ZA) in in vivo cancer models of PCa. Increasing evidence suggests that Bone Marrow (BM) Mesenchymal stromal cells (BM-MSCs) are recruited into the stroma of developing tumors where they contribute to progression by enhancing tumor growth and metastasis. We demonstrated that treatment with NZ decreased migration and differentiation into adipocytes and osteoblasts of MSCs and inhibited osteoclastogenesis. Treatment with NZ reduced the capability of MSCs to promote the migration and the clonogenic growth of the prostate cancer cell lines PC3 and DU145. The levels of Interleukin-6 and of the pro-angiogenic factors VEGF and FGF-2 were significantly reduced in MSC-CM derived from MSCs treated with NZ, and CCL5 secretion was almost totally abolished. Moreover, treatment of MSCs with supernatants from PC3 cells, leading to tumor-educated MSCs (TE-MSCs), increased the secretion of IL-6, CCL5, VEGF and FGF-2 by MSCs and increased their capability to increase PC3 cells clonogenic growth. Treatment with NZ decreased cytokine secretion and the pro-tumorigenic effects also of TE-MSCS. In conclusion, demonstrating that NZ is capable to inhibit the cross talk between MSCs and PCa, this study provides a novel insight to explain the powerful anticancer activity of NZ on PCa.
Collapse
|
83
|
Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol 2018; 53:465-474. [PMID: 29075900 PMCID: PMC5866830 DOI: 10.1007/s00535-017-1401-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
IL-22 is a relatively new cytokine that is characterized by several unique biological properties. In the intestines, the effect of IL-22 is restricted mainly to non-lymphoid cells such as epithelial cells. Interestingly, the expression pattern and major cellular source of IL-22 have distinct difference between large and small intestines. IL-22 possesses an ability to constitutively activate STAT3 for promoting epithelial cell regeneration and reinforcing mucosal barrier integrity through stimulating the expression of anti-bacterial peptide and mucins. Of note, IL-22 is characterized as a two-faced cytokine that can play not only protective but also deleterious roles in the intestinal inflammation depending on the cytokine environment such as the expression levels of IL-23, T-bet, and IL-22 binding protein. Most importantly, clinical relevance of IL-22 to inflammatory bowel disease has been well highlighted. Mucosal healing, which represents the current therapeutic goal for IBD, can be induced by IL-22. Indeed, indigo naturalis, which can activate IL-22 pathway through Ahr, has been shown in a clinical trial to exhibit a strong therapeutic effect on ulcerative colitis. Despite the beneficial effect of IL-22, continuous activation of the IL-22 pathway increases the risk of colitis-associated cancer, particularly in patients with an extended history of IBD. This review article discusses how IL-22 regulates colitis, how beneficial versus deleterious effects of IL-22 is determined, and why IL-22 represents a promising target for IBD therapy.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
- IBD Center, Kurume University Hospital, Kurume, Japan.
| | - Arisa Yano
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidetomo Himuro
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Yui Ezaki
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
- IBD Center, Kurume University Hospital, Kurume, Japan
| |
Collapse
|
84
|
Guaita-Esteruelas S, Gumà J, Masana L, Borràs J. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol 2018; 462:107-118. [PMID: 28163102 DOI: 10.1016/j.mce.2017.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes.
Collapse
Affiliation(s)
- S Guaita-Esteruelas
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut, Avda. de la Universitat, 43204 Reus, Spain; Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain; Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain.
