51
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, To F, Jeong AD, Guntupalli SR, Behbakht K, Gibaja V, Arnoult N, Cocozaki A, Chuong EB, Bitler BG. Combining EHMT and PARP Inhibition: A Strategy to Diminish Therapy-Resistant Ovarian Cancer Tumor Growth while Stimulating Immune Activation. Mol Cancer Ther 2024; 23:OF1-OF16. [PMID: 38863225 PMCID: PMC11543919 DOI: 10.1158/1535-7163.mct-23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Francis To
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
52
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
53
|
Ceci F, Airò Farulla LS, Bonatto E, Evangelista L, Aliprandi M, Cecchi LG, Mattana F, Bertocchi A, DE Vincenzo F, Perrino M, Cordua N, Borea F, Zucali PA. New target therapies in prostate cancer: from radioligand therapy, to PARP-inhibitors and immunotherapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:101-115. [PMID: 38860274 DOI: 10.23736/s1824-4785.24.03575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prostate cancer (PCa) remains a significant global health challenge, particularly in its advanced stages. Despite progress in early detection and treatment, PCa is the second most common cancer diagnosis among men. This review aims to provide an overview of current therapeutic approaches and innovations in PCa management, focusing on the latest advancements and ongoing challenges. We conducted a narrative review of clinical trials and research studies, focusing on PARP inhibitors (PARPis), phosphoinositide 3 kinase-protein kinase B inhibitors, immunotherapy, and radioligand therapies (RLTs). Data was sourced from major clinical trial databases and peer-reviewed journals. Androgen deprivation therapy and androgen-receptor pathway inhibitors remain foundational in managing castration-sensitive and early-stage castration-resistant PCa (CRPC). PARPi's, such as olaparib and rucaparib, have emerged as vital treatments for metastatic CRPC with homologous recombination repair gene mutations, highlighting the importance of personalized medicine. Immune checkpoint inhibitors (ICIs) have shown clinical benefit limited to specific subgroups of PCa, demonstrating significant improvement in efficacy in patients with microsatellite instability/mismatch repair or cyclin-dependent kinase 12 alteration, highlighting the importance of focusing ongoing research on identifying and characterizing these subgroups to maximize the clinical benefits of ICIs. RLTs have shown effectiveness in treating mCRPC. Different alpha emitters (like [225Ac]PSMA) and beta emitters compounds (like [177Lu]PSMA) impact treatment differently due to their energy transfer characteristics. Clinical trials like VISION and TheraP have demonstrated positive outcomes with RLT, particularly [177Lu]PSMA-617, leading to FDA approval. Ongoing trials and future perspectives explore the potential of [225Ac]PSMA, aiming to improve outcomes for patients with mCRPC. The landscape of PCa treatment is evolving, with significant advancements in both established and novel therapies. The combination of hormonal therapies, chemotherapy, PARPis, immunotherapy, and RLTs, guided by genetic and molecular insights, opens new possibilities for personalized treatment.
Collapse
Affiliation(s)
- Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lighea S Airò Farulla
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy -
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Bonatto
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Aliprandi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi G Cecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Bertocchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio DE Vincenzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Perrino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
54
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
55
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
56
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
57
|
Ma J, Song J, Yi X, Zhang S, Huang L, Sun L, Gao R, Han C. Impact of Drp1-regulated changes in T cell activity on the combined antitumor effects of PARPi and PD-1 inhibitors. Int Immunopharmacol 2024; 132:112006. [PMID: 38581995 DOI: 10.1016/j.intimp.2024.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to investigate the influence of dynamin-related protein 1 (Drp1)-regulated T cells on the antitumor effects of poly (ADP-ribose) polymerase inhibitors (PARPi) combined with programmed cell death protein 1 (PD-1) inhibitors to identify potential targets for enhancing immunotherapy efficacy. We found that T cells with high expression of Drp1 promoted the inhibitory and killing effects of the PARPi and PD-1 inhibitor combination on lung cancer cells in vivo and in vitro. This synergistic mechanism involves Drp1-regulated promotion of activation, migration, and intratumor infiltration of effector T cells; inhibition of negative immunomodulatory cells in the tumor microenvironment; and suppression of PARPi-induced upregulation of PD-L1 expression in tumor cells. These findings suggest that Drp1 could serve as a new target for comprehensively improving the tumor microenvironment, enhancing immunotherapy efficacy, and reversing immunotherapy resistance.
