51
|
Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol Life Sci 2020; 77:1483-1495. [PMID: 31637449 PMCID: PMC11105068 DOI: 10.1007/s00018-019-03339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Fubing Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanjie Kong
- Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
52
|
Peng L, He K, Cao Z, Bi L, Yu D, Wang Q, Wang J. CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Mol Med Rep 2020; 21:329-337. [PMID: 31939627 PMCID: PMC6896372 DOI: 10.3892/mmr.2019.10840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Previous studies have demonstrated that the expression of CARD10 is closely associated with the occurrence of tumors, and its role is mainly to promote tumor progression by activating the transcription factor NF‑κB. However, the signaling pathway in renal cancer remains unclear. The objective of the present study was to investigate the ability of caspase recruitment domain 10 (CARD10) to regulate the NF‑κB signaling pathway and promote the progression of renal cell carcinoma (RCC). Expression of CARD10 in ACHN, 786‑O and HK‑2 cells was evaluated via western blot analysis, as was the epidermal growth factor (EGF)‑induced activation of NF‑κB signaling pathway‑related proteins in cells. The expression of CARD10 was inhibited by CARD10 short hairpin RNA transfection. Cell cycle analysis and MTT assays were used to evaluate cell proliferation. Cell apoptosis was analyzed via flow cytometry. The invasion of renal cell lines was detected via Transwell cell migration and invasion assays in vitro. The results showed that CARD10 expression was significantly higher in RCC cells than in normal renal tubular epithelial cells. CARD10 silencing inhibited the proliferation, invasion and migration of RCC cells. EGF stimulation upregulated the activation of the NF‑κB pathway in RCC cells. Inhibition of CARD10 expression inhibited NF‑κB activation in RCC cells. Taken together, these data suggested that CARD10 promotes the progression of renal cell carcinoma by regulating the NF‑κB signaling pathway. Thus, this indicated that CARD10 may be a novel therapeutic target in RCC.
Collapse
Affiliation(s)
- Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ke He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinyou Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
53
|
Cheng L, Shao X, Wang Q, Jiang X, Dai Y, Chen S. Adipocyte enhancer binding protein 1 (AEBP1) knockdown suppresses human glioma cell proliferation, invasion and induces early apoptosis. Pathol Res Pract 2019; 216:152790. [PMID: 31864713 DOI: 10.1016/j.prp.2019.152790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glioma is the most common primary malignant tumor with poor prognosis due to the lack of understanding the mechanism underlying the disease and the early diagnosis indexs. It is necessary to identify molecular signatures for predicting the overall prognosis of glioma. Adipocyte enhancer binding protein1 (AEBP1) acts as a transcriptional repressor and plays a role in adipogenesis and smooth muscle cell differentiation. However, its role in glioma remains unclear. MATERIALS AND METHODS AEBP1 expression was analyzed by bioinformatics using the public database and by qPCR and western blotting in human glioma tissues. AEBP1 downregulation was performed by lipofectamine3000-mediated siRNA transfection. Cell proliferation and invasion were determined by cell counting kit-8 and transwell assays, while early cell apoptosis was determined by flow cytometry. The proteins of downstream NF-κB signaling pathway were determined by western blotting. RESULTS AEBP1 is highly expressed in human gliomas. Lipofectamine 3000-mediated siRNA transfection stably and efficiently suppressed AEBP1 mRNA and protein expression in human glioma cells. AEBP1 downregulation inhibited cell proliferation and invasion, but promoted early cell apoptosis. Also, AEBP1 knockdown in glioma cells decreased the expression of NF-κB1. Furthermore, the downstream of NF-κB signaling pathway, Bax, caspase-3 are increased, while MMP2 and Bcl-2 are decreased in glioma cells. CONCLUSION Elevated AEBP1 is positively associated with poor prognosis of glioma. AEBP1 downregulation suppressed cell proliferation and invasion, but promoted early cell apoptosis. AEBP1 downregulation suppressed the cell proliferation and invasion may by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Limin Cheng
- Morphology Experiment & Training Center, School of Preclinical Medicine, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Xuefei Shao
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, China
| | - Qifu Wang
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, China
| | - Yi Dai
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, China.