| | - J Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L Masana
- Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain
| | - J Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| |
Collapse
|
85
|
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18:227-243. [DOI: 10.1080/14737159.2018.1439382] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suruchi Mittal
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, UK
| |
Collapse
|
86
|
Yang B, Qian F, Li W, Li Y, Han Y. Effects of general anesthesia with or without epidural block on tumor metastasis and mechanisms. Oncol Lett 2018. [PMID: 29541238 DOI: 10.3892/ol.2018.7870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess whether different anesthesia methods (general anesthesia and general anesthesia combined with epidural block) were associated with tumor metastasis during the perioperative period and the possible molecular mechanisms of tumor metastasis. A rat hepatoma tumor xenograft model was constructed via the subcutaneous injection of Morris hepatoma 3924A cells into the upper axillary fossa. General anesthesia and general anesthesia combined with epidural block prior to hepatectomy were conducted on tumor-bearing rats. The average numbers of metastatic nodules on the lung surface were calculated in the different groups and the presence of abdominal lymph node metastases, rate of malignant ascites and abdominal wall-implanted nodules were recorded. Blood samples were collected from the orbits of rats immediately prior to surgery and at 2, 7 and 30 days following surgery. Plasma levels of interferon-γ, transforming growth factor-α and vascular endothelial growth factor (VEGF) were measured. Finally, the expression of phosphorylated signal transducer and activator of transcription-3 and phosphorylated VEGF were measured by western blot analysis. The results of this analysis demonstrated that tumor metastasis was greatly suppressed when the rats underwent general anesthesia combined with epidural block prior to hepatectomy, compared with general anesthesia alone. The results of cytokine quantification and western blot analysis revealed that the anti-metastatic effect of general anesthesia combined with epidural block may have been mediated by inhibition of STAT3 and the relevant cytokines.
Collapse
Affiliation(s)
- Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Feng Qian
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yang Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yangdong Han
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
87
|
Kucia-Tran JA, Tulkki V, Scarpini CG, Smith S, Wallberg M, Paez-Ribes M, Araujo AM, Botthoff J, Feeney M, Hughes K, Caffarel MM, Coleman N. Anti-oncostatin M antibody inhibits the pro-malignant effects of oncostatin M receptor overexpression in squamous cell carcinoma. J Pathol 2018; 244:283-295. [PMID: 29205362 DOI: 10.1002/path.5010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
The oncostatin M (OSM) receptor (OSMR) shows frequent gene copy number gains and overexpression in cervical squamous cell carcinomas (SCCs), associated with adverse clinical outcomes. In SCC cells that overexpress OSMR, the major ligand OSM induces multiple pro-malignant effects, including invasion, secretion of angiogenic factors, and metastasis. Here, we demonstrate, for the first time, that OSMR overexpression in SCC cells activates cell-autonomous feed-forward signalling, via further expression of OSMR and OSM and sustained STAT3 activation, despite expression of the negative regulator suppressor of cytokine signalling 3 (SOCS3). The pro-malignant effects associated with OSMR overexpression are critically mediated by JAK-STAT3 activation, which is induced by exogenous OSM and also by autocrine OSM-OSMR interactions. Importantly, specific inhibition of OSM-OSMR interactions by neutralizing antibodies significantly inhibits STAT3 activation and feed-forward signalling, leading to reduced invasion, angiogenesis, and metastasis. Our findings are supported by data from 1254 clinical SCC samples, in which OSMR levels correlated with multiple cognate genes, including OSM, STAT3, and downstream targets. These data strongly support the development of OSM-OSMR-blocking antibodies as biologically targeted therapies against SCCs of the cervix and other anatomical sites. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Valtteri Tulkki
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Stephen Smith
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maja Wallberg
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | - Jan Botthoff
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Maria M Caffarel
- Department of Pathology, University of Cambridge, Cambridge, UK.,Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
88
|