Collapse
Affiliation(s)
- Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
58
|
Zhou Q, Tu X, Hou X, Yu J, Zhao F, Huang J, Kloeber J, Olson A, Gao M, Luo K, Zhu S, Wu Z, Zhang Y, Sun C, Zeng X, Schoolmeester KJ, Weroha JS, Hu X, Jiang Y, Wang L, Mutter RW, Lou Z. Syk-dependent homologous recombination activation promotes cancer resistance to DNA targeted therapy. Drug Resist Updat 2024; 74:101085. [PMID: 38636338 PMCID: PMC11095636 DOI: 10.1016/j.drup.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Jake Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Anna Olson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL 60657, United States
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | | | - John S Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Xiwen Hu
- Nursing Department, Rochester Community and Technical College, Rochester, MN 55904, United States
| | - Yanxia Jiang
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
59
|
Bueno MJ, Mouron S, Caleiras E, Martínez M, Manso L, Colomer R, Quintela-Fandino M. Distribution of PD-L1, TROP2 and HER2- "lowness" in early triple-negative breast cancer: an opportunity for treatment de-escalation. Clin Transl Oncol 2024; 26:1273-1279. [PMID: 37851244 PMCID: PMC11026281 DOI: 10.1007/s12094-023-03329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND HER2, TROP2 and PD-L1 are novel targets in triple-negative breast cancer (TNBC). The combined expression status of these targets, and whether they can define prognostic subgroups, is currently undefined. METHODS Immunohistochemistry was used to determine HER2, TROP2 and PD-L1 levels in 459 TNBC cases, that received in the adjuvant/neoadjuvant setting active surveillance, CMF, anthracycline-, anthracycline plus taxane-, or carboplatin-containing regimes. RESULTS HER2-low patients with PD-L1 > 1 CPS (double-positive, herein "DP") had a mean PFS of 4768 days (95% CI: 4267-5268) versus 3522 days (95% CI: 3184-3861) for non-DP patients (P = 0.002). Regarding the received adjuvant treatment, DP patients (versus non-DP) receiving anthracyclines plus taxanes exhibited a mean PFS time of 4726 (95% CI: 4022-5430) versus 3302 (95% CI: 2818-3785) days (P = 0.039). Finally, 100% of DP patients that received a carboplatin-based regimen were long-term disease-free. CONCLUSIONS Early HER2-low, PD-L1-positive TNBC patients have a very good prognosis, particularly if treated with anthracycline/taxane- or carboplatin-containing regimes.
Collapse
Affiliation(s)
- Maria Jose Bueno
- Breast Cancer Clinical Research Unit, CNIO Spanish National Cancer Research Center, Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO Spanish National Cancer Research Center, Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, CNIO Spanish National Cancer Research Center, Madrid, Spain
| | - Mario Martínez
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis Manso
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ramón Colomer
- Medical Oncology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO Spanish National Cancer Research Center, Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
60
|
Hong W, Zhang Y, Wang S, Li Z, Zheng D, Hsu S, Zhou J, Fan J, Chen Z, Xia X, Zeng Z, Gao Q, Yu M, Du S. RECQL4 Inhibits Radiation-Induced Tumor Immune Awakening via Suppressing the cGAS-STING Pathway in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308009. [PMID: 38381090 DOI: 10.1002/advs.202308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences; Institute for Biotechnology, St. John's University, Queens, New York, NY10003, USA
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| |
Collapse
|
61
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
62
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
63
|
Li X, Cai J, Zhang H, Sun S, Zhao S, Wang Z, Nie X, Xu C, Zhang Y, Xiao H. A Trisulfide Bond Containing Biodegradable Polymer Delivering Pt(IV) Prodrugs to Deplete Glutathione and Donate H 2S to Boost Chemotherapy and Antitumor Immunity. ACS NANO 2024; 18:7852-7867. [PMID: 38437513 DOI: 10.1021/acsnano.3c06194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
64
|