| | - Sansong Chen
- Department of Neurosurgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, China.
| |
Collapse
|
54
|
Martin K, Touil R, Kolb Y, Cvijetic G, Murakami K, Israel L, Duraes F, Buffet D, Glück A, Niwa S, Bigaud M, Junt T, Zamurovic N, Smith P, McCoy KD, Ohashi PS, Bornancin F, Calzascia T. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell-Mediated Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2791-2806. [PMID: 31659015 DOI: 10.4049/jimmunol.1900327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The paracaspase Malt1 is a key regulator of canonical NF-κB activation downstream of multiple receptors in both immune and nonimmune cells. Genetic disruption of Malt1 protease function in mice and MALT1 mutations in humans results in reduced regulatory T cells and a progressive multiorgan inflammatory pathology. In this study, we evaluated the altered immune homeostasis and autoimmune disease in Malt1 protease-deficient (Malt1PD) mice and the Ags driving disease manifestations. Our data indicate that B cell activation and IgG1/IgE production is triggered by microbial and dietary Ags preferentially in lymphoid organs draining mucosal barriers, likely as a result of dysregulated mucosal immune homeostasis. Conversely, the disease was driven by a polyclonal T cell population directed against self-antigens. Characterization of the Malt1PD T cell compartment revealed expansion of T effector memory cells and concomitant loss of a CD4+ T cell population that phenotypically resembles anergic T cells. Therefore, we propose that the compromised regulatory T cell compartment in Malt1PD animals prevents the efficient maintenance of anergy and supports the progressive expansion of pathogenic, IFN-γ-producing T cells. Overall, our data revealed a crucial role of the Malt1 protease for the maintenance of intestinal and systemic immune homeostasis, which might provide insights into the mechanisms underlying IPEX-related diseases associated with mutations in MALT1.
Collapse
Affiliation(s)
- Kea Martin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ratiba Touil
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Yeter Kolb
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Grozdan Cvijetic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kiichi Murakami
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Fernanda Duraes
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Buffet
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anton Glück
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Satoru Niwa
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Natasa Zamurovic
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Philip Smith
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Kathy D McCoy
- Department of Clinical Research, University Clinic for Visceral Surgery and Medicine, University Hospital, 3010 Bern, Switzerland; and
| | - Pamela S Ohashi
- The Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Frédéric Bornancin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Thomas Calzascia
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland;
| |
Collapse
|
55
|
Liu X, Zhang X, Bi J, Li Z, Zhang Z, Kong C. Caspase recruitment domain family member 10 regulates carbamoyl phosphate synthase 1 and promotes cancer growth in bladder cancer cells. J Cell Mol Med 2019; 23:8128-8138. [PMID: 31565867 PMCID: PMC6850932 DOI: 10.1111/jcmm.14683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer, which can be divided into non‐muscle‐invasive and muscle‐invasive bladder cancer, is the most common urinary cancer in the United States. Caspase recruitment domain family member 10 (CARD10), also named CARD‐containing MAGUK protein 3 (CARMA3), is a member of the CARMA family and may activate the nuclear factor kappa B (NF‐κB) pathway. We utilized RNA sequencing and metabolic mass spectrometry to identify the molecular and metabolic feature of CARD10. The signalling pathway of CARD10 was verified by Western blotting analysis and functional assays. RNA sequencing and metabolic mass spectrometry of CARD10 knockdown identified the metabolic enzyme carbamoyl phosphate synthase 1 (CPS1) in the urea cycle as the downstream gene regulated by CARD10. We confirmed that CARD10 affected cell proliferation and nucleotide metabolism through regulating CPS1. We indicated that CARD10 promote bladder cancer growth via CPS1 and maybe a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Xi Liu
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaotong Zhang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
56
|
Hou H, Li WX, Cui X, Zhou DC, Zhang B, Geng XP. CARMA3/NF-κB signaling contributes to tumorigenesis of hepatocellular carcinoma and is inhibited by sodium aescinate. World J Gastroenterol 2019; 25:5483-5493. [PMID: 31576094 PMCID: PMC6767988 DOI: 10.3748/wjg.v25.i36.5483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a very malignant tumor in the world. CARMA3 plays an oncogenic role in the pathogenesis of various tumors. However, the function of CARMA3 in HCC has not been fully clarified.