Tommelein J, De Vlieghere E, Verset L, Melsens E, Leenders J, Descamps B, Debucquoy A, Vanhove C, Pauwels P, Gespach CP, Vral A, De Boeck A, Haustermans K, de Tullio P, Ceelen W, Demetter P, Boterberg T, Bracke M, De Wever O. Radiotherapy-Activated Cancer-Associated Fibroblasts Promote Tumor Progression through Paracrine IGF1R Activation. Cancer Res 2017; 78:659-670. [PMID: 29217764 DOI: 10.1158/0008-5472.can-17-0524] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Preoperative radiotherapy (RT) is a mainstay in the management of rectal cancer, a tumor characterized by desmoplastic stroma containing cancer-associated fibroblasts (CAF). Although CAFs are abundantly present, the effects of RT to CAF and its impact on cancer cells are unknown. We evaluated the damage responses of CAF to RT and investigated changes in colorectal cancer cell growth, transcriptome, metabolome, and kinome in response to paracrine signals emerging from irradiated CAF. RT to CAF induced DNA damage, p53 activation, cell-cycle arrest, and secretion of paracrine mediators, including insulin-like growth factor-1 (IGF1). Subsequently, RT-activated CAFs promoted survival of colorectal cancer cells, as well as a metabolic switch favoring glutamine consumption through IGF1 receptor (IGF1R) activation. RT followed by IGF1R neutralization in orthotopic colorectal cancer models reduced the number of mice with organ metastases. Activation of the downstream IGF1R mediator mTOR was significantly higher in matched (intrapatient) samples and in unmatched (interpatient) samples from rectal cancer patients after neoadjuvant chemoradiotherapy. Taken together, our data support the notion that paracrine IGF1/IGF1R signaling initiated by RT-activated CAF worsens colorectal cancer progression, establishing a preclinical rationale to target this activation loop to further improve clinical responses and patient survival.Significance: These findings reveal that paracrine IGF1/IGF1R signaling promotes colorectal cancer progression, establishing a preclinical rationale to target this activation loop. Cancer Res; 78(3); 659-70. ©2017 AACR.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elodie Melsens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Justine Leenders
- Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, Liège, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information System, iMinds-IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Annelies Debucquoy
- Department of Oncology, Experimental Radiotherapy, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Christian Vanhove
- Department of Electronics and Information System, iMinds-IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Christian P Gespach
- Institut National de la Santé et de la Recherche Médicale, INSERM U938, Molecular and Clinical Oncology, Université Paris VI Pierre et Marie Curie, Paris, France
| | - Anne Vral
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Astrid De Boeck
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Karin Haustermans
- Department of Oncology, Experimental Radiotherapy, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, Liège, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
89
|
Hennig K, Antignac JP, Bichon E, Morvan ML, Miran I, Delaloge S, Feunteun J, Le Bizec B. Steroid hormone profiling in human breast adipose tissue using semi-automated purification and highly sensitive determination of estrogens by GC-APCI-MS/MS. Anal Bioanal Chem 2017; 410:259-275. [PMID: 29147745 DOI: 10.1007/s00216-017-0717-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Body mass index is a known breast cancer risk factor due to, among other mechanisms, adipose-derived hormones. We developed a method for steroid hormone profiling in adipose tissue to evaluate healthy tissue around the tumor and define new biomarkers for cancer development. A semi-automated sample preparation method based on gel permeation chromatography and subsequent derivatization with trimethylsilyl (TMS) is presented. Progestagens and androgens were determined by GC-EI-MS/MS (LOQ 0.5 to 10 ng/g lipids). For estrogen measurement, a highly sensitive GC-APCI-MS/MS method was developed to reach the required lower limits of detection (0.05 to 0.1 ng/g lipids in matrix, 100-200 fg on column for pure standards). The combination of the two methods allows the screening of 27 androgens and progestagens and 4 estrogens from a single sample. Good accuracies and repeatabilities were achieved for each compound class at their respective limit of detection. The method was applied to determine steroid hormone profiles in adipose tissue of 51 patients, collected both at proximity and distant to the tumor. Out of the 31 tested steroid hormones, 14 compounds were detected in human samples. Pregnenolone, 17-hydroxypregnenolone, dehydroepiandrosterone (DHEA), and androstendione accounted together for 80% of the observed steroid hormone profiles, whereas the estrogens accounted for only 1%. These profiles did not differ based on sampling location, except for ß-estradiol; steroid hormone conversions from androgens to estrogens that potentially take place in adipose or tumoral tissue might not be detectable due a factor 100 difference in concentration of for example DHEA and ß-estradiol. Graphical Abstract Schematic overview of the determination of steroid hormones and metabolites in adipose tissue in proximity and distal to the tumor.
