51
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|
52
|
Butt E, Raman D. New Frontiers for the Cytoskeletal Protein LASP1. Front Oncol 2018; 8:391. [PMID: 30298118 PMCID: PMC6160563 DOI: 10.3389/fonc.2018.00391] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the recent two decades, LIM and SH3 protein 1 (LASP1) has been developed from a simple actin-binding structural protein to a tumor biomarker and subsequently to a complex, nuclear transcriptional regulator. Starting with a brief historical perspective, this review will mainly compare and contrast LASP1 and LASP2 from the angle of the newest data and importantly, examine their role in transcriptional regulation. We will summarize the current knowledge through pictorial models and tables including the roles of different microRNAs in the differential regulation of LASP1 levels and patient outcome rather than specify in detail all tumor entities. Finally, the novel functional roles of LASP1 in secretion of vesicles, expression of matrix metalloproteinases and transcriptional regulation as well as the activation of survival and proliferation pathways in different cancer types are described.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic, Wuerzburg, Germany
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
53
|
Zheng T, Lu M, Wang T, Zhang C, Du X. NRBE3 promotes metastasis of breast cancer by down-regulating E-cadherin expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1869-1877. [PMID: 30262434 DOI: 10.1016/j.bbamcr.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
NRBE3 acts as an E3 ligase of RB to promote RB's polyubiquitination and degradation. In addition, NRBE3 is up-regulated in human breast cancer (BC) tissues. However, how NRBE3 functions in BC is unknown. Here, we show that up-regulation of NRBE3 is correlated with lymphatic metastasis in human BC tissues. Ectopic expression of NRBE3 promotes migration and invasion in BC cells. Accordingly, knockdown of NRBE3 inhibits migration and invasion in BC cells. Depletion of NRBE3 inhibits lung metastasis of BC cells in vivo. Knock-down of NRBE3 causes increase of E-cadherin protein levels. Interestingly, Flag-NRBE3 decreases E-cadherin level in RB-expressing and RB-null BC cells, demonstrating that there exist RB-independent mechanisms for NRBE3-mediated E-cadherin expression regulation. However, the E3 ligase deficient deletion mutant Flag-NRBE3 (ΔU-box) modestly decreases E-cadherin level in RB-expressing cells, indicating that NRBE3 controls E-cadherin expression mainly through RB-dependent pathways in RB-expressing cells. We further demonstrate that NRBE3 inhibits the transcription of E-cadherin in BC cells. Significantly, NRBE3 expression is negatively correlated with E-cadherin expression in human BC tissues and cell lines. Collectively, we demonstrate that NRBE3 promotes metastasis of BC and possesses the potential as a therapeutic target in BC.
Collapse
Affiliation(s)
- Tong Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Min Lu
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - Ting Wang
- Department of Internal Medicine, Shanxi Medical University Second Hospital, Taiyuan 030001, China
| | - Chunfeng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
54
|
Hosseini SM, Mahjoubi F, Majidzadeh T, Khaje-Hosseini F, Haghipanah M. Nebulette Expression Is Associated with Lymph Node Metastasis in Patients with Colorectal Cancer. Middle East J Dig Dis 2018; 10:174-179. [PMID: 30186581 PMCID: PMC6119834 DOI: 10.15171/mejdd.2018.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND
Colorectal cancer (CRC) is one of the most common cancers among men and women worldwide.
Cancer metastasis is the main cause of death in patients with cancer. NEBL (nebulette, Gene ID:
10529) protein interacts with thin filaments in the cell and may functionally destabilize focal
adhesion composition. There are some studies on NEBL gene expression alteration in cancer. In
the presented study we aimed to analyze NEBL gene expression in patients with colorectal cancer
to explore possible association of this gene with clinicopathological features in CRC.
METHODS
Sixty-seven fresh samples of colorectal tumors and adjacent normal tissues were collected
from Iranian patients with CRC. Real time polymerase chain reaction was performed to measure
the level of NEBL gene expression and its association with clinico-pathological features.
RESULTS
A significant overexpression with 3 fold increse was seen in NEBL mRNA level in tumoral
tissues compared with the adjacent normal tissues. In addition there was a significant association
between NEBL gene expression with lymph node metastasis in patients with CRC.
CONCLUSION
The overexpression of NEBL has the capacity to be considred as a prognostic biomarker in
patients with CRC.
Collapse
Affiliation(s)
- Sayed Mostafa Hosseini
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Tayebeh Majidzadeh
- Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Mahya Haghipanah
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Zhong C, Chen Y, Tao B, Peng L, Peng T, Yang X, Xia X, Chen L. LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway. BMC Cancer 2018; 18:722. [PMID: 29980193 PMCID: PMC6035445 DOI: 10.1186/s12885-018-4649-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background LIM and SH3 protein 1 (LASP1) is upregulated in several types of human cancer and implicated in cancer progression. However, the expression and intrinsic function of LASP1 in glioblastoma (GBM) remains unclear. Method Oncomine and The Cancer Genome Atlas (TCGA) database was analyzed for the expression and clinical significance of LASP1 in GBM. LASP1 mRNA and protein level were measured by qRT-PCR and western blotting. The effect of LASP1 on GBM proliferation was examined by MTT assay and colony formation assay, the effect of LASP1 on sensitivity of Temozolomide was measured by flow cytometry and subcutaneous tumor model. The association between LASP1 and PI3K/AKT signaling was assessed by western blotting. Results Oncomine GBM dataset analysis indicated LASP1 is significantly upregulated in GBM tissues compared to normal tissues. GBM dataset from The Cancer Genome Atlas (TCGA) revealed that high LASP1 expression is related to poor overall survival. LASP1 mRNA and protein in clinical specimens and tumor cell lines are frequently overexpressed. LASP1 knockdown dramatically suppressed U87 and U251 cell proliferation. Silencing LASP1 potentiated cell chemosensitivity to temozolomide in vitro, LASP1 knockdown inhibited tumor growth and enhanced the therapeutic effect of temozolomide in vivo. TCGA dataset analysis indicated LASP1 was correlated with PI3K/AKT signaling pathway, and LASP1 deletion inhibited this pathway. Combination treatment with PI3K/AKT pathway inhibitor LY294002 dramatically accelerated the suppression effect of temozolomide. Conclusion LASP1 may function as an oncogene in GBM and regulate cell proliferation and chemosensitivity in a PI3K/AKT-dependent mechanism. Thus, the LASP1/PI3K/AKT axis is a promising target and therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yitian Chen
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Bei Tao
- Rheumatism Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tangming Peng
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaobo Yang
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiangguo Xia
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ligang Chen
- Neurosurgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
56
|
Ma C, Guo Y, Zhang Y, Duo A, Jia Y, Liu C, Li B. PAFAH1B2 is a HIF1a target gene and promotes metastasis in pancreatic cancer. Biochem Biophys Res Commun 2018; 501:654-660. [PMID: 29758199 DOI: 10.1016/j.bbrc.2018.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022]
Abstract
Platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2) plays important roles in inflammation and anaphylaxis. However, its primary function in pancreatic cancer remains unclear. In the current study, we report that PAFAH1B2 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and correlated inversely with patient survival. PAFAH1B2 overexpression induced epithelial-mesenchymal transition (EMT), migration and invasion in vitro and metastasis in vivo. Conversely, silencing PAFAH1B2 inhibited these aggressive phenotypes. Moreover, PAFAH1B2 overexpression in PDAC cells was directly mediated by HIF1a. PAFAH1B2 expression in PDAC clinical specimens correlated positively with HIF1a expression. Overall, our results defined PAFAH1B2 as a target gene of HIF1a and a critical driver of PDAC metastatic behaviors.