AIM To study the biological function of CAEMA3 in HCC.
METHODS Tissue microarray slides including tissues form 100 HCC patients were applied to access the expression of CARMA3 in HCC and its clinical relevance. Knockdown and overexpression of CARMA3 were conducted with plasmid transfection. MTT, colony formation, and apoptosis assays were performed to check the biological activity of cells.
RESULTS Higher expression of CARMA3 in HCC was relevant to poor prognostic survival (P < 0.05). Down-regulation of CARMA3 inhibited proliferation and colony formation and induced apoptosis in HCC cell lines, while increasing its expression promoted tumorigenesis. We also found that sodium aescinate (SA), a natural herb extract, exerted anti-proliferation effects in HCC cells by suppressing the CARMA3/nuclear factor kappa-B (NF-κB) pathway.
CONCLUSION Overexpression of CARMA3 in HCC tissues correlates with a poor prognosis in HCC patients. CARMA3 acts pro-tumorigenic effects partly through activation of CARMA3/NF-κB. SA inhibits HCC growth by targeting CARMA3/NF-κB.
Collapse
Affiliation(s)
- Hui Hou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Wei-Xiang Li
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao Cui
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Da-Chen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Bin Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao-Ping Geng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
57
|
Wang X, Tong Z, Liu H. MiR-223-3p targeting epithelial cell transforming sequence 2 oncogene inhibits the activity, apoptosis, invasion and migration of MDA-MB-468 breast cancer cells. Onco Targets Ther 2019; 12:7675-7684. [PMID: 31571918 PMCID: PMC6756370 DOI: 10.2147/ott.s217019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose This research was to investigate the role of miR-223-3p targeting epithelial cell transforming sequence 2 oncogene (ECT2) in activity, apoptosis, invasion and migration of MDA-MB-468 breast cancer (BC) cells. Methods The human BC cell lines MDA-MB-468 were used for the experiment. They were divided into six groups: blank group (no plasmid transfection), NC group (negative control, transfected empty plasmid), miR-223-3p mimic group (transfected miR-223-3p mimic plasmid), miR-223-3p inhibitor group (transfected miR-223-3p inhibitor plasmid), si-ECT2 group (transfected si ECT2 plasmid) and miR-223-3p mimic+oe-ECT2 group (transfected with miR-223-3p mimic plasmid and ECT2 plasmid). Results Compared with the NC group, the mRNA and protein expression of Bax in miR-223-3p mimic and si-ECT2 groups were significantly increased, while the mRNA and protein expression of ECT2, Bcl-2, vascular endothelial growth factor (VEGF), and TGF-β1 were significantly decreased (all P<0.05). Compared with the NC group, the expression of miR-223-3p and the mRNA and protein expression of Bax were significantly decreased in the miR-223-3p inhibitor group, while the mRNA and protein expression of ECT2, Bcl-2, VEGF and TGF-β1 were significantly increased (both P<0.05). Compared with the single processing group, the mRNA and protein expression of Bax in the miR-223-3p mimic+si-ECT2 group were significantly increased, while the mRNA and protein expression of ECT2, Bcl-2, VEGF, and TGF-β1 were significantly decreased (all P<0.05). Conclusion MiR-223-3p targets and inhibits the expression of ECT2, thus inhibiting the invasion and migration of BC cells, and promoting cell apoptosis. miR-223-3p plays a protective role in BC.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin City 300060, People's Republic of China.,National Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China.,Tianjin Medical University, Ministry of Education, Tianjin City 300060, People's Republic of China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin City 300060, People's Republic of China.,National Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China
| | - Hong Liu
- National Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin City 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin City 300060, People's Republic of China.,Tianjin Medical University, Ministry of Education, Tianjin City 300060, People's Republic of China.,The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin City 300060, People's Republic of China
| |
Collapse
|
58
|
