51
|
Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Front Oncol 2020; 10:396. [PMID: 32266157 PMCID: PMC7105815 DOI: 10.3389/fonc.2020.00396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neoplastic tissues are composed not only by tumor cells but also by several non-transformed stromal cells, such as cancer-associated fibroblasts, endothelial and immune cells, that actively participate to tumor progression. Starting from the very beginning of carcinogenesis, tumor cells, through the release of paracrine soluble factors and vesicles, i.e., exosomes, modify the behavior of the neighboring cells, so that they can give efficient support for cancer cell proliferation and spreading. A mandatory role in tumor progression has been recently acknowledged to metabolic deregulation. Beside undergoing a metabolic reprogramming coherent to their high proliferation rate, tumor cells also rewire the metabolic assets of their stromal cells, educating them to serve as nutrient donors. Hence, an alteration in the composition and in the flow rate of many nutrients within tumor microenvironment has been associated with malignancy progression. This review is focused on metabolic remodeling of the different cell populations within tumor microenvironment, dealing with reciprocal re-education through the symbiotic sharing of metabolites, behaving both as nutrients and as transcriptional regulators, describing their impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Excellence Center for Research, Transfer and High Education DenoTHE, University of Florence, Florence, Italy
| |
Collapse
|
52
|
Wu XM, Jin C, Gu YL, Chen WQ, Zhu MQ, Zhang S, Zhang Z. Gluconokinase IDNK Promotes Cell Proliferation and Inhibits Apoptosis in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:1767-1776. [PMID: 32161472 PMCID: PMC7049873 DOI: 10.2147/ott.s234055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the deadliest cancers globally with a poor prognosis. Breakthroughs in the treatment of HCC are urgently needed. This study explored the role of IDNK in the development and progression of HCC. Methods IDNK expression was suppressed using short hairpin (shRNA) in BEL-7404 and Huh-7 cells. The expression of IDNK in HCC cells after IDNK knockdown was evaluated by real-time quantitative RT-PCR analysis and Western blot. After IDNK silencing, the proliferation and apoptosis of HCC cells were evaluated by Celigo cell counting, flow cytometry analysis, MTT assay, and caspase3/7 assay. Gene expressions in BEL-7404 cells transfected with IDNK shRNA lentivirus plasmid and blank control plasmid were evaluated by microarray analysis. The differentially expressed genes induced by deregulation of IDNKwere identified, followed by pathway analysis. Results The expression of IDNK at the mRNA and protein levels was considerably reduced in shRNA IDNK transfected cells. Knockdown of IDNK significantly inhibited HCC cell proliferation and increased cell apoptosis. A total of 1196 genes (585 upregulated and 611 downregulated) were differentially expressed in IDNK knockdown BEL-7404 cells. The pathway of tRNA charging with Z-score = -3 was significantly inhibited in BEL-7404 cells with IDNK knockdown. Conclusion IDNK plays a key role in the proliferation and apoptosis of HCC cells. IDNK may be a candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao-Min Wu
- Department of Integrated Traditional Chinese and Western Medicine Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, People's Republic of China
| | - Yuan-Long Gu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, People's Republic of China
| | - Wu-Qiang Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, People's Republic of China
| | - Mao-Qun Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, People's Republic of China
| | - Shuo Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, People's Republic of China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese and Western Medicine Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, People's Republic of China
| |
Collapse
|
53
|
Anaraki MT, Lysak DH, Soong R, Simpson MJ, Spraul M, Bermel W, Heumann H, Gundy M, Boenisch H, Simpson AJ. NMR assignment of the in vivo daphnia magna metabolome. Analyst 2020; 145:5787-5800. [DOI: 10.1039/d0an01280g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Daphnia (freshwater fleas) are among the most widely used organisms in regulatory aquatic toxicology/ecology, while their recent listing as an NIH model organism is stimulating research for understanding human diseases and processes.