Collapse
Affiliation(s)
- Can Ma
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Guo
- Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yan Zhang
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aixia Duo
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yitao Jia
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ci Liu
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Binghui Li
- Department of General Surgery, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
57
|
Wang Y, Fang T, Huang L, Wang H, Zhang L, Wang Z, Cui Y. Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis. Biochem Biophys Res Commun 2018; 501:313-319. [PMID: 29738769 DOI: 10.1016/j.bbrc.2018.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
CD177 is considered to represent neutrophils. We analyzed mRNA expression level of CD177 and clinical follow-up survey of PDAC to estimate overall survival (OS) from Gene Expression Omnibus (GEO) dataset (GSE21501, containing samples from 102 PDAC patients) by R2 platform (http://r2.amc.nl). We also analyzed correlated genes of CD177 by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to predict the potential relationship between neutrophils and prognosis of PDAC. We then performed hematoxylin and eosin (H&E) staining and immunohistochemical staining of surgical specimens to verify infiltration of neutrophils in PDAC tissues. After analyzing mRNA expression data and clinical follow-up survey provided in the GEO dataset (GSE21501, containing samples from 102 PDAC patients) and clinicopathological data of 23 PDAC patients, we demonstrated that CD177 was correlated with poor prognosis. The univariate Kaplan-Meier survival analysis revealed that OS was inversely associated with increased expression of CD177 (P = 0.012). Expression of phosphodiesterase (PDE)4D was positively related to CD177 in gene correlation analysis (R = 0.413, P < 0.001) by R2 platform. H&E staining and immunohistochemistry of CD177 in 23 PDAC surgical samples showed accumulation of neutrophils in the stroma and blood vessels around the cancer cells. In addition, immunohistochemical staining showed that CD177 was highly expressed in the stroma and blood vessels around tumor tissues of PDAC, which was similar to H&E staining. Expression of CD177 can be used to represent infiltration of neutrophils, which may have potential prognostic value in PDAC.
Collapse
Affiliation(s)
- Yufu Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Tianyi Fang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150000, Heilongjiang Province, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang Province, China.
| |
Collapse
|
58
|
You H, Kong F, Zhou K, Wei X, Hu L, Hu W, Luo W, Kou Y, Liu X, Chen X, Zheng K, Tang R. HBX protein promotes LASP-1 expression through activation of c-Jun in human hepatoma cells. J Cell Physiol 2018; 233:7279-7291. [PMID: 29600594 DOI: 10.1002/jcp.26560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
LIM and SH3 domain protein 1 (LASP-1) is known to participate in the progression of hepatocellular carcinoma (HCC). We previously showed that ectopic expression of hepatitis B virus (HBV) X protein (HBX) enhanced the expression of LASP-1, which promoted proliferation and migration of HCC cells. Here, we further demonstrated the molecular mechanism underlying upregulation of LASP-1, mediated by HBX, in HBV-infected HCC cells. Through a luciferase activity assay, we discovered that the LASP-1 promoter region regulated by HBX contained an AP-1 binding element in human hepatoma cells. Interestingly, c-Jun, one subunit of AP-1, was mainly responsible for activation, mediated by HBX, of the LASP-1 promoter. Furthermore, HBX was shown not only to interact with phosphorylated c-Jun in HCC cells but also to activate c-Jun by increasing the activation of PI3-K/JNK signaling. Chromatin immunoprecipitation (ChIP) assay demonstrated that HBX was capable of binding to the LASP-1 promoter with c-Jun. Further, the expression levels of HBX were shown to be significantly positively correlated with that of LASP-1 and phosphorylatedc-Jun in HBV-related HCC tissues by immunohistochemistry analysis. In addition, the N-terminus of HBX was found to be responsible for the activation of c-Jun, as well as the expression of LASP-1. Taken together, these results suggest that HBX contributes to LASP-1 expression via the activation of c-Jun to increase the promoter activity of LASP-1 in HBV-related HCC cells.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenya Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Chen
- Bio-pharmaceuticals (Collaboration Articulation Program), School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
59
|
Gao Q, Tang L, Wu L, Li K, Wang H, Li W, Wu J, Li M, Wang S, Zhao L. LASP1 promotes nasopharyngeal carcinoma progression through negatively regulation of the tumor suppressor PTEN. Cell Death Dis 2018. [PMID: 29531214 PMCID: PMC5847534 DOI: 10.1038/s41419-018-0443-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LIM and SH3 protein 1 (LASP1) enhances tumor growth and metastasis in various cancers, but its role in nasopharyngeal carcinoma (NPC) remains unclear. Herein, we investigated the role of LASP1 in NPC and explored the underlying mechanisms in NPC. Clinically, overexpression of LASP1 is associated with tumor metastasis and poor prognosis of NPC patients. Gain-of-function and loss-of-function assays showed that LASP1 promoted NPC cell proliferation, metastasis, and invasion in vitro and in vivo. Mechanistically, we observed clear co-localization between LASP1 and PTEN in NPC cells. LASP1 interacted with PTEN and decreased the expression of PTEN in NPC. The ubiquitination assay indicated that LASP1 overexpression increased PTEN ubiquitination. PTEN was known as a tumor suppressor by negatively regulating phosphoinositide 3-kinase/AKT signaling pathway. Rescue experiments showed that PTEN weakened LASP1-mediated cell proliferation, migration, and invasive abilities and decreased the phosphorylation of AKT in NPC cells. Our findings suggest that LASP1 has a crucial role in NPC progression via LASP1/PTEN/AKT axis, highlighting LASP1 as a therapeutic target for NPC.