Liang Z, Cao J, Tian L, Shen Y, Yang X, Lin Q, Zhang R, Liu H, Du X, Shi J, Zhang J. Aromatase-induced endogenous estrogen promotes tumour metastasis through estrogen receptor-α/matrix metalloproteinase 12 axis activation in castration-resistant prostate cancer. Cancer Lett 2019; 467:72-84. [PMID: 31499120 DOI: 10.1016/j.canlet.2019.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023]
Abstract
Castration-resistant prostate cancer (CRPC) following androgen deprivation therapy remains a major obstacle advanced prostate cancer management. Aromatase catalyzes estrogen from androgens, yet the role of aromatase-generated endogenous estrogen in CRPC is poorly understood. In this study, we assessed the expression and function of aromatase in CRPC. We found that aromatase expression was significantly increased in CRPC tissues and cell lines. In some prostate cancer cell lines, aromatase was predominantly expressed in CD44+ subsets. Bicalutamide treatment significantly increased aromatase expression, and CYP19A1 expression positively correlated with estrogen responses and epithelial-mesenchymal transition. Aromatase knockdown in PC3 cells reduced invasiveness and decreased metastasis-related gene expression. The aromatase inhibitor, letrozole, attenuated tumour metastasis in castrated PC3-xenograft mice. Mechanistically, aromatase-induced endogenous estrogen promoted estrogen receptor-α (ERα) binding to matrix metalloproteinase 12 (MMP12) promoter estrogen response element (ERE). MMP12 co-localized with CD44 on the cell membrane and MMP12 knockdown significantly reduced estradiol-induced PC3 invasion. Taken together, our findings indicated that increased endogenous estrogen, catalysed by elevated aromatase levels, enhanced MMP12 expression via ERα, participated in CRPC progression and promoted tumour metastasis. Thus, aromatase represents a potential novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Zhixian Liang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lei Tian
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xu Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qimei Lin
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ran Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Haitao Liu
- Shanghai First People's Hospital Shanghai Jiaotong University, Shanghai, 200080, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
59
|
MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types. Oncogene 2019; 38:7384-7398. [PMID: 31420608 DOI: 10.1038/s41388-019-0958-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023]
Abstract
Protease-activated receptor 1 (PAR1), a thrombin-responsive G protein-coupled receptor (GPCR), is implicated in promoting metastasis in multiple tumor types, including both sarcomas and carcinomas, but the molecular mechanisms responsible remain largely unknown. We previously discovered that PAR1 stimulation in endothelial cells leads to activation of NF-κB, mediated by a protein complex comprised of CARMA3, Bcl10, and the MALT1 effector protein (CBM complex). Given the strong association between NF-κB and metastasis, we hypothesized that this CBM complex could play a critical role in the PAR1-driven metastatic progression of specific solid tumors. In support of our hypothesis, we demonstrate that PAR1 stimulation results in NF-κB activation in both osteosarcoma and breast cancer, which is suppressed by siRNA-mediated MALT1 knockdown, suggesting that an intact CBM complex is required for the response in both tumor cell types. We identify several metastasis-associated genes that are upregulated in a MALT1-dependent manner after PAR1 stimulation in cancer cells, including those encoding the matrix remodeling protein, MMP9, and the cytokines, IL-1β and IL-8. Further, exogenous expression of PAR1 in MCF7 breast cancer cells confers highly invasive and metastatic behavior which can be blocked by CRISPR/Cas9-mediated MALT1 knockout. Importantly, we find that PAR1 stimulation induces MALT1 protease activity in both osteosarcoma and breast cancer cells, an activity that is mechanistically linked to NF-κB activation and potentially other responses associated with aggressive phenotype. Several small molecule MALT1 protease inhibitors have recently been described that could therefore represent promising new therapeutics for the prevention and/or treatment of PAR1-driven tumor metastasis.