Collapse
Affiliation(s)
| | | | - Ronald Soong
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| | - Myrna J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| | | | | | | | | | | | - André J. Simpson
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| |
Collapse
|
54
|
Weiss JM. The promise and peril of targeting cell metabolism for cancer therapy. Cancer Immunol Immunother 2019; 69:255-261. [PMID: 31781842 DOI: 10.1007/s00262-019-02432-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
A major challenge of cancer immunotherapy is the potential for undesirable effects on bystander cells and tumor-associated immune cells. Fundamentally, we need to understand what effect targeting tumor metabolism has upon the metabolism and phenotype of tumor-associated leukocytes, whose function can be critical for effective cancer therapeutic strategies. Undesirable effects of cancer therapeutics are a major reason for drug-associated toxicity, which confounds drug dosing and efficacy. As with any chemotherapeutic agent, drugs targeting tumor metabolism will exert potent effects on host stromal cells and tumor-associated leukocytes. Any drug targeting glycolysis, for example, could metabolically starve tumor-infiltrating T cells, inhibit their effector function and enable tumor progression. The targeting of oxidative phosphorylation in tumors will have complex effects on the polarization and function of tumor-associated macrophages. In short, we need to improve our understanding of tumor and immune cell metabolism and devise ways to specifically target tumors without compromising necessary host metabolism. Exploiting cell-specific metabolic pathways to directly target tumor cells may minimize detrimental effects on tumor-associated leukocytes.
Collapse
Affiliation(s)
- Jonathan M Weiss
- National Cancer Institute, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
55
|
Huang L, Wang C, Xu H, Peng G. Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1873:188332. [PMID: 31751601 DOI: 10.1016/j.bbcan.2019.188332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
Abstract
An important feature shared by many cancer cells is drastically altered metabolism that is critical for rapid growth and proliferation. The distinctly reprogrammed metabolism in cancer cells makes it possible to manipulate the levels of metabolites for cancer treatment. Citrate is a key metabolite that bridges many important metabolic pathways. Recent studies indicate that manipulating the level of citrate can impact the behaviors of both cancer and immune cells, resulting in induction of cancer cell apoptosis, boosting immune responses, and enhanced cancer immunotherapy. In this review, we discuss the recent developments in this emerging area of targeting citrate in cancer treatment. Specifically, we summarize the molecular basis of altered citrate metabolism in both tumors and immune cells, explore the seemingly conflicted growth promoting and growth inhibiting roles of citrate in various tumors, discuss the use of citrate in the clinic as a novel biomarker for cancer progression and outcomes, and highlight the new development of combining citrate with other therapeutic strategies in cancer therapy. An improved understanding of complex roles of citrate in the suppressive tumor microenvironment should open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Cindy Wang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Huaxi Xu
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| |
Collapse
|
56
|
Ma C, Kuzma ML, Bai X, Yang J. Biomaterial-Based Metabolic Regulation in Regenerative Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900819. [PMID: 31592416 PMCID: PMC6774061 DOI: 10.1002/advs.201900819] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Indexed: 05/22/2023]
Abstract
Recent advances in cell metabolism studies have deepened the appreciation of the role of metabolic regulation in influencing cell behavior during differentiation, angiogenesis, and immune response in the regenerative engineering scenarios. However, the understanding of whether the intracellular metabolic pathways could be influenced by material-derived cues remains limited, although it is now well appreciated that material cues modulate cell functions. Here, an overview of how the regulation of different aspect of cell metabolism, including energy homeostasis, oxygen homeostasis, and redox homeostasis could contribute to modulation of cell function is provided. Furthermore, recent evidence