Collapse
Affiliation(s)
- Qingzu Gao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lihua Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaitao Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weidong Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Wu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Radiotherapy Department, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
60
|
Li PD, Hu JL, Ma C, Ma H, Yao J, Chen LL, Chen J, Cheng TT, Yang KY, Wu G, Zhang WJ, Cao RB. Upregulation of the long non-coding RNA PVT1 promotes esophageal squamous cell carcinoma progression by acting as a molecular sponge of miR-203 and LASP1. Oncotarget 2018; 8:34164-34176. [PMID: 28404954 PMCID: PMC5470958 DOI: 10.18632/oncotarget.15878] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs are a group of non-coding RNAs longer than 200 nucleotides and possess diverse functions and exhibit exquisite cell-specific and developmental dynamic expression patterns. The role of the long non-coding RNA PVT1 in esophageal squamous cell carcinoma remains unsolved. Here, we showed that PVT1 expression is significantly up-regulated in ESCC tumor samples compared with their normal counterparts. Knockdown of PVT1 suppressed tumor growth in vitro and in vivo. Further studies revealed that silence of PVT1 lead to up-regulation of miR-203, and vice versa. Moreover, LASP1 was found to be downregulated after knockdown of PVT1 and overexpression of LASP1 attenuated the tumor-suppressive roles of PVT1 knockdown. Our results suggest that PVT1 promote ESCC progression via functioning as a molecular sponge for miR-203 and LASP1 and provide the first evidence of dysregulated PVT1/miR-203/LASP1 axis in ESCC.
Collapse
Affiliation(s)
- Pin-Dong Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Li Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tian-Tian Cheng
- Cancer Center of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510059, China
| | - Kun-Yu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen-Jie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Ru-Bo Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
61
|
Epigenetically regulated miR-145 suppresses colon cancer invasion and metastasis by targeting LASP1. Oncotarget 2018; 7:68674-68687. [PMID: 27626692 PMCID: PMC5356582 DOI: 10.18632/oncotarget.11919] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
MiR-145 is a tumor-suppressive microRNA that participates in the malignant progression of colorectal cancer (CRC). Although miR-145 has been reported to inhibit proliferation and to induce apoptosis of CRC cells, the reports about its role in invasion and metastasis are controversial. The regulation of miR-145 its own expression also requires further elucidation. In this study, we firstly found that miR-145 is markedly downregulated in the metastatic tumors of CRC patients. Then through gain- and loss-of function studies, we demonstrated that miR-145 suppresses the invasion and metastasis of CRC cells. We also provided experimental evidences which include direct binding assays and verifications on tissue specimens to confirm that LIM and SH3 protein 1 (LASP1) is a direct target of miR-145. Furthermore, we identified the core promoter regions of miR-145 and observed the cooperation between histone methylation and transcription factors through binding to these core promoter regions to regulate the expression of miR-145 in CRC cells. Our study provides an insight into the regulatory network in CRC cells, thus offering new targets for treating CRC patients.
Collapse
|
62
|
Zhao F, Ge YZ, Zhou LH, Xu LW, Xu Z, Ping WW, Wang M, Zhou CC, Wu R, Jia RP. Identification of hub miRNA biomarkers for bladder cancer by weighted gene coexpression network analysis. Onco Targets Ther 2017; 10:5551-5559. [PMID: 29200870 PMCID: PMC5702163 DOI: 10.2147/ott.s146479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BC) is a common urinary system tumor with high aggressiveness, and it results in relatively high mortality due to a lack of precise and suitable biomarkers. In this study, we applied the weighted gene coexpression network analysis method to miRNA expression data from BC patients, and screened for network modules associated with BC progression. Hub miRNAs were selected, followed by functional enrichment analyses of their target genes for the most closely related module. These hub miRNAs were found to be involved in several functional pathways including pathway in cancer, regulation of actin cytoskeleton, PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, Wnt signaling pathway, proteoglycans in cancer, focal adhesion and p53 signaling pathway via regulating target genes. Finally, their prognostic significance was tested using analyses of overall survival. A few novel prognostic miRNAs were identified based on expression profiles and related survival data. In conclusion, several miRNAs that were critical in BC initiation and progression have been identified in this study. These miRNAs, which may contribute to a comprehensive understanding of the pathogenesis of BC, could serve as potential biomarkers for BC prognosis or as new therapeutic targets.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Ping
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Cheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
63
|
Shi J, Guo J, Li X. Role of LASP-1, a novel SOX9 transcriptional target, in the progression of lung cancer. Int J Oncol 2017; 52:179-188. [PMID: 29138807 DOI: 10.3892/ijo.2017.4201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for most cancer-related deaths worldwide. However, the underlying mechanism by which it mediates the progression of lung cancer remains unclear. Expression of LASP-1 (LIM and SH3 protein 1) was evaluated in lung cancer tissues and tumor-adjacent normal tissues using immunohistochemistry and western blotting. Functional studies have shown that siRNA-mediated silencing of LASP-1 in human lung cancer cells and reduced cell proliferation, migration, and invasion. Flow cytometry and immunofluorescence staining also revealed that rate of cell apoptosis was increased after knockdown of expression of LASP-1, thereby suggesting that LASP-1 may function as an oncogene during lung cancer progression. SOX9 is an important transcription factor, which is involved in the development of several types of human cancer. Further analysis has showed the presence of a consensus-binding site of SOX9 in the promoter region of LASP-1. Mechanistic investigations showed that LASP-1 was transcriptionally activated by SOX9. Through luciferase reporter and ChIP assays, we demonstrated that LASP-1 was a direct target gene of sex determining region Y-box 9 (SOX9). Knockdown of SOX9 expression by RNA interference reduces cell proliferation and induces apoptosis of lung cancer cells, which was consistent with the results obtained from silencing the expression of LASP-1 in NCI‑H1650 cells. Together, these findings indicated that LASP-1, as a downstream target of SOX9, may act as a novel biomarker for lung cancer and plays an important role in cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianguang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Haishu, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
64
|