Collapse
Affiliation(s)
- Kristin Hennig
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), ONIRIS, LUNAM Université, 44307, Nantes, France
| | - Jean Philippe Antignac
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), ONIRIS, LUNAM Université, 44307, Nantes, France.
| | - Emmanuelle Bichon
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), ONIRIS, LUNAM Université, 44307, Nantes, France
| | - Marie-Line Morvan
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), ONIRIS, LUNAM Université, 44307, Nantes, France
| | - Isabelle Miran
- UMR981 INSERM, Gustave Roussy, Paris-Saclay University, 94805, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Jean Feunteun
- UMR8200 CNRS, Gustave Roussy, Paris-Saclay University, 94805, Villejuif, France
| | - Bruno Le Bizec
- Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), ONIRIS, LUNAM Université, 44307, Nantes, France
| |
Collapse
|
90
|
Shien K, Papadimitrakopoulou VA, Ruder D, Behrens C, Shen L, Kalhor N, Song J, Lee JJ, Wang J, Tang X, Herbst RS, Toyooka S, Girard L, Minna JD, Kurie JM, Wistuba II, Izzo JG. JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non-Small Cell Lung Cancer. Mol Cancer Ther 2017; 16:2234-2245. [PMID: 28729401 DOI: 10.1158/1535-7163.mct-17-0148] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/24/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Molecularly targeted drugs have yielded significant therapeutic advances in oncogene-driven non-small cell lung cancer (NSCLC), but a majority of patients eventually develop acquired resistance. Recently, the relation between proinflammatory cytokine IL6 and resistance to targeted drugs has been reported. We investigated the functional contribution of IL6 and the other members of IL6 family proinflammatory cytokine pathway to resistance to targeted drugs in NSCLC cells. In addition, we examined the production of these cytokines by cancer cells and cancer-associated fibroblasts (CAF). We also analyzed the prognostic significance of these molecule expressions in clinical NSCLC samples. In NSCLC cells with acquired resistance to targeted drugs, we observed activation of the IL6-cytokine pathway and STAT3 along with epithelial-to-mesenchymal transition (EMT) features. In particular, IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner. The cross-talk between NSCLC cells and CAFs also preferentially activated the OSM/STAT3 pathway via a paracrine mechanism and decreased sensitivity to targeted drugs. The selective JAK1 inhibitor filgotinib effectively suppressed STAT3 activation and OSMR expression, and cotargeting inhibition of the oncogenic pathway and JAK1 reversed resistance to targeted drugs. In the analysis of clinical samples, OSMR gene expression appeared to be associated with worse prognosis in patients with surgically resected lung adenocarcinoma. Our data suggest that the OSMRs/JAK1/STAT3 axis contributes to resistance to targeted drugs in oncogene-driven NSCLC cells, implying that this pathway could be a therapeutic target. Mol Cancer Ther; 16(10); 2234-45. ©2017 AACR.