demonstrating how material cues, including the release of inherent metabolic factors (e.g., ions, regulatory metabolites, and oxygen), tuning of the biochemical cues (e.g., inherent antioxidant properties, cell adhesivity, and chemical composition of nanomaterials), and changing in biophysical cues (topography and surface stiffness), may impact cell metabolism toward modulated cell behavior are discussed. Based on the resurgence of interest in cell metabolism and metabolic regulation, further development of biomaterials enabling metabolic regulation toward dictating cell function is poised to have substantial implications for regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Michelle L. Kuzma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiaochun Bai
- Academy of OrthopedicsGuangdong ProvinceProvincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510280China
- Department of Cell BiologyKey Laboratory of Mental Health of the Ministry of EducationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
57
|
Mycielska ME, Mohr MTJ, Schmidt K, Drexler K, Rümmele P, Haferkamp S, Schlitt HJ, Gaumann A, Adamski J, Geissler EK. Potential Use of Gluconate in Cancer Therapy. Front Oncol 2019; 9:522. [PMID: 31275855 PMCID: PMC6593216 DOI: 10.3389/fonc.2019.00522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
We have recently discovered that cancer cells take up extracellular citrate through plasma membrane citrate transporter (pmCiC) and advantageously use citrate for their metabolism. Citrate uptake can be blocked with gluconate and this results in decreased tumor growth and altered metabolic characteristics of tumor tissue. Interestingly, gluconate, considered to be physiologically neutral, is incidentally used in medicine as a cation carrier, but not as a therapeutically active substance. In this review we discuss the results of our recent research with available literature and suggest that gluconate may be useful in the treatment of cancer.
Collapse
Affiliation(s)
- Maria E Mycielska
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus T J Mohr
- Metempyrosis-Data Analysis in Medicine and Information Technology, Regensburg, Germany
| | - Katharina Schmidt
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Petra Rümmele
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Hans J Schlitt
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Jerzy Adamski
- Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Lehrstuhl Für Experimentelle Genetik, Technische Universität München, Munich, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
58
|
Caiazza C, D'Agostino M, Passaro F, Faicchia D, Mallardo M, Paladino S, Pierantoni GM, Tramontano D. Effects of Long-Term Citrate Treatment in the PC3 Prostate Cancer Cell Line. Int J Mol Sci 2019; 20:ijms20112613. [PMID: 31141937 PMCID: PMC6600328 DOI: 10.3390/ijms20112613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023] Open
Abstract
Acute administration of a high level of extracellular citrate displays an anti-proliferative effect on both in vitro and in vivo models. However, the long-term effect of citrate treatment has not been investigated yet. Here, we address this question in PC3 cells, a prostate-cancer-derived cell line. Acute administration of high levels of extracellular citrate impaired cell adhesion and inhibited the proliferation of PC3 cells, but surviving cells adapted to grow in the chronic presence of 20 mM citrate. Citrate-resistant PC3 cells are significantly less glycolytic than control cells. Moreover, they overexpress short-form, citrate-insensitive phosphofructokinase 1 (PFK1) together with full-length PFK1. In addition, they show traits of mesenchymal-epithelial transition: an increase in E-cadherin and a decrease in vimentin. In comparison with PC3 cells, citrate-resistant cells display morphological changes that involve both microtubule and microfilament organization. This was accompanied by changes in homeostasis and the organization of intracellular organelles. Thus, the mitochondrial network appears fragmented, the Golgi complex is scattered, and the lysosomal compartment is enlarged. Interestingly, citrate-resistant cells produce less total ROS but accumulate more mitochondrial ROS than control cells. Consistently, in citrate-resistant cells, the autophagic pathway is upregulated, possibly sustaining their survival. In conclusion, chronic administration of citrate might select resistant cells, which could jeopardize the benefits of citrate anticancer treatment.