Murayama T, Nakayama J, Jiang X, Miyata K, Morris AD, Cai KQ, Prasad RM, Ma X, Efimov A, Belani N, Gerstein ER, Tan Y, Zhou Y, Kim W, Maruyama R, Campbell KS, Chen L, Yang Y, Balachandran S, Cañadas I. Targeting DHX9 Triggers Tumor-Intrinsic Interferon Response and Replication Stress in Small Cell Lung Cancer. Cancer Discov 2024; 14:468-491. [PMID: 38189443 PMCID: PMC10905673 DOI: 10.1158/2159-8290.cd-23-0486] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biomedical Science Graduate Program, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alexander D. Morris
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul M. Prasad
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrey Efimov
- Bio Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neel Belani
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emily R. Gerstein
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California
- Center for Novel Therapeutics, UC San Diego, La Jolla, California
- Department of Medicine, UC San Diego, La Jolla, California
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kerry S. Campbell
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lu Chen
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yibin Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
65
|
Anbil S, Reiss KA. Targeting BRCA and PALB2 in Pancreatic Cancer. Curr Treat Options Oncol 2024; 25:346-363. [PMID: 38311708 DOI: 10.1007/s11864-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
OPINION STATEMENT An important subgroup of pancreatic ductal adenocarcinomas (PDACs) harbor pathogenic variants in BRCA1, BRCA2, or PALB2. These tumors are exquisitely sensitive to platinum-based chemotherapy and patients may experience deep and durable responses to this treatment. PARP inhibitors offer potential respite from the cumulative toxicities of chemotherapy as they significantly extend progression-free survival compared to a chemotherapy holiday. Given the lack of proven survival benefit, the decision to use a maintenance PARP inhibitor rather than continue chemotherapy should be individualized. Interestingly, in both published clinical trials of maintenance PARP inhibitors, there is a striking range of interpatient benefit: Even in the platinum-sensitive setting, roughly 25% of tumors appear to be PARP inhibitor refractory (progressive disease within 2 months of starting treatment), 50% sustain moderate benefit (up to 2 years), and 25% are hyper-responsive (more than 2 years of benefit). This finding highlights the need to refine our understanding of which patients will respond to maintenance PARP inhibitors, both by being able to identify biallelic loss and by deepening our knowledge of resistance mechanisms and who develops them. Recent data supports that reversion mutations are common in PARP inhibitor refractory patients, but we have little understanding of the mechanisms that drive delayed resistance and long-term responses. Identifying which patients are more prone to certain mechanisms of resistance and tackling them with specific treatment strategies are areas of active investigation. Additionally, given that PARP inhibitors have limited overall efficacy for most patients, upfront combination strategies are an important future strategy.
Collapse
Affiliation(s)
- Sriram Anbil
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA
| | - Kim A Reiss
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA.
| |
Collapse
|
66
|
Blanc-Durand F, Pautier P, Michels J, Leary A. Targeting the immune microenvironment in ovarian cancer therapy-mission impossible? ESMO Open 2024; 9:102936. [PMID: 38492450 PMCID: PMC10955311 DOI: 10.1016/j.esmoop.2024.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Affiliation(s)
- F Blanc-Durand
- Medical Oncology Department, Gyneco-oncology unit, Institut Gustave Roussy, Villejuif; INSERM UMR981, Institut Gustave Roussy, Villejuif, France
| | - P Pautier
- Medical Oncology Department, Gyneco-oncology unit, Institut Gustave Roussy, Villejuif
| | - J Michels
- Medical Oncology Department, Gyneco-oncology unit, Institut Gustave Roussy, Villejuif
| | - A Leary
- Medical Oncology Department, Gyneco-oncology unit, Institut Gustave Roussy, Villejuif; INSERM UMR981, Institut Gustave Roussy, Villejuif, France.
