51
|
|
52
|
Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W, Sun D. Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis 2018; 9:1010. [PMID: 30262908 PMCID: PMC6160445 DOI: 10.1038/s41419-018-1062-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Abstract
The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.
Collapse
Affiliation(s)
- Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria M Pigott
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maria G Castro
- Department of Neurological Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
54
|
Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta Rev Cancer 2018; 1869:346-354. [PMID: 29684521 DOI: 10.1016/j.bbcan.2018.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies.
Collapse
Affiliation(s)
- Diana A Aderetti
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Medical Oncology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
55
|
Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018; 7:10. [PMID: 29362402 PMCID: PMC5833859 DOI: 10.1038/s41389-017-0011-9] [Citation(s) in RCA: 709] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression.
Collapse
Affiliation(s)
- Varvara Petrova
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| |
Collapse
|
56
|
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int J Mol Sci 2018; 19:ijms19010147. [PMID: 29300332 PMCID: PMC5796096 DOI: 10.3390/ijms19010147] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Collapse
|
57
|
Abstract
Solid tumors are often characterized by insufficient oxygen supply (hypoxia), as a result of inadequate vascularization, which cannot keep up with the rapid growth rate of the tumor. Tumor hypoxia is a negative prognostic and predictive factor and is associated with a more aggressive phenotype in various tumor entities. Activation of the hypoxic response in tumors, which is centered around the hypoxia-inducible transcription factors (HIFs), has been causally linked to neovascularization, increased radio- and chemoresistance, altered cell metabolism, genomic instability, increased metastatic potential, and tumor stem cell characteristics. Thus, the hypoxic tumor microenvironment represents a main driving force for tumor progression and a potential target for therapeutic interventions. Here, we describe several methods for the analysis of tumor hypoxia and the hypoxic response in vivo in tumor xenograft models. These methods can be applied to various tumor models, including brain tumor xenotransplants, and allow simultaneously determining the extent and distribution of hypoxia within the tumor, analyzing HIF levels by immunohistochemistry and immunoblot, and quantifying the expression of HIF target genes in tumor tissue. The combination of these approaches provides an important tool to assess the role of the hypoxic tumor microenvironment in vivo.
Collapse
|
58
|
Abstract
The high metabolic demand of cancer cells leads to an accumulation of H+ ions in the tumour microenvironment. The disorganized tumour vasculature prevents an efficient wash-out of H+ ions released into the extracellular medium but also favours the development of tumour hypoxic regions associated with a shift towards glycolytic metabolism. Under hypoxia, the final balance of glycolysis, including breakdown of generated ATP, is the production of lactate and a stoichiometric amount of H+ ions. Another major source of H+ ions results from hydration of CO2 produced in the more oxidative tumour areas. All of these events occur at high rates in tumours to fulfil bioenergetic and biosynthetic needs. This Review summarizes the current understanding of how H+-generating metabolic processes segregate within tumours according to the distance from blood vessels and inversely how ambient acidosis influences tumour metabolism, reducing glycolysis while promoting mitochondrial activity. The Review also presents novel insights supporting the participation of acidosis in cancer progression via stimulation of autophagy and immunosuppression. Finally, recent advances in the different therapeutic modalities aiming to either block pH-regulatory systems or exploit acidosis will be discussed.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| |
Collapse
|
59
|
Pedersen AK, Mendes Lopes de Melo J, Mørup N, Tritsaris K, Pedersen SF. Tumor microenvironment conditions alter Akt and Na +/H + exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer. BMC Cancer 2017; 17:542. [PMID: 28806945 PMCID: PMC5556346 DOI: 10.1186/s12885-017-3532-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic angiogenesis is a hallmark of most tumors and takes place in a hostile tumor microenvironment (TME) characterized by hypoxia, low nutrient and glucose levels, elevated lactate and low pH. Despite this, most studies addressing angiogenic signaling use hypoxia as a proxy for tumor conditions. Here, we compared the effects of hypoxia and TME conditions on regulation of the Na+/H+ exchanger NHE1, Ser/Thr kinases Akt1-3, and downstream effectors in endothelial cells. METHODS Human umbilical vein endothelial cells (HUVEC) and Ea.hy926 endothelial cells were exposed to simulated TME (1% hypoxia, low serum, glucose, pH, high lactate) or 1% hypoxia for 24 or 48 h, with or without NHE1 inhibition or siRNA-mediated knockdown. mRNA and protein levels of NHE1, Akt1-3, and downstream effectors were assessed by qPCR and Western blotting, vascular endothelial growth factor (VEGF) release by ELISA, and motility by scratch assay. RESULTS Within 24 h, HIF-1α level and VEGF mRNA level were increased robustly by TME and modestly by hypoxia alone. The NHE1 mRNA level was decreased by both hypoxia and TME, and NHE1 protein was reduced by TME in Ea.hy926 cells. Akt1-3 mRNA was detected in HUVEC and Ea.hy926 cells, Akt1 most abundantly. Akt1 protein expression was reduced by TME yet unaffected by hypoxia, while Akt phosphorylation was increased by TME. The Akt loss was partly reversed by MCF-7 human breast cancer cell conditioned medium, suggesting that in vivo, the cancer cell secretome may compensate for adverse effects of TME on endothelial cells. TME, yet not hypoxia, reduced p70S6 kinase activity and ribosomal protein S6 phosphorylation and increased eIF2α phosphorylation, consistent with inhibition of protein translation. Finally, TME reduced Retinoblastoma protein phosphorylation and induced poly-ADP-ribose polymerase (PARP) cleavage consistent with inhibition of proliferation and induction of apoptosis. NHE1 knockdown, mimicking the effect of TME on NHE1 expression, reduced Ea.hy926 migration. TME effects on HIF-1α, VEGF, Akt, translation, proliferation or apoptosis markers were unaffected by NHE1 knockdown/inhibition. CONCLUSIONS NHE1 and Akt are downregulated by TME conditions, more potently than by hypoxia alone. This inhibits endothelial cell migration and growth in a manner likely modulated by the cancer cell secretome.