Collapse
Affiliation(s)
- Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Deriggio Faicchia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
59
|
Bacci M, Ippolito L, Magnelli L, Giannoni E, Chiarugi P. Stromal-induced mitochondrial re-education: Impact on epithelial-to-mesenchymal transition and cancer aggressiveness. Semin Cell Dev Biol 2019; 98:71-79. [PMID: 31108187 DOI: 10.1016/j.semcdb.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
Metabolic reprogramming as well as the flexible utilisation of fuel sources by tumour cells has been considered not only intrinsic to malignant cells but also sustained by resident and/or recruited stromal cells. The complexity of tumour-stroma cross-talk is experienced by neoplastic cells through profound changes in the own metabolic machinery. In such context, mitochondria are dynamic organelles that receive, orchestrate and exchange a multiplicity of stromal cues within the tumour cells to finely regulate key metabolic and signalling pathways, allowing malignant cells to adapt and thrive in an ever-changing environment. In this review, we focus on how tumour mitochondria are coached by stromal metabolic supply and how this re-education sustains tumour malignant traits.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
60
|
Durymanov M, Permyakova A, Sene S, Guo A, Kroll C, Giménez-Marqués M, Serre C, Reineke J. Cellular Uptake, Intracellular Trafficking, and Stability of Biocompatible Metal-Organic Framework (MOF) Particles in Kupffer Cells. Mol Pharm 2019; 16:2315-2325. [DOI: 10.1021/acs.molpharmaceut.8b01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Avenue, SD-57007 Brookings, South Dakota, United States
- Moscow Institute of Physics and Technology, Institutsky per. 9, 141701, Dolgoprudny, Moscow Region, Russian Federation
| | - Anastasia Permyakova
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Avenue, SD-57007 Brookings, South Dakota, United States
| | - Saad Sene
- Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| | - Ailin Guo
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Avenue, SD-57007 Brookings, South Dakota, United States
| | - Christian Kroll
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Avenue, SD-57007 Brookings, South Dakota, United States
| | - Mónica Giménez-Marqués
- Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| | - Joshua Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Avenue, SD-57007 Brookings, South Dakota, United States
| |
Collapse
|
61
|
Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide. Int J Mol Sci 2019; 20:ijms20051061. [PMID: 30823646 PMCID: PMC6429390 DOI: 10.3390/ijms20051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
62
|
Hayek I, Fischer F, Schulze-Luehrmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner PJ, Wirtz S, Jantsch J, Lührmann A. Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional Antibacterial Effector Mechanism of Macrophages. Cell Rep 2019; 26:3502-3510.e6. [DOI: 10.1016/j.celrep.2019.02.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/16/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022] Open
|
63
|
Khatami F, Payab M, Sarvari M, Gilany K, Larijani B, Arjmand B, Tavangar SM. Oncometabolites as biomarkers in thyroid cancer: a systematic review. Cancer Manag Res 2019; 11:1829-1841. [PMID: 30881111 PMCID: PMC6395057 DOI: 10.2147/cmar.s188661] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Thyroid cancer (TC) is an important common endocrine malignancy, and its incidence has increased in the past decades. The current TC diagnosis and classification tools are fine-needle aspiration (FNA) and histological examination following thyroidectomy. The metabolite profile alterations of thyroid cells (oncometabolites) can be considered for current TC diagnosis and management protocols. METHODS This systematic review focuses on metabolite alterations within the plasma, FNA specimens, and tissue of malignant TC contrary to benign, goiter, or healthy TC samples. A systematic search of MEDLINE (PubMed), Scopus, Embase, and Web of Science databases was conducted, and the final 31 studies investigating metabolite biomarkers of TC were included. RESULTS A total of 15 targeted studies and 16 untargeted studies revealed several potential metabolite signatures of TC such as glucose, fructose, galactose, mannose, 2-keto-d-gluconic acid and rhamnose, malonic acid and inosine, cholesterol and arachidonic acid, glycosylation (immunoglobulin G [IgG] Fc-glycosylation), outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 4 (MCT4), choline, choline derivatives, myo-/scyllo-inositol, lactate, fatty acids, several amino acids, cell membrane phospholipids, estrogen metabolites such as 16 alpha-OH E1/2-OH E1 and catechol estrogens (2-OH E1), and purine and pyrimidine metabolites, which were suggested as the TC oncometabolite. CONCLUSION Citrate was suggested as the first most significant biomarker and lactate as the second one. Further research is needed to confirm these biomarkers as the TC diagnostic oncometabolite.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolomics Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Metabolomics and Genomics Research Center, Endocrinology and Metabolomics Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, Acercr, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