| |
Collapse
|
67
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
68
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
69
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
70
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
71
|
Perez B, Aljumaily R, Marron TU, Shafique MR, Burris H, Iams WT, Chmura SJ, Luke JJ, Edenfield W, Sohal D, Liao X, Boesler C, Machl A, Seebeck J, Becker A, Guenther B, Rodriguez-Gutierrez A, Antonia SJ. Phase I study of peposertib and avelumab with or without palliative radiotherapy in patients with advanced solid tumors. ESMO Open 2024; 9:102217. [PMID: 38320431 PMCID: PMC10937199 DOI: 10.1016/j.esmoop.2023.102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024] Open
Abstract
INTRODUCTION We report results from a phase I, three-part, dose-escalation study of peposertib, a DNA-dependent protein kinase inhibitor, in combination with avelumab, an immune checkpoint inhibitor, with or without radiotherapy in patients with advanced solid tumors. MATERIALS AND METHODS Peposertib 100-400 mg twice daily (b.i.d.) or 100-250 mg once daily (q.d.) was administered in combination with avelumab 800 mg every 2 weeks in Part A or avelumab plus radiotherapy (3 Gy/fraction × 10 days) in Part B. Part FE assessed the effect of food on the pharmacokinetics of peposertib plus avelumab. The primary endpoint in Parts A and B was dose-limiting toxicity (DLT). Secondary endpoints were safety, best overall response per RECIST version 1.1, and pharmacokinetics. The recommended phase II dose (RP2D) and maximum tolerated dose (MTD) were determined in Parts A and B. RESULTS In Part A, peposertib doses administered were 100 mg (n = 4), 200 mg (n = 11), 250 mg (n = 4), 300 mg (n = 6), and 400 mg (n = 4) b.i.d. Of DLT-evaluable patients, one each had DLT at the 250-mg and 300-mg dose levels and three had DLT at the 400-mg b.i.d. dose level. In Part B, peposertib doses administered were 100 mg (n = 3), 150 mg (n = 3), 200 mg (n = 4), and 250 mg (n = 9) q.d.; no DLT was reported in evaluable patients. Peposertib 200 mg b.i.d. plus avelumab and peposertib 250 mg q.d. plus avelumab and radiotherapy were declared as the RP2D/MTD. No objective responses were observed in Part A or B; one patient had a partial response in Part FE. Peposertib exposure was generally dose proportional. CONCLUSIONS Peposertib doses up to 200 mg b.i.d. in combination with avelumab and up to 250 mg q.d. in combination with avelumab and radiotherapy were tolerable in patients with advanced solid tumors; however, antitumor activity was limited. CLINICALTRIALS GOV IDENTIFIER NCT03724890.
Collapse
Affiliation(s)
- B Perez
- Moffitt Cancer Center, Tampa
| | | | - T U Marron
- Icahn School of Medicine at Mount Sinai, New York
| | | | - H Burris
- Sarah Cannon Research Institute, Nashville
| | - W T Iams
- Vanderbilt University Medical Center, Nashville
| | | | - J J Luke
- UPMC Hillman Cancer Center, Pittsburgh
| | - W Edenfield
- Greenville Health System, Institute for Translational Oncology Research, Greenville
| | - D Sohal
- University of Cincinnati Medical Center, Cincinnati, USA
| | - X Liao
- Merck Serono Co., Ltd. (An Affiliate of Merck KGaA), Beijing, China
| | - C Boesler
- Merck Healthcare KGaA, Darmstadt, Germany
| | - A Machl
- EMD Serono Research & Development Institute, Inc. (An Affiliate of Merck KGaA), Billerica, USA
| | - J Seebeck
- Merck Healthcare KGaA, Darmstadt, Germany
| | - A Becker
- Merck Healthcare KGaA, Darmstadt, Germany
| | - B Guenther
- Merck Healthcare KGaA, Darmstadt, Germany
| | | | | |
Collapse
|
72
|