Collapse
Affiliation(s)
- Kazuhiko Shien
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dennis Ruder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Julie G Izzo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
91
|
Sakurai M, Miki Y, Takagi K, Suzuki T, Ishida T, Ohuchi N, Sasano H. Interaction with adipocyte stromal cells induces breast cancer malignancy via S100A7 upregulation in breast cancer microenvironment. Breast Cancer Res 2017. [PMID: 28629450 PMCID: PMC5477117 DOI: 10.1186/s13058-017-0863-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast adipocytes play important roles in both the development and function of mammary epithelial cells. Therefore, carcinoma-adipose stromal cell (ASC) interactions have been considered pivotal in supporting tumor growth in breast cancer. In addition, it has been demonstrated that the biological features of cancer-associated adipocytes differ from those of normal ASCs. Therefore, we investigated an interaction between ASCs and carcinoma cell lines to identify genes associated with ASC invasion of carcinoma cells. METHODS 3T3-L1 ASC-derived conditioned medium (CM) was treated to measure the proliferation rate of breast cancer cells. To further examine the effect of ASCs, breast cancer cells were cocultivated with either primary human or 3T3-L1 ASCs for migration assays, DNA microarrays, quantitative real-time polymerase chain reactions, and Western blotting experiments. Furthermore, immunoreactivity of S100A7, the most upregulated gene in MCF7, after coculture with ASCs was evaluated for 150 breast cancer tissues to statistically analyze its association with clinicopathological parameters. RESULTS We first confirmed that ASC-derived CM treatment enhanced the cell proliferation rate of MCF7, T47D, SK-BR-3, and ZR-75-1 cell lines, whereas the migration rate of breast cancer cells was promoted by coculture with ASCs. We identified that a small calcium-binding protein, S100A7, was markedly upregulated (by 5.8-fold) in MCF7 cells after coculture with primary human ASCs. Knockdown of S100A7 significantly suppressed ASC-stimulated cell proliferation and migration rate, indicating a possible involvement of S100A7 in the carcinoma-ASC interaction in breast tumors. Furthermore, strong S100A7 immunoreactivity was detected at the invasive front of adipose stromal tissues compared with that at the intratumoral area. The status of S100A7 was also significantly correlated with adverse pathological parameters, and multivariate analysis revealed that S100A7 could be an independent prognostic marker for a poor relapse-free survival rate. Moreover, induction of oncostatin M was detected in cancer-stimulated ASCs, whereas the downstream S100A7 binding proteins/receptor for advanced glycation endproducts were significantly upregulated in correspondence with S100A7 expression in breast cancer cells after coculture with ASCs. CONCLUSIONS The results of our study suggest that paracrine production of cytokines from ASCs stimulates breast carcinoma cell growth via upregulation of S100A7 expression in breast cancer cell lines.
Collapse
Affiliation(s)
- Minako Sakurai
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takanori Ishida
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Noriaki Ohuchi
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
92
|
Abstract
SIGNIFICANCE In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Collapse
Affiliation(s)
- Géraldine Gentric
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Virginie Mieulet
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Fatima Mechta-Grigoriou
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| |
Collapse
|
93
|
Hoy AJ, Balaban S, Saunders DN. Adipocyte-Tumor Cell Metabolic Crosstalk in Breast Cancer. Trends Mol Med 2017; 23:381-392. [PMID: 28330687 DOI: 10.1016/j.molmed.2017.02.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/19/2017] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
Abstract
The tumor stroma is a heterogeneous ecosystem comprising matrix, fibroblasts, and immune cells and has an important role in cancer progression. Adipocytes constitute a major component of breast stroma, and significant emerging evidence demonstrates a reciprocal metabolic adaptation between stromal adipocytes and breast cancer (BC) cells. Recent observations promote a model where adipocytes respond to cancer cell-derived endocrine and paracrine signaling to provide metabolic substrates, which in turn drive enhanced cancer cell proliferation, invasion, and treatment resistance. Further defining the mechanisms that underpin this dynamic interaction between stromal adipocytes and BC cells, especially in the context of obesity, may identify novel therapeutic strategies. These will become increasingly important in addressing the clinical challenges presented by obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Seher Balaban
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, NSW 2006, Australia
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
94
|
Jeurissen S, Vergauwen G, Van Deun J, Lapeire L, Depoorter V, Miinalainen I, Sormunen R, Van den Broecke R, Braems G, Cocquyt V, Denys H, Hendrix A. The isolation of morphologically intact and biologically active extracellular vesicles from the secretome of cancer-associated adipose tissue. Cell Adh Migr 2017; 11:196-204. [PMID: 28146372 DOI: 10.1080/19336918.2017.1279784] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Breast cancer cells closely interact with different cell types of the surrounding adipose tissue to favor invasive growth and metastasis. Extracellular vesicles (EVs) are nanometer-sized vesicles secreted by different cell types that shuttle proteins and nucleic acids to establish cell-cell communication. To study the role of EVs released by cancer-associated adipose tissue in breast cancer progression and metastasis a standardized EV isolation protocol that obtains pure EVs and maintains their functional characteristics is required. We implemented differential ultracentrifugation as a pre-enrichment step followed by OptiPrep density gradient centrifugation (dUC-ODG) to isolate EVs from the conditioned medium of cancer-associated adipose tissue. A combination of immune-electron microscopy, nanoparticle tracking analysis (NTA) and Western blot analysis identified EVs that are enriched in flotillin-1, CD9 and CD63, and sized between 20 and 200 nm with a density of 1.076-1.125 g/ml. The lack of protein aggregates and cell organelle proteins confirmed the purity of the EV preparations. Next, we evaluated whether dUC-ODG isolated EVs are functionally active. ZR75.1 breast cancer cells treated with cancer-associated adipose tissue-secreted EVs from breast cancer patients showed an increased phosphorylation of CREB. MCF-7 breast cancer cells treated with adipose tissue-derived EVs exhibited a stronger propensity to form cellular aggregates. In conclusion, dUC-ODG purifies EVs from conditioned medium of cancer-associated adipose tissue, and these EVs are morphologically intact and biologically active.