Zhou X, Guo X, Chen M, Xie C, Jiang J. HIF-3α Promotes Metastatic Phenotypes in Pancreatic Cancer by Transcriptional Regulation of the RhoC-ROCK1 Signaling Pathway. Mol Cancer Res 2017; 16:124-134. [PMID: 28928287 DOI: 10.1158/1541-7786.mcr-17-0256] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Hypoxia contributes to pancreatic cancer progression and promotes its growth and invasion. Previous research principally focused on hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-2α (HIF1A and EPAS1) as the major hypoxia-associated transcription factors in pancreatic cancer. However, the role of HIF-3α (HIF3A) has not been investigated. Therefore, HIF-1α, HIF-2α, and HIF-3α expression levels were measured under normoxic and hypoxic conditions. In addition, HIF-3α expression was measured in human pancreatic cancer tissue specimens and the impact of altered HIF-3α expression on cell invasion and migration was investigated in vitro and in vivo, as well as the underlying mechanisms. Under hypoxic conditions, HIF-3α expression was stimulated in pancreatic cancer cells to a greater degree than HIF-1α and HIF-2α expression. HIF-3α protein levels were also elevated in pancreatic cancer tissues and correlated with reduced survival and greater local invasion and distant metastasis, whereas knockdown of HIF-3α, under hypoxic conditions, suppressed pancreatic cancer cell invasion and migration. Under normoxia, HIF-3α overexpression promoted pancreatic cancer cell invasion and migration and stimulated F-actin polymerization. In summary, HIF-3α promotes pancreatic cancer cell invasion and metastasis in vivo and promotes pancreatic cancer cell invasion and metastasis by transcriptionally activating the RhoC-ROCK1 signaling pathway.Implications: HIF3α is overexpressed in pancreatic cancer, and targeting the HIF3α/RhoC-ROCK1 signaling pathway may be a novel therapeutic approach for the treatment of pancreatic cancer invasion and metastasis. Mol Cancer Res; 16(1); 124-34. ©2017 AACR.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meiyuan Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chencheng Xie
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
65
|
Hu S, Ran Y, Chen W, Zhang Y, Xu Y. MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 2017; 38:1569-1578. [PMID: 28713953 DOI: 10.3892/or.2017.5810] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth-most common cancer and third leading cause of cancer-related deaths worldwide. Increasing evidence indicates that dysregulation of microRNAs is often observed in HCC, and has been extensively investigated in terms of cancer formation, progression, diagnosis, therapy, and prognosis. Recently, microRNA-326 (miR-326) has been demonstrated to play important roles in multiple types of human cancer. However, the expression pattern, clinical significance, roles and regulatory mechanisms of miR-326 in HCC have yet to be elucidated. In this study, miR-326 was frequently downregulated in HCC tissues and cell lines. Low miR-326 expression was significantly associated with the TNM stage, differentiation and lymph node metastasis of HCC patients. Further functional assays demonstrated that the recovered miR-326 expression inhibited HCC cell proliferation and invasion and activated cell apoptosis in vitro. In addition, LIM and SH3 protein 1 (LASP1) was identified as a direct target gene of miR-326 in HCC. Furthermore, LASP1 was upregulated in HCC tissues and cell lines. The expression level of LASP1 mRNA was inversely correlated with that of miR-326 in HCC tissues. Moreover, LASP1 silencing elicited effects similar to miR-326 overexpression on HCC cells, and LASP1 upregulation markedly reversed the effects of miR-326 overexpression on HCC cells. These results revealed that miR-326 suppressed the progression of HCC by directly targeting LASP1. Therefore, miR-326 may be used as a potential therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yun Ran
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Wenlin Chen
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yuncheng Zhang
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| | - Yongjian Xu
- Department of Hepatology, Longgang Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
66
|
Zhang X, Liu Y, Fan C, Wang L, Li A, Zhou H, Cai L, Miao Y, Li Q, Qiu X, Wang E. Lasp1 promotes malignant phenotype of non-small-cell lung cancer via inducing phosphorylation of FAK-AKT pathway. Oncotarget 2017; 8:75102-75113. [PMID: 29088849 PMCID: PMC5650404 DOI: 10.18632/oncotarget.20527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Lasp1 (LIM and SH3 domain protein 1) promotes tumor proliferation and invasion in multiple cancer entities including non-small cell lung cancer (NSCLC). However, the molecular mechanism is uncertain to date. In the present study, using immunohistochemistry, we found that Lasp1 expression was significantly correlated with tumor size (P=0.005), advanced TNM stage (P=0.042), positive regional lymph node metastasis (P=0.034) and poor overall survival (P<0.001). Similar results were seen in patients with squamous cell lung carcinoma (P=0.003 for larger tumor size, P=0.017 for advanced TNM stage, P=0.003 for positive lymph node metastasis and P<0.001 for poor overall survival) but not in patients with lung adenocarcinoma (P>0.05). Proliferation and invasion assay showed that Lasp1 dramatically promoted the ability of proliferation and invasion of NSCLC cells. Subsequent western blot results revealed that Lasp1 promoted the expression of Cyclin A2, CyclinB1, and Snail, and inhibited the expression of E-cadherin. Lasp1 directly interacted with FAK and facilitated the expression of phosphorylated FAK (Tyr397) and AKT (Ser473). Incorporation of both FAK inhibitor and AKT inhibitor counteracted the upregulating expression of Cyclin A2, CyclinB1, and Snail, and downregulating expression of E-cadherin expression induced by Lasp1 overexpression. Interestingly, inhibition of FAK signaling pathway attenuated the phosphorylation of AKT, but inhibition of AKT signaling pathway did not affect the phosphorylation of FAK. In conclusion, Lasp1 facilitated tumor proliferation and invasion of NSCLC through directly binding to FAK and enhancing the phosphorylation of FAK (Tyr397) and AKT (Ser473). Lasp1 may be a novel therapeutic target in the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Ailin Li
- Department of Radiotherapy, First Hospital of China Medical University, Shenyang, China
| | - Haijing Zhou
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Lin Cai
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
67
|