Tan Y, Song Q. Bibliometric analysis of research trends on the combination of immune checkpoint inhibitors and PARP inhibitors in solid tumors. Heliyon 2024; 10:e24452. [PMID: 38293546 PMCID: PMC10826821 DOI: 10.1016/j.heliyon.2024.e24452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) has made significant achievements in the therapeutics of various tumor types, and recently growing evidence from preclinical studies and clinical trials has indicated that poly-ADP-ribose polymerase inhibitors (PARPi) are exhibiting encouraging synergism with ICIs. The aim of our current study is to explore the development pattern of literature related to the combined therapy of ICIs and PARPi in solid tumors from a bibliometric perspective. Methods Publications concerning the combination of ICIs and PARPi in solid tumors during 2008-2022 were extracted from the WOSCC database. VOSviewer and R-bibliometrix were applied to conduct bibliometrics. Results In total, 1113 articles were finally included. The USA was the most dominant country, and University of Texas MD Anderson Cancer Center was the most fruitful institute. Andreas Schneeweiss ranked first concerning the amount of publications in this research domain, and Timothy Yap had the most citations on this theme. The analysis of keyword co-occurrence indicated that research frontiers were shifted from the biological mechanisms of cell death to the combined strategy of ICIs and PARPi in clinical trials. Conclusions Our study comprehensively examined the publications on the combination of ICIs and PARPi in solid tumors from a bibliometric perspective. The research on this topic is in its rapid growth stage, and the USA is possessing an absolutely leading position in this field by its scientific accumulations and productivity. Moreover, the research frontiers have shifted from the mechanisms of ICIs and PARPi to their combined treatment in clinical application. In summary, our results demonstrated a comprehensive overview of the knowledge atlas and a valuable reference for the future investigations in this field.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
73
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
74
|
Wei D, Liu Y, Yuan Y, Li Y, Zhao F, Qin X. Molecular map of cGAS-STING pathway-related genes in bladder cancer: the perspective toward immune microenvironment and prognosis. Aging (Albany NY) 2024; 16:1516-1535. [PMID: 38240703 PMCID: PMC10866408 DOI: 10.18632/aging.205442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The cGAS-STING pathway emerges as a pivotal innate immune pathway with the potential to profoundly influence all facets of tumor initiation and progression. The prognostic significance and immunological role of cGAS-STING pathway-related genes (CRGs) in individuals diagnosed with bladder cancer (BLCA) have not yet been fully elucidated. METHODS Performed unsupervised cluster analysis to identify distinct clusters. Utilizing LASSO and multivariate Cox regression analysis to construct a prognostic risk model. The IMvigor210, GSE13507 and GSE78220 cohorts were utilized to explore the potential value of risk score in immune therapy response and survival prediction. RESULTS A risk model was developed utilizing four CRGs in order to forecast the overall survival (OS) of BLCA patients. The risk score to be a standalone risk factor, which was further corroborated by the external validation set obtained from the GEO database (GSE13507). We established an integrated nomogram that combined risk scoring and clinical information, exhibiting commendable clinical practicality in predicting the overall survival period of BLCA patients. It is noteworthy that risk score could differentiate tumor microenvironments among different risk groups and individuals who were more responsive to immunotherapy in IMvigor210 and GSE13507 cohorts. In vitro experiments, we noted an up-regulation of IRF3 and IKBKB upon the activation of the cGAS-STING pathway. Conversely, the activation of the cGAS-STING pathway resulted in a down-regulation of POLR3G and CTNNB1. CONCLUSIONS CRG risk model shows promise as a potential stratification approach for bladder cancer patients.