Collapse
Affiliation(s)
- Sarah Jeurissen
- a Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium.,b Department of Medical Oncology and Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Glenn Vergauwen
- a Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium.,c Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Jan Van Deun
- a Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Lore Lapeire
- b Department of Medical Oncology and Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Victoria Depoorter
- a Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium
| | - Ilkka Miinalainen
- e Biocenter Oulu and Departments of Pathology , University of Oulu and Oulu University Hospital , Oulu , Finland
| | - Raija Sormunen
- e Biocenter Oulu and Departments of Pathology , University of Oulu and Oulu University Hospital , Oulu , Finland
| | - Rudy Van den Broecke
- c Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Geert Braems
- c Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Véronique Cocquyt
- b Department of Medical Oncology and Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Hannelore Denys
- b Department of Medical Oncology and Department of Gynaecology , Ghent University Hospital , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - An Hendrix
- a Laboratory of Experimental Cancer Research , Department of Radiation Oncology and Experimental Cancer Research, Ghent University , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| |
Collapse
|
95
|
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, Holst J, Saunders DN, Hoy AJ. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 2017; 5:1. [PMID: 28101337 PMCID: PMC5237166 DOI: 10.1186/s40170-016-0163-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Obesity is associated with increased recurrence and reduced survival of breast cancer. Adipocytes constitute a significant component of breast tissue, yet their role in provisioning metabolic substrates to support breast cancer progression is poorly understood. Results Here, we show that co-culture of breast cancer cells with adipocytes revealed cancer cell-stimulated depletion of adipocyte triacylglycerol. Adipocyte-derived free fatty acids were transferred to breast cancer cells, driving fatty acid metabolism via increased CPT1A and electron transport chain complex protein levels, resulting in increased proliferation and migration. Notably, fatty acid transfer to breast cancer cells was enhanced from “obese” adipocytes, concomitant with increased stimulation of cancer cell proliferation and migration. This adipocyte-stimulated breast cancer cell proliferation was dependent on lipolytic processes since HSL/ATGL knockdown attenuated cancer cell responses. Conclusions These findings highlight a novel and potentially important role for adipocyte lipolysis in the provision of metabolic substrates to breast cancer cells, thereby supporting cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0163-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seher Balaban
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, The Hub (D17), Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Robert F Shearer
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Lisa S Lee
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, The Hub (D17), Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Michelle van Geldermalsen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2050 Australia ; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Mark Schreuder
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, The Hub (D17), Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia ; Faculty of Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Harrison C Shtein
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, The Hub (D17), Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Rose Cairns
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Kristen C Thomas
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Thomas Grewal
- Faculty of Pharmacy, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Jeff Holst
- Centenary Institute, The University of Sydney, Camperdown, NSW 2050 Australia ; Sydney Medical School, The University of Sydney, Camperdown, NSW 2006 Australia