Xu R, Han M, Xu Y, Zhang X, Zhang C, Zhang D, Ji J, Wei Y, Wang S, Huang B, Chen A, Zhang Q, Li W, Sun T, Wang F, Li X, Wang J. Coiled-coil domain containing 109B is a HIF1α-regulated gene critical for progression of human gliomas. J Transl Med 2017; 15:165. [PMID: 28754121 PMCID: PMC5534085 DOI: 10.1186/s12967-017-1266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background The coiled-coil domain is a structural motif found in proteins that participate in a variety of biological processes. Aberrant expression of such proteins has been shown to be associated with the malignant behavior of human cancers. In this study, we investigated the role of a specific family member, coiled-coil domain containing 109B (CCDC109B), in human gliomas. Methods and results We confirmed that CCDC109B was highly expressed in high grade gliomas (HGG; WHO III–IV) using immunofluorescence, western blot analysis, immunohistochemistry (IHC) and open databases. Through Cox regression analysis of The Cancer Genome Atlas (TCGA) database, we found that the expression levels of CCDC109B were inversely correlated with patient overall survival and it could serve as a prognostic marker. Then, a serious of cell functional assays were performed in human glioma cell lines, U87MG and U251, which indicated that silencing of CCDC109B attenuated glioma proliferation and migration/invasion both in vitro and in vivo. Notably, IHC staining in primary glioma samples interestingly revealed localization of elevated CCDC109B expression in necrotic areas which are typically hypoxic. Moreover, small interfering RNA (siRNA) and specific inhibiters of HIF1α led to decreased expression of CCDC109B in vitro and in vivo. Transwell assay further showed that CCDC109B is a critical factor in mediating HIF1α-induced glioma cell migration and invasion. Conclusion Our study elucidated a role for CCDC109B as an oncogene and a prognostic marker in human gliomas. CCDC109B may provide a novel therapeutic target for the treatment of human glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1266-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.,Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
68
|
Ruggieri V, Agriesti F, Tataranni T, Perris R, Mangieri D. Paving the path for invasion: The polyedric role of LASP1 in cancer. Tumour Biol 2017. [PMID: 28621232 DOI: 10.1177/1010428317705757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although usually referred to as a structural actin-binding protein, LIM and SH3 domain-containing protein may actually be dynamically involved in the control of a wide spectrum of cellular processes, by virtue of its interaction with several molecular partners. Alongside being ubiquitously expressed in physiological conditions, LIM and SH3 domain-containing protein is overexpressed in a growing number of human cancers, in which it may actively contribute to their aggressiveness by promoting cell proliferation and migration. In view of the recent findings, implicating the protein in cancer progression, we discuss here the most relevant discoveries highlighting the role of this versatile protein in various human tumors. The correlation between LIM and SH3 domain-containing protein expression levels in cancer and the poor outcome and metastatic behavior of tumors denotes the clinical significance of this protein and hints its potential value as a new cancer prognostic or even diagnostic biomarker. This may be decisive not only to optimize existing pharmacological regimes but also to delineate novel, more efficacious therapeutic and/or preventive approaches.
Collapse
Affiliation(s)
- Vitalba Ruggieri
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Francesca Agriesti
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Tiziana Tataranni
- 1 Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| | - Roberto Perris
- 2 Center for Molecular and Translational Oncology, University of Parma, Parma, Italy
| | - Domenica Mangieri
- 3 Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
69
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
70
|
Wang X, Dong J, Jia L, Zhao T, Lang M, Li Z, Lan C, Li X, Hao J, Wang H, Qin T, Huang C, Yang S, Yu M, Ren H. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett 2017; 393:113-124. [DOI: 10.1016/j.canlet.2017.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
71
|
Kong FY, Zhu T, Li N, Cai YF, Zhou K, Wei X, Kou YB, You HJ, Zheng KY, Tang RX. Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci Rep 2017; 7:44017. [PMID: 28266596 PMCID: PMC5339786 DOI: 10.1038/srep44017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
LIM and SH3 domain protein (LASP-1) is responsible for the development of several types of human cancers via the interaction with other proteins; however, the precise biological functions of proteins interacting with LASP-1 are not fully clarified. Although the role of LASP-1 in hepatocarcinogenesis has been reported, the implication of LASP-1 interactors in HBV-related hepatocellular carcinoma (HCC) is not clearly evaluated. We obtained information regarding LASP-1 interactors from public databases and published studies. Via bioinformatics analysis, we found that LASP-1 interactors were related to distinct molecular functions and associated with various biological processes. Through an integrated network analysis of the interaction and pathways of LASP-1 interactors, cross-talk between different proteins and associated pathways was found. In addition, LASP-1 and several its interactors are significantly altered in HBV-related HCC through microarray analysis and could form a complex co-expression network. In the disease, LASP-1 and its interactors were further predicted to be regulated by a complex interaction network composed of different transcription factors. Besides, numerous LASP-1 interactors were associated with various clinical factors and related to the survival and recurrence of HBV-related HCC. Taken together, these results could help enrich our understanding of LASP-1 interactors and their relationships with HBV-related HCC.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Fei Cai
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
72
|
Li W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J, Zhou Y. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 2017; 292:5801-5813. [PMID: 28232485 DOI: 10.1074/jbc.m116.758508] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/19/2017] [Indexed: 01/01/2023] Open
Abstract
Thousands of long intergenic non-protein coding RNAs (lincRNAs) have been identified in mammals in genome-wide sequencing studies. Some of these RNAs have been consistently conserved during the evolution of species and could presumably function in important biologic processes. Therefore, we measured the levels of 26 highly conserved lincRNAs in a total of 176 pairs of endometrial carcinoma (EC) and surrounding non-tumor tissues of two distinct Chinese populations. Here, we report that a lincRNA, LINC00672, which possesses an ultra-conserved region, is aberrantly down-regulated during the development of EC. Nevertheless, LINC00672 is a p53-targeting lincRNA acting along with heterogeneous nuclear ribonucleoproteins as a suppressive cofactor, which locally reinforces p53-mediated suppression of LASP1, an evolutionarily conserved neighboring gene of LINC00672 and putatively associated with increased tumor aggressiveness, during anti-tumor processes. LINC00672 overexpression could lower the levels of LASP1 and slow the development of malignant phenotypes of EC both in vitro and in vivo Moreover, LINC00672 significantly increased the 50% inhibitory concentration of paclitaxel in EC cells and increased the sensitivity of xenograft mice to paclitaxel. These findings indicate that LINC00672 can influence LASP1 expression as a locus-restricted cofactor for p53-mediated gene suppression, thus impacting EC malignancies and chemosensitivity to paclitaxel.