Collapse
Affiliation(s)
- Dong Wei
- Department of Urology, Hebei General Hospital, Shijiazhuang 050000, China
| | - Ying Liu
- Department of Neurology, Xingtai Third Hospital, Xingtai 054000, China
| | - Ying Yuan
- Department of Neurology, Xingtai Third Hospital, Xingtai 054000, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang 050000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xuebo Qin
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang 050000, China
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
75
|
Drew Y, Kim JW, Penson RT, O'Malley DM, Parkinson C, Roxburgh P, Plummer R, Im SA, Imbimbo M, Ferguson M, Rosengarten O, Steeghs N, Kim MH, Gal-Yam E, Tsoref D, Kim JH, You B, De Jonge M, Lalisang R, Gort E, Bastian S, Meyer K, Feeney L, Baker N, Ah-See ML, Domchek SM, Banerjee S. Olaparib plus Durvalumab, with or without Bevacizumab, as Treatment in PARP Inhibitor-Naïve Platinum-Sensitive Relapsed Ovarian Cancer: A Phase II Multi-Cohort Study. Clin Cancer Res 2024; 30:50-62. [PMID: 37939124 PMCID: PMC10767301 DOI: 10.1158/1078-0432.ccr-23-2249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Early results from the phase II MEDIOLA study (NCT02734004) in germline BRCA1- and/or BRCA2-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSROC) showed promising efficacy and safety with olaparib plus durvalumab. We report efficacy and safety of olaparib plus durvalumab in an expansion cohort of women with gBRCAm PSROC (gBRCAm expansion doublet cohort) and two cohorts with non-gBRCAm PSROC, one of which also received bevacizumab (non-gBRCAm doublet and triplet cohorts). PATIENTS AND METHODS In this open-label, multicenter study, PARP inhibitor-naïve patients received olaparib plus durvalumab treatment until disease progression; the non-gBRCAm triplet cohort also received bevacizumab. Primary endpoints were objective response rate (ORR; gBRCAm expansion doublet cohort), disease control rate (DCR) at 24 weeks (non-gBRCAm cohorts), and safety (all cohorts). RESULTS The full analysis and safety analysis sets comprised 51, 32, and 31 patients in the gBRCAm expansion doublet, non-gBRCAm doublet, and non-gBRCAm triplet cohorts, respectively. ORR was 92.2% [95% confidence interval (CI), 81.1-97.8] in the gBRCAm expansion doublet cohort (primary endpoint); DCR at 24 weeks was 28.1% (90% CI, 15.5-43.9) in the non-gBRCAm doublet cohort (primary endpoint) and 74.2% (90% CI, 58.2-86.5) in the non-gBRCAm triplet cohort (primary endpoint). Grade ≥ 3 adverse events were reported in 47.1%, 65.6%, and 61.3% of patients in the gBRCAm expansion doublet, non-gBRCAm doublet, and non-gBRCAm triplet cohorts, respectively, most commonly anemia. CONCLUSIONS Olaparib plus durvalumab continued to show notable clinical activity in women with gBRCAm PSROC. Olaparib plus durvalumab with bevacizumab demonstrated encouraging clinical activity in women with non-gBRCAm PSROC. No new safety signals were identified.
Collapse
Affiliation(s)
- Yvette Drew
- Department of Medical Oncology, BC Cancer – Vancouver and University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Richard T. Penson
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - David M. O'Malley
- Division of Gynecology Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christine Parkinson
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Patricia Roxburgh
- Medical Oncology, Beatson West of Scotland Cancer Centre, and School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruth Plummer
- Translational and Clinical Research Institute, Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Martina Imbimbo
- Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michelle Ferguson
- Department of Oncology, NHS Tayside, Ninewells Hospital, Dundee, United Kingdom
| | - Ora Rosengarten
- Oncology Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Daliah Tsoref
- Rabin Medical Center-Beilinson Campus, Petach Tikva and Tel-Aviv University, Tel-Aviv, Israel
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Benoit You
- Service d'Oncologie Médicale, CITOHL, EPSLYON, Institut de Cancérologie des Hospices Civils de Lyon, IC-HCL, Université Claude Bernard Lyon 1, Lyon, France
| | - Maja De Jonge
- Department of Medical Oncology, Erasmus Medisch Centrum, Rotterdam, the Netherlands
| | - Roy Lalisang
- Division of Medical Oncology, Department of Internal Medicine, GROW – School of Oncology and Reproduction, Maastricht UMC+ Comprehensive Cancer Center, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Eelke Gort
- Department of Medical Oncology, UMC Utrecht, Utrecht, the Netherlands
| | - Sara Bastian
- Medical Oncology and Haematology, Kantonsspital Graubuenden, Chur, Switzerland
| | - Kassondra Meyer
- Late Development Oncology, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Laura Feeney
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nigel Baker
- Oncology Biometrics, AstraZeneca, Cambridge, United Kingdom
| | - Mei-Lin Ah-See