64
|
Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A 2018; 115:E11741-E11750. [PMID: 30478052 DOI: 10.1073/pnas.1813000115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A comprehensive understanding of the key microenvironmental signals regulating bone regeneration is pivotal for the effective design of bioinspired orthopedic materials. Here, we identified citrate as an osteopromotive factor and revealed its metabonegenic role in mediating citrate metabolism and its downstream effects on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our studies show that extracellular citrate uptake through solute carrier family 13, member 5 (SLC13a5) supports osteogenic differentiation via regulation of energy-producing metabolic pathways, leading to elevated cell energy status that fuels the high metabolic demands of hMSC osteodifferentiation. We next identified citrate and phosphoserine (PSer) as a synergistic pair in polymeric design, exhibiting concerted action not only in metabonegenic potential for orthopedic regeneration but also in facile reactivity in a fluorescent system for materials tracking and imaging. We designed a citrate/phosphoserine-based photoluminescent biodegradable polymer (BPLP-PSer), which was fabricated into BPLP-PSer/hydroxyapatite composite microparticulate scaffolds that demonstrated significant improvements in bone regeneration and tissue response in rat femoral-condyle and cranial-defect models. We believe that the present study may inspire the development of new generations of biomimetic biomaterials that better recapitulate the metabolic microenvironments of stem cells to meet the dynamic needs of cellular growth, differentiation, and maturation for use in tissue engineering.
Collapse
|
65
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
66
|
Mycielska ME, Geissler EK. Extracellular Citrate and Cancer Metabolism-Response. Cancer Res 2018; 78:5177. [PMID: 30115700 DOI: 10.1158/0008-5472.can-18-1899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Maria E Mycielska
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany.
| | - Edward K Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
67
|
Icard P, Fournel L, Alifano M, Lincet H. Extracellular Citrate and Cancer Metabolism—Letter. Cancer Res 2018; 78:5176. [DOI: 10.1158/0008-5472.can-18-1666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022]
|
68
|
James ENL, Bennett MH, Parkinson EK. The induction of the fibroblast extracellular senescence metabolome is a dynamic process. Sci Rep 2018; 8:12148. [PMID: 30108296 PMCID: PMC6092376 DOI: 10.1038/s41598-018-29809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is often associated with irreparable DNA double strand breaks (IrrDSBs) which accumulate with chronological age (IrrDSBsen). The removal of senescent cells ameliorates several age-related diseases in mice but the translation of these findings into a clinical setting would be aided by the characterisation of non-invasive biomarkers of senescent cells. Several serum metabolites are independent indicators of chronological age and some of these accumulate outside senescent fibroblasts independently of cell cycle arrest, repairable DNA breaks and cell size (the extracellular senescence metabolome, or ESM). The post-mitotic phase of senescence is dynamic, making the detection of senescent cells in vivo difficult. An unbiased metabolomic screen of the IrrDSBsen fibroblast ESM also showed differences in the times of initiation and maintenance of different metabolites but generally the ESM altered progressively over the 20 day study period unlike the reported transcriptional profiles. This more detailed analysis of IrrDSBsen identified several new ESM metabolites that are associated with chronological ageing. Targeted analysis of citrate confirmed the dynamic nature of this metabolite in two cell lines and revealed its independence from the senescence effector p16INK4A. These data will aid our understanding of metabolic signatures of ageing and their relationship to cellular senescence and IrrDSBs.
Collapse
Affiliation(s)
- Emma N L James
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Mark H Bennett
- Department of Life Science, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - E Kenneth Parkinson
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.
| |
Collapse
|
69
|
Ma C, Gerhard E, Lu D, Yang J. Citrate chemistry and biology for biomaterials design. Biomaterials 2018; 178:383-400. [PMID: 29759730 DOI: 10.1016/j.biomaterials.2018.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA.
| |
Collapse
|