Collapse
Affiliation(s)
- Wei Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Hua Li
- the Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing 100191
| | - Liyuan Zhang
- the Departments of Radiotherapy and Oncology and
| | - Min Hu
- Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou 215004, and
| | - Fang Li
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jieqiong Deng
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Mingxing An
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Siqi Wu
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Rui Ma
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123
| | - Jiachun Lu
- the Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China
| | - Yifeng Zhou
- From the Department of Genetics, Medical College of Soochow University, Suzhou 215123,
| |
Collapse
|
73
|
Huang C, Li N, Li Z, Chang A, Chen Y, Zhao T, Li Y, Wang X, Zhang W, Wang Z, Luo L, Shi J, Yang S, Ren H, Hao J. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression. Nat Commun 2017; 8:14035. [PMID: 28102193 PMCID: PMC5253665 DOI: 10.1038/ncomms14035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1-fibrinogen-ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.
Collapse
Affiliation(s)
- Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Na Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wei Zhang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Zhimin Wang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Lin Luo
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Jingjing Shi
- Department of Tissue Bank, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
74
|
Zhao T, Jiang W, Wang X, Wang H, Zheng C, Li Y, Sun Y, Huang C, Han ZB, Yang S, Jia Z, Xie K, Ren H, Hao J. ESE3 Inhibits Pancreatic Cancer Metastasis by Upregulating E-Cadherin. Cancer Res 2016; 77:874-885. [PMID: 27923832 DOI: 10.1158/0008-5472.can-16-2170] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/12/2016] [Accepted: 11/19/2016] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ESE3 is a crucial element in differentiation and development programs for many epithelial tissues. Here we report its role as a tumor suppressor in pancreatic cancer. We observed drastically lower ESE3 expression in pancreatic ductal adenocarcinomas (PDAC) compared with adjacent normal pancreatic tissue. Reduced expression of ESE3 in PDAC correlated closely with an increase in lymph node metastasis and vessel invasion and a decrease in relapse-free and overall survival in patients. In functional experiments, downregulating the expression of ESE3 promoted PDAC cell motility and invasiveness along with metastasis in an orthotopic mouse model. Mechanistic studies in PDAC cell lines, the orthotopic mouse model, and human PDAC specimens demonstrated that ESE3 inhibited PDAC metastasis by directly upregulating E-cadherin expression at the level of its transcription. Collectively, our results establish ESE3 as a negative regulator of PDAC progression and metastasis by enforcing E-cadherin upregulation. Cancer Res; 77(4); 874-85. ©2016 AACR.
Collapse
Affiliation(s)
- Tiansuo Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Xiuchao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Hongwei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Chen Zheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Zhi-Bo Han
- Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - He Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.
| |
Collapse
|
75
|
Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S. Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clin Proteomics 2016; 13:31. [PMID: 27799870 PMCID: PMC5084393 DOI: 10.1186/s12014-016-9132-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis. METHODS We utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables. RESULTS Top cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01). CONCLUSION These results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- University of California, Davis Genome Center, Davis, CA USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, Davis, CA USA
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | | | - William Rom
- Division of Pulmonary, Critical Care, and Sleep, NYU School of Medicine, New York, NY USA
| | - David R Gandara
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| | - Yanhong Zhang
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA USA
| | - Oliver Fiehn
- University of California, Davis Genome Center, Davis, CA USA.,Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York City, NY USA
| | - Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis Medical Center, 4501 X Street, Suite 3016, Sacramento, CA 95817 USA
| |
Collapse
|
76
|
Gao Y, Li H, Ma X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Wang L, Gu L, Yao Y, Ai Q, Du Q, Song E, Zhang X. KLF6 Suppresses Metastasis of Clear Cell Renal Cell Carcinoma via Transcriptional Repression of E2F1. Cancer Res 2016; 77:330-342. [PMID: 27780824 DOI: 10.1158/0008-5472.can-16-0348] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Yu Gao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Dong Ni
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Kan Liu
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Xintao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qing Ai
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qingshan Du
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Erlin Song
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| |
Collapse
|
77
|
MicroRNA-218 inhibits the proliferation, migration, and invasion and promotes apoptosis of gastric cancer cells by targeting LASP1. Tumour Biol 2016; 37:15241-15252. [DOI: 10.1007/s13277-016-5388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
|
78
|
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, Chiao PJ, Hao J, Zhang W. IGFBP2 Activates the NF-κB Pathway to Drive Epithelial-Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Res 2016; 76:6543-6554. [PMID: 27659045 DOI: 10.1158/0008-5472.can-16-0438] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
The molecular basis underlying the particularly aggressive nature of pancreatic ductal adenocarcinoma (PDAC) still remains unclear. Here we report evidence that the insulin-like growth factor-binding protein IGFBP2 acts as a potent oncogene to drive its extremely malignant character. We found that elevated IGFBP2 expression in primary tumors was associated with lymph node metastasis and shorter survival in patients with PDAC. Enforced expression of IGFBP2 promoted invasion and metastasis of PDAC cells in vitro and in vivo by inducing NF-κB-dependent epithelial-mesenchymal transition (EMT). Mechanistic investigations revealed that IGFBP2 induced the nuclear translocation and phosphorylation of the p65 NF-κB subunit through the PI3K/Akt/IKKβ pathway. Conversely, enforced expression of PTEN blunted this signaling pathway and restored an epithelial phenotype to PDAC cells in the presence of overexpressed IGFBP2. Overall, our results identify IGFBP2 as a pivotal regulator of an EMT axis in PDAC, the activation of which is sufficient to confer the characteristically aggressive clinical features of this disease. Cancer Res; 76(22); 6543-54. ©2016 AACR.