Collapse
Affiliation(s)
- A K Pedersen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - J Mendes Lopes de Melo
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - N Mørup
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - K Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
60
|
Roos A, Ding Z, Loftus JC, Tran NL. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion. Front Oncol 2017; 7:120. [PMID: 28670569 PMCID: PMC5472661 DOI: 10.3389/fonc.2017.00120] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent primary brain tumor in adults with a 5-year survival rate of 5% despite intensive research efforts. The poor prognosis is due, in part, to aggressive invasion into the surrounding brain parenchyma. Invasion is a complex process mediated by cell-intrinsic pathways, extrinsic microenvironmental cues, and biophysical cues from the peritumoral stromal matrix. Recent data have attributed GBM invasion to the glioma stem-like cell (GSC) subpopulation. GSCs are slowly dividing, highly invasive, therapy resistant, and are considered to give rise to tumor recurrence. GSCs are localized in a heterogeneous cellular niche, and cross talk between stromal cells and GSCs cultivates a fertile environment that promotes GSC invasion. Pro-migratory soluble factors from endothelial cells, astrocytes, macrophages, microglia, and non-stem-like tumor cells can stimulate peritumoral invasion of GSCs. Therefore, therapeutic efforts designed to target the invasive GSCs may enhance patient survival. In this review, we summarize the current understanding of extrinsic pathways and major stromal and immune players facilitating GSC maintenance and survival.
Collapse
Affiliation(s)
- Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
61
|
Strickland M, Stoll EA. Metabolic Reprogramming in Glioma. Front Cell Dev Biol 2017; 5:43. [PMID: 28491867 PMCID: PMC5405080 DOI: 10.3389/fcell.2017.00043] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid metabolism; oxidative phosphorylation; and fatty acid metabolism, which significantly contributes to energy production in glioma cells. Secondly, we highlight processes (including the Randle Effect, AMPK signaling, mTOR activation, etc.) which are understood to link bio-energetic pathways with oncogenic signals, thereby allowing the glioma cell to achieve a pro-malignant state.
Collapse
Affiliation(s)
- Marie Strickland
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
62
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
63
|
Nolan KD, Kaur J, Isaacs JS. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget 2017; 8:19323-19341. [PMID: 28038472 PMCID: PMC5386687 DOI: 10.18632/oncotarget.14252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Heat-shock protein 90 (Hsp90), a highly conserved molecular chaperone, is frequently upregulated in tumors, and remains an attractive anti-cancer target. Hsp90 is also found extracellularly, particularly in tumor models. Although extracellular Hsp90 (eHsp90) action is not well defined, eHsp90 targeting attenuates tumor invasion and metastasis, supporting its unique role in tumor progression. We herein investigated the potential role of eHsp90 as a modulator of cancer stem-like cells (CSCs) in prostate cancer (PCa). We report a novel function for eHsp90 as a facilitator of PCa stemness, determined by its ability to upregulate stem-like markers, promote self-renewal, and enhance prostasphere growth. Moreover, eHsp90 increased the side population typically correlated with the drug-resistant phenotype. Intriguingly, tumor cells with elevated surface eHsp90 exhibited a marked increase in stem-like markers coincident with increased expression of the epithelial to mesenchymal (EMT) effector Snail, indicating that surface eHsp90 may enrich for a unique CSC population. Our analysis of distinct effectors modulating the eHsp90-dependent CSC phenotyperevealed that eHsp90 is a likely facilitator of stem cell heterogeneity. Taken together, our findings provide unique functional insights into eHsp90 as a modulator of PCa plasticity, and provide a framework towards understanding its role as a driver of tumor progression.
Collapse
Affiliation(s)
- Krystal D. Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jennifer S. Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
64
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
65
|
Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 2017; 43:66-73. [PMID: 28137473 DOI: 10.1016/j.semcancer.2017.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.
Collapse
|