Collapse
|
60
|
Shang Y, Li Y, Zhang Y, Wang J. ZNF436 promotes tumor cell proliferation through transcriptional activation of BCL10 in glioma. Biochem Biophys Res Commun 2019; 515:572-578. [PMID: 31178130 DOI: 10.1016/j.bbrc.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/20/2023]
Abstract
Transcriptional factors (TFs) are key regulators in orchestrating gene transcription during cancer development. However, their roles in glioma remain elusive. Here, we analyzed the differential expression of TFs and identified ZNF436 is upregulated in glioblastoma and Lower Grade Glioma patients. High expression of ZNF436 is positively associated with poor overall survival and regulated by CREB1 in glioma cells. Knockdown of ZNF436 significantly abolished glioma cells proliferation in vitro. RNA sequencing revealed that ZNF436 regulates cell cycle and controlling BCL10 expression. Overexpression of BCL10 promoted glioma cells growth and rescued the malignant behavior in ZNF436-knockdown cells. High levels of BCL10 also result in a worse prognosis in glioma patients. Taken together, our findings identify the CREB1/ZNF436/BCL10 axis represents a novel, potential therapeutic target for glioma interventions.
Collapse
Affiliation(s)
- Yinwu Shang
- Department of Neurosurgery, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China
| | - Yuchen Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
61
|
Jia XP, Chen XZ, Lou QB, Zhou ZF, Gao L, Zhou PF. Sevoflurane regulates CARMA3 to inhibit migration and invasion of gastric cancer cells by targeting NF-κB signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:220-227. [DOI: 10.11569/wcjd.v27.i4.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sevoflurane on cell migration and invasion in gastric cancer (GC) cells, and to explore the underlying mechanism.
METHODS After SGC7901 cells were transfected with siCARMA3 (siCARMA3 group), siControl (NC group), pcDNA 3.1-CARMA3 (CARMA3 group), or pcDNA 3.1 (vector group) by liposome method, the expression of CARMA3 mRNA in cells was detected by qRT-PCR, and the protein expression of CARMA3, p-p65, and p65 was detected by Western blot.
RESULTS Compared with the control group, sevoflurane inhibited the migration and invasion of GC cells and down-regulated the expression of CARMA3. Silencing of CARMA3 inhibited the migration and invasion of GC cells, while overexpression of CARMA3 promoted the migration and invasion of GC cells. CARMA3 targeted the NF-κB pathway. Thus, sevoflurane regulated CARMA3 to inhibit migration and invasion of GC cells by targeting the NF-κB pathway.
CONCLUSION Sevoflurane could inhibit the migration and invasion of GC cells via mechanisms that may be related to the regulation of CARMA3 to target the NF-κB pathway. This finding will provide a basis for clinical treatment of GC with sevoflurane.
Collapse
Affiliation(s)
- Xiu-Ping Jia
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xiao-Zhen Chen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Qun-Bin Lou
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Zhen-Feng Zhou
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Fei Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
62
|
Zhang S, Lin X. CARMA3: Scaffold Protein Involved in NF-κB Signaling. Front Immunol 2019; 10:176. [PMID: 30814996 PMCID: PMC6381293 DOI: 10.3389/fimmu.2019.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Scaffold proteins are defined as pivotal molecules that connect upstream receptors to specific effector molecules. Caspase recruitment domain protein 10 (CARD10) gene encodes a scaffold protein CARMA3, belongs to the family of CARD and membrane-associated guanylate kinase-like protein (CARMA). During the past decade, investigating the function of CARMA3 has revealed that it forms a complex with BCL10 and MALT1 to mediate different receptors-dependent signaling, including GPCR and EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3 and its partners are also reported to be involved in antiviral innate immune response and DNA damage response. In this review, we summarize the biology of CARMA3 in multiple receptor-induced NF-κB signaling. Especially, we focus on discussing the function of CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent progress in the field.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
63
|
Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 2018; 19:118-134. [DOI: 10.1038/s41577-018-0087-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
65
|
Juilland M, Thome M. Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Front Immunol 2018; 9:1927. [PMID: 30214442 PMCID: PMC6125328 DOI: 10.3389/fimmu.2018.01927] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