Collapse
Affiliation(s)
- Song Gao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Corrine Yingxuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - He Ren
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihui Hao
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
79
|
Logsdon DP, Grimard M, Luo M, Shahda S, Jiang Y, Tong Y, Yu Z, Zyromski N, Schipani E, Carta F, Supuran CT, Korc M, Ivan M, Kelley MR, Fishel ML. Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models. Mol Cancer Ther 2016; 15:2722-2732. [PMID: 27535970 DOI: 10.1158/1535-7163.mct-16-0253] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related mortality in the United States. Aggressive treatment regimens have not changed the disease course, and the median survival has just recently reached a year. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a multifunctional protein possessing a DNA repair function in base excision repair and the ability to reduce oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling activity, which regulates the transcriptional activation of hypoxia-inducible factor 1 alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as a part of the cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We hypothesized that modulating APE1/Ref-1 function will block activation of downstream transcription factors, STAT3 and HIF1α, interfering with the hypoxia-induced gene expression. We demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in decreased HIF1α-mediated induction of CA9. Furthermore, an ex vivo three-dimensional tumor coculture model demonstrates dramatic enhancement of APE1/Ref-1-induced cell killing upon dual targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development; therefore, these studies have the potential to direct novel PDAC therapeutic treatment. Mol Cancer Ther; 15(11); 2722-32. ©2016 AACR.
Collapse
Affiliation(s)
- Derek P Logsdon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michelle Grimard
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meihua Luo
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safi Shahda
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| | - Yanlin Jiang
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yan Tong
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhangsheng Yu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicholas Zyromski
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Fabrizio Carta
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Medicinal Chemistry, University of Florence, Florence, Italy
| | - Murray Korc
- Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mircea Ivan
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark R Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa L Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. .,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.,Pancreatic Cancer Signature Center, Indianapolis, Indiana
| |
Collapse
|
80
|
Gao Y, Li H, Ma X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Wang L, Yao Y, Ai Q, Zhang X. E2F3 upregulation promotes tumor malignancy through the transcriptional activation of HIF-2α in clear cell renal cell carcinoma. Oncotarget 2016; 8:54021-54036. [PMID: 28903320 PMCID: PMC5589559 DOI: 10.18632/oncotarget.10568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
The E2F3 transcriptional regulatory pathway plays a major part in multiple-cancer progression, but the specific contributions of this pathway to tumor formation and the progression of clear cell renal cell carcinoma (ccRCC) are not fully understood. Clinically, we demonstrated that E2F3 was overexpressed in advanced tumor features. Moreover, cytoplasmic restoration predicted the poor overall survival of ccRCC patients. As a remarkable oncogene for ccRCC, high HIF-2α levels closely correlated with E2F3 upregulation. We observed in vitro that E2F3 overexpression and knockdown regulated HIF-2α expression. Furthermore, we found that HIF-2α harbored multiple E2F3 binding sites in the promoters. Mechanistically, E2F3 acted to transactivate HIF-2α transcription, which in turn exerted a serial effect on the pivotal epithelial–mesenchymal transition-related genes. The RNA interference-mediated silencing of HIF-2α attenuated E2F3-enhanced cell migration and invasion in vitro and in vivo. Overall, our results identified HIF-2α as a direct target gene for E2F3 upregulation, which was critical for carcinogenesis and progression of ccRCC. Thus, targeting the E2F3–HIF-2α interaction may be a promising approach to ccRCC treatment.
Collapse
Affiliation(s)
- Yu Gao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Dong Ni
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Kan Liu
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xintao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Qing Ai
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| |
Collapse
|
81
|
Hu B, Zhang K, Li S, Li H, Yan Z, Huang L, Wu J, Han X, Jiang W, Mulatibieke T, Zheng L, Wan R, Wang X, Hu G. HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer. Cancer Lett 2016; 376:387-98. [DOI: 10.1016/j.canlet.2016.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
|
82
|
Zhang H, Li Z, Chu B, Zhang F, Zhang Y, Ke F, Chen Y, Xu Y, Liu S, Zhao S, Liang H, Weng M, Wu X, Li M, Wu W, Quan Z, Liu Y, Zhang Y, Gong W. Upregulated LASP-1 correlates with a malignant phenotype and its potential therapeutic role in human cholangiocarcinoma. Tumour Biol 2016; 37:8305-8315. [PMID: 26729195 DOI: 10.1007/s13277-015-4704-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/20/2015] [Indexed: 02/08/2023] Open
Abstract
LIM and SH3 protein 1 (LASP-1) is demonstrated to play a key role in occurrence and development of tumors. However, the expression and function of LASP-1 in cholangiocarcinoma (CCA) remain largely unexplored. This study aimed to investigate the effect of regulated LASP-1 expression on migration, invasion, proliferation, and apoptosis of CCA cells and on tumorigenesis in vivo, and to examine clinico-oncological correlates of LASP-1 expression. Expression of LASP-1 by immunohistochemistry was evaluated in CCA tissue samples. HCCC-9810 and RBE cells were transfected with the LASP-1 small interfering RNA (siRNA), and the effect of knocking down LASP-1 gene expression on cell migration, invasion, proliferation, and apoptosis were examined by wound healing, transwell assays, CCK-8 assays, colony formation, and flow cytometry assays, respectively. Xenograft tumor model was used to validate the effect of downregulated LASP-1 in vivo. Our results demonstrated that LASP-1 was over-expressed in CCA tissues, positively correlating with larger tumors, poor histological differentiation, lymph node metastasis, advanced TNM stage, and poor prognosis in CCA patients (P < 0.05). Downregulation of LASP-1 in HCCC-9810 and RBE cell lines significantly increased cell apoptosis and suppressed cell migration, invasion, and proliferation in vitro and tumorigenesis in vivo. Our results indicate that LASP-1 may essentially involve in the metastasis and growth of CCA and clinical significance of LASP-1 may reside in function as a biomarker to predict prognosis and as a promising therapeutic strategy for CCA patients by the inhibition of LASP-1 expression.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhizhen Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fayong Ke
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yuanyuan Chen
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi Xu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shibo Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shuai Zhao
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wenguang Wu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