| | - Darren N Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia ; School of Medical Sciences, UNSW Australia, Sydney, NSW 2052 Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences & Bosch Institute, The Hub (D17), Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006 Australia
| |
Collapse
|
96
|
Sánchez-Infantes D, Cereijo R, Peyrou M, Piquer-Garcia I, Stephens JM, Villarroya F. Oncostatin m impairs brown adipose tissue thermogenic function and the browning of subcutaneous white adipose tissue. Obesity (Silver Spring) 2017; 25:85-93. [PMID: 27706920 DOI: 10.1002/oby.21679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Since oncostatin m (OSM) is elevated in adipose tissue in conditions of obesity and type 2 diabetes in mice and humans, the aim of this study was to determine whether this cytokine plays a crucial role in the impairment of brown adipose tissue (BAT) activity and browning capacity that has been observed in people with obesity. METHODS C57BL/6J mice rendered obese by high-fat diet, their lean controls, and C57BL/6J mice fed a standard diet and implanted subcutaneously with a mini pump through a surgical procedure to deliver OSM or placebo were used. Preadipocytes or fully differentiated brown adipocytes were treated with OSM or vehicle with or without norepinephrine before harvesting. RNA was extracted and processed for qPCR analysis. Media from mature adipocytes was also collected to measure glycerol levels. RESULTS Studies demonstrated that OSM gene expression was increased in BAT of mice fed a high-fat diet. In addition, exogenous OSM impaired BAT activity and the browning capacity of white adipose tissue in vitro and in vivo. CONCLUSIONS Overall, the results reveal a negative role for OSM on BAT and on the browning of white adipose tissue. Therefore, further studies are necessary to demonstrate whether OSM inhibition is a potential treatment for metabolic disorders.
Collapse
Affiliation(s)
- David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| | - Irene Piquer-Garcia
- Department of Endocrinology and Nutrition, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jacqueline M Stephens
- Department of Biological Science, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| |
Collapse
|
97
|
Bryson BL, Junk DJ, Cipriano R, Jackson MW. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle 2016; 16:319-334. [PMID: 27892764 DOI: 10.1080/15384101.2016.1259037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokines in the developing tumor microenvironment (TME) can drive transformation and subsequent progression toward metastasis. Elevated levels of the Interleukin-6 (IL-6) family cytokine Oncostatin M (OSM) in the breast TME correlate with aggressive, metastatic cancers, increased tumor recurrence, and poor patient prognosis. Paradoxically, OSM engages a tumor-suppressive, Signal Transducer and Activator of Transcription 3 (STAT3)-dependent senescence response in normal and non-transformed human mammary epithelial cells (HMEC). Here, we identify a novel link between OSM-activated STAT3 signaling and the Transforming Growth Factor-β (TGF-β) signaling pathway that engages senescence in HMEC. Inhibition of functional TGF-β/SMAD signaling by expressing a dominant-negative TGF-β receptor, treating with a TGF-β receptor inhibitor, or suppressing SMAD3 expression using a SMAD3-shRNA prevented OSM-induced senescence. OSM promoted a protein complex involving activated-STAT3 and SMAD3, induced the nuclear localization of SMAD3, and enhanced SMAD3-mediated transcription responsible for senescence. In contrast, expression of MYC (c-MYC) from a constitutive promoter abrogated senescence and strikingly, cooperated with OSM to promote a transformed phenotype, epithelial-mesenchymal transition (EMT), and invasiveness. Our findings suggest that a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence that is coopted during the transformation process to confer aggressive cancer cell properties. Understanding how developing cancer cells bypass OSM/STAT3/SMAD3-mediated senescence may help identify novel targets for future "pro-senescence" therapies aiming to reengage this hidden tumor-suppressive response.