The scaffold proteins CARMA1-3 (encoded by the genes CARD11, -14 and -10) and CARD9 play major roles in signaling downstream of receptors with immunoreceptor tyrosine activation motifs (ITAMs), G-protein coupled receptors (GPCR) and receptor tyrosine kinases (RTK). These receptors trigger the formation of oligomeric CARMA/CARD-BCL10-MALT1 (CBM) complexes via kinases of the PKC family. The CBM in turn regulates gene expression by the activation of NF-κB and AP-1 transcription factors and controls transcript stability. The paracaspase MALT1 is the only CBM component having an enzymatic (proteolytic) activity and has therefore recently gained attention as a potential drug target. Here we review recent advances in the understanding of the molecular function of the protease MALT1 and summarize how MALT1 scaffold and protease function contribute to the transmission of CBM signals. Finally, we will highlight how dysregulation of MALT1 function can cause pathologies such as immunodeficiency, autoimmunity, psoriasis, and cancer.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
66
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
67
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
68
|
AEBP1 promotes epithelial-mesenchymal transition of gastric cancer cells by activating the NF-κB pathway and predicts poor outcome of the patients. Sci Rep 2018; 8:11955. [PMID: 30097586 PMCID: PMC6086860 DOI: 10.1038/s41598-018-29878-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
Adipocyte enhancer binding protein 1 (AEBP1) is a transcriptional repressor that plays a critical role in regulating adipogenesis. Recent studies have indicated that AEBP1 might function as a candidate oncogene and is overexpressed in several human malignancies. However, the role of AEBP1 in gastric cancer (GC) remains largely unknown. This study aimed to investigate the expression pattern, prognostic significance and biological function of AEBP1 in human gastric cancer and to explore the underlying mechanism. We found that both the mRNA and protein levels of AEBP1 were significantly increased in human GC tissues. Elevated AEBP1 expression was significantly correlated with poor overall survival in patients with both early-stage (Tumor, Node, Metastases (TNM) TNM I and II) and late-stage (TNM III and IV) GC. Silencing AEBP1 markedly suppressed the proliferation, migration, invasion, metastasis and epithelial-mesenchymal transition of GC cells. Moreover, we demonstrated that knockdown of AEBP1 in GC cells led to inhibition of the NF-κB pathway by hampering the degradation of IκBα. Thus, AEBP1 might be served as a promising prognostic indicator and a potential therapeutic target in human GC.
Collapse
|
69
|
Gehring T, Seeholzer T, Krappmann D. BCL10 - Bridging CARDs to Immune Activation. Front Immunol 2018; 9:1539. [PMID: 30022982 PMCID: PMC6039553 DOI: 10.3389/fimmu.2018.01539] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Since the B-cell lymphoma/leukemia 10 (BCL10) protein was first described in 1999, numerous studies have elucidated its key functions in channeling adaptive and innate immune signaling downstream of CARMA/caspase-recruitment domain (CARD) scaffold proteins. While T and B cell antigen receptor (TCR/BCR) signaling induces the recruitment of BCL10 bound to mucosa-associated lymphoid tissue (MALT)1 to the lymphocyte-specific CARMA1/CARD11–BCL10–MALT1 (CBM-1) signalosome, alternative CBM complexes utilize different CARMA/CARD scaffolds in distinct innate or inflammatory pathways. BCL10 constitutes the smallest subunit in all CBM signalosomes, containing a 233 amino acid coding for N-terminal CARD as well as a C-terminal Ser/Thr-rich region. BCL10 forms filaments, thereby aggregating into higher-order clusters that mediate and amplify stimulation-induced signals, ultimately leading to MALT1 protease activation and canonical NF-κB and JNK signaling. BCL10 additionally undergoes extensive post-translational regulation involving phosphorylation, ubiquitination, MALT1-catalyzed cleavage, and degradation. Through these feedback and feed-forward events, BCL10 integrates positive and negative regulatory processes that govern the function as well as the dynamic assembly, disassembly, and destruction of CBM complexes. Thus, BCL10 is a critical regulator for activation as well as termination of immune cell signaling, revealing that its role extends far beyond that of a mere linking factor in CBM complexes.
Collapse
Affiliation(s)
- Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|