- The Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
83
|
Li Z, Chen Y, Wang X, Zhang H, Zhang Y, Gao Y, Weng M, Wang L, Liang H, Li M, Zhang F, Zhao S, Liu S, Cao Y, Shu Y, Bao R, Zhou J, Liu X, Yan Y, Zhen L, Dong Q, Liu Y. LASP-1 induces proliferation, metastasis and cell cycle arrest at the G2/M phase in gallbladder cancer by down-regulating S100P via the PI3K/AKT pathway. Cancer Lett 2016; 372:239-50. [PMID: 26797416 DOI: 10.1016/j.canlet.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/26/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022]
Abstract
LASP-1 is an actin-binding protein that regulates cytoskeletal dynamics and cell migration. LASP-1 was previously identified in a cDNA library from metastatic breast cancer samples. This protein has since been detected in multiple human cancers, including liver cancer, gastric cancer and pancreatic cancer. S100P is a small calcium-binding protein in the S100 protein family that regulates cellular, physiological and pathological processes in various cancers. However, the clinical significance of LASP-1 and S100P expression in gallbladder cancer (GBC) is not yet clear. In our study, we focused on the clinical significance, biological function and mechanism of LASP-1 in gallbladder cancer and detected LASP-1 and S100P overexpression in GBC tissues. The expression of LASP-1 was significantly correlated with poor prognosis in GBC patients (P < 0.05). Furthermore, down-regulation of LASP-1 expression resulted in the obvious inhibition of proliferation and migration and caused cell cycle arrest by down-regulating S100P via the PI3K/AKT pathway; in mice, tumor volume was significantly decreased. In conclusion, LASP-1 may act as an oncogene to regulate the expression of S100P to influence cellular functions in GBC. LASP-1 could serve as a genetic treatment target in GBC patients.
Collapse
Affiliation(s)
- ZhiZhen Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - YuanYuan Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - XuAn Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - HongChen Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yijian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - YaoHui Gao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Mingzhe Weng
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Lei Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - HaiBin Liang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - MaoLan Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Fei Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shuai Zhao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shibo Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yang Cao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yijun Shu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Runfa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian Zhou
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiyong Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yun Yan
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Lei Zhen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Qian Dong
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yingbin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Institute of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
84
|
Wang X, Ren H, Zhao T, Ma W, Dong J, Zhang S, Xin W, Yang S, Jia L, Hao J. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget 2016; 7:13717-29. [PMID: 26872370 PMCID: PMC4924673 DOI: 10.18632/oncotarget.7263] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is over-expressed in many cancers including pancreatic ductal adenocarcinoma (PDAC) and correlated with poor prognosis. We aim to determine the effect of germline genetic variants on the regulation of the homeostasis of the miRNA-gene regulatory loop in HIF1A gene and PDAC risk. HIF1A rs2057482 single nucleotide polymorphism (SNP) was genotyped in 410 PDAC cases and 490 healthy controls. The CC genotype SNP HIF1A is significantly correlated with PDAC risk (OR = 1.719, 95% CI: 1.293-2.286) and shorter overall survival (OS, P<0.0001) compared with the CT/TT alleles group. The C/T variants of rs2057482, a SNP located near the miR-199a binding site in HIF1A, could lead to differential regulation of HIF1A by miR-199a. Specifically, the C allele of rs2057482 weakened miR-199a-induced repression of HIF-1α expression on both mRNA and protein levels. In the PDAC tissue, individuals with the rs2057482-CC genotype expressed significantly higher levels of HIF-1α protein than those with the rs2057482-CT/TT genotype (P<0.0001). Both the CC genotype of SNP HIF1A and increased HIF-1α expression are significantly associated with shorter OS of patients with PDAC. After adjusted by TNM staging, differentiation grade, and the levels of CA19-9, both SNP HIF1A and HIF-1α expression retained highly significance on OS (P<0.0001). Taken together, our study demonstrates that host genetic variants could disturb the regulation of the miR-199a/HIF1A regulatory loop and alter PDAC risk and poor prognosis. In conclusion, the rs2057482-CC genotype increases the susceptibility to PDAC and associated with cancer progression.
Collapse
Affiliation(s)
- Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weidong Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jie Dong
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengjie Zhang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wen Xin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengyu Yang
- Department of Tumor Biology and Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Li Jia
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
85
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
86
|
Hao J. HIF-1 is a critical target of pancreatic cancer. Oncoimmunology 2015; 4:e1026535. [PMID: 26405594 DOI: 10.1080/2162402x.2015.1026535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal digestive tract malignancies. Hypoxia-inducible factor (HIF-1) is over-expressed in pancreatic cancer and associated with poor prognosis. During the past several years, we focused on identifying the function of HIF-1 and the antitumor effect of HIF-1 inhibitors on PDAC, especially in regards to immunogenic cell death.
Collapse
Affiliation(s)
- Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Department of Pancreatic Cancer , Tianjin, China
| |
Collapse
|
87
|
Vaman V. S. A, Poppe H, Houben R, Grunewald TGP, Goebeler M, Butt E. LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression. PLoS One 2015; 10:e0129219. [PMID: 26061439 PMCID: PMC4465371 DOI: 10.1371/journal.pone.0129219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.
Collapse
Affiliation(s)
- Anjana Vaman V. S.
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Heiko Poppe
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas G. P. Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
88
|
Erickson LA, Highsmith WE, Fei P, Zhang J. Targeting the hypoxia pathway to treat pancreatic cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2029-31. [PMID: 25897209 PMCID: PMC4396576 DOI: 10.2147/dddt.s80888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The correlation between hypoxia and pancreatic cancer has long been discussed. Hao’s research team made many efforts on revealing the oncogenic function of hypoxic inducible factor-1 (HIF-1) in pancreatic cancer progression and development in recent years. Based on their research, they linked micro-environmental regulation of pancreatic cancer and its clinical significance. Hao’s research team suggests it is a promising approach to target HIF-1 for the management of pancreatic cancer progression and invasion.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - W Edward Highsmith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|