Collapse
Affiliation(s)
- Benjamin L Bryson
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Damian J Junk
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Rocky Cipriano
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | - Mark W Jackson
- a Department of Pathology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA.,b Case Comprehensive Cancer Center , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
98
|
Waked K, Colle J, Doornaert M, Cocquyt V, Blondeel P. Systematic review: The oncological safety of adipose fat transfer after breast cancer surgery. Breast 2016; 31:128-136. [PMID: 27837706 DOI: 10.1016/j.breast.2016.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/02/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Oncological concerns have risen around the safety of adipose fat transfer (AFT) after breast cancer surgery. In this article, we present the clinical and molecular evidences, and discuss the current contradiction between them. MATERIALS AND METHODS Every clinical trial and experimental study on AFT and its oncological influences was screened. Between September 2014 and September 2016, 856 articles from four databases were found. 105 core articles were selected. RESULTS A total of 18 clinical studies have been published. The loco-regional recurrence (LRR) incidence rates range between 0 and 3.90% per year. For the mastectomy and breast conservative therapy group separately, a LRR per year between 0 and 1.62% and 0-3.90 has been reported, respectively. Some studies included a matched control group and found no significant difference between cases and controls, with the exception of a subgroup of patients with intraepithelial breast carcinoma. Adipose derived mesenchymal stem cells have a potential oncogenic effect on residual cancer cells after breast cancer surgery. Numerous signalling proteins and pathways have been described that can stimulate tumour initiation and growth. CONCLUSION There is a contradiction between experimental and clinical findings. Numerous adipokines have been discovered that could potentially promote tumour initiation and growth, but clinical studies fail to point out a significant increase in LRR in patients who receive AFT after breast cancer surgery. More prospective studies are needed with a sufficient follow-up time and analysis of some critical factors, such as adjuvant radiotherapy and hormonal therapy, the origin and volume of the injected fat, and genetic influences.
Collapse
Affiliation(s)
- Karl Waked
- University Hospital of Ghent, De Pintelaan 185, 9000 Gent, Belgium.
| | - Julien Colle
- University Hospital of Ghent, De Pintelaan 185, 9000 Gent, Belgium.
| | - Maarten Doornaert
- Private Medical Center: Maaltebrugge Ghent, Maaltebruggestraat 288, 9000 Gent, Belgium.
| | | | - Phillip Blondeel
- University Hospital of Ghent, De Pintelaan 185, 9000 Gent, Belgium.
| |
Collapse
|
99
|
S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther 2016; 23:382-391. [DOI: 10.1038/cgt.2016.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
|
100
|
Chirumbolo S. Vitamin D3 in cancer prevention and therapy: the nutritional issue. Horm Mol Biol Clin Investig 2016; 23:71-8. [PMID: 26057218 DOI: 10.1515/hmbci-2015-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 11/15/2022]
Abstract
The action of vitamin D3, in its biological form 1α,25(OH)2vitD3 or calcitriol, may be summarized as a steroid-like hormone able to modulate basic functions of cell encompassing energy balance, stress response, mitochondria biogenesis, intracellular calcium oscillations, and replication/apoptosis mechanisms leading to cell survival. Moreover, calcitriol exerts a potent role as an innate and adaptive immune cytokine as immunity is closely related to self-maintenance through its energetic/metabolic balance and homeostasis of cell turnover. Therefore, vitamin D might be the ancestral form of survival hormones developed with calcified vertebrate bearing skeleton in order to survive far from water. This characteristic may suggest that the role of dietary vitamin D in preventing cancer is simply ancillary to the many factors playing a major role in contrasting impairment in energy balance and cell survival. Most probably, the immune role of calcitriol might be included in the maintenance, mostly by adipose tissue, of an anti-inflammatory, tolerant immune status, depending on the immune tolerance and modulation from the gut. A balance closely modulated by the leptin axis, which when impairments in metabolism occur, such as in insulin resistance or obesity, calcitriol is unable to face at this imbalance, while leptin plays a major role and cancer progression may be promoted. Furthermore, this mechanism promotes epithelial/mesenchymal transition-mediated fibrosis, leading to cancer resistance to immune control and drug action. Interestingly, this pathologic picture is triggered by deficiency in vitamin D from the diet. Therefore, a dietary habit including vitamin D sources, besides flavonoids, may ameliorate lifestyle and health span in most individuals, depending on their genetic background.
Collapse
|