- Late-stage Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Susan M. Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
76
|
Zhu Q, Dai Q, Zhao L, Zheng C, Li Q, Yuan Z, Li L, Xie Z, Qiu Z, Huang W, Liu G, Zu X, Chu B, Jiang Y. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Cell Death Dis 2024; 15:10. [PMID: 38182579 PMCID: PMC10770036 DOI: 10.1038/s41419-023-06303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
PARP inhibitors and HDAC inhibitors have been approved for the clinical treatment of malignancies, but acquired resistance of or limited effects on solid tumors with a single agent remain as challenges. Bioinformatics analyses and a combination of experiments had demonstrated the synergistic effects of PARP and HDAC inhibitors in triple-negative breast cancer. A series of novel dual PARP and HDAC inhibitors were rationally designed and synthesized, and these molecules exhibited high enzyme inhibition activity with excellent antitumor effects in vitro and in vivo. Mechanistically, dual PARP and HDAC inhibitors induced BRCAness to restore synthetic lethality and promoted cytosolic DNA accumulation, which further activates the cGAS-STING pathway and produces proinflammatory chemokines through type I IFN-mediated JAK-STAT pathway. Moreover, these inhibitors promoted neoantigen generation, upregulated antigen presentation genes and PD-L1, and enhanced antitumor immunity when combined with immune checkpoint blockade therapy. These results indicated that novel dual PARP and HDAC inhibitors have antitumor immunomodulatory functions in triple-negative breast cancer. Novel dual PARP and HDAC inhibitors induce BRCAness to restore synthetic lethality, activating tumoral IFN signaling via the cGAS-STING pathway and inducing cytokine production, promoting neoantigen generation and presentation to enhance the immune response.
Collapse
Affiliation(s)
- Qingyun Zhu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qiuzi Dai
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Academics Working Station, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Lei Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chang Zheng
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qinyuan Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhuoye Xie
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zixuan Qiu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenjun Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guowen Liu
- Department of Breast and Thyroid Surgery, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Yuyang Jiang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
77
|
Zhang J, Yu S, Peng Q, Wang P, Fang L. Emerging mechanisms and implications of cGAS-STING signaling in cancer immunotherapy strategies. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0440. [PMID: 38172538 PMCID: PMC10875285 DOI: 10.20892/j.issn.2095-3941.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The intricate interplay between the human immune system and cancer development underscores the central role of immunotherapy in cancer treatment. Within this landscape, the innate immune system, a critical sentinel protecting against tumor incursion, is a key player. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway has been found to be a linchpin of innate immunity: activation of this signaling pathway orchestrates the production of type I interferon (IFN-α/β), thus fostering the maturation, differentiation, and mobilization of immune effectors in the tumor microenvironment. Furthermore, STING activation facilitates the release and presentation of tumor antigens, and therefore is an attractive target for cancer immunotherapy. Current strategies to activate the STING pathway, including use of pharmacological agonists, have made substantial advancements, particularly when combined with immune checkpoint inhibitors. These approaches have shown promise in preclinical and clinical settings, by enhancing patient survival rates. This review describes the evolving understanding of the cGAS-STING pathway's involvement in tumor biology and therapy. Moreover, this review explores classical and non-classical STING agonists, providing insights into their mechanisms of action and potential for optimizing immunotherapy strategies. Despite challenges and complexities, the cGAS-STING pathway, a promising avenue for enhancing cancer treatment efficacy, has the potential to revolutionize patient outcomes.
Collapse
Affiliation(s)
- Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Peng
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
78
|
Esparragosa Vazquez I, Sanson M, Chinot OL, Fontanilles M, Rivoirard R, Thomas-Maisonneuve L, Cartalat S, Tabouret E, Appay R, Bonneville-Levard A, Darlix A, Meyronet D, Barritault M, Gueyffier F, Remontet L, Maucort-Boulch D, Honnorat J, Dehais C, Ducray F. Olaparib in recurrent isocitrate dehydrogenase mutant high-grade glioma: A phase 2 multicenter study of the POLA Network. Neurooncol Adv 2024; 6:vdae078. [PMID: 38855053 PMCID: PMC11157627 DOI: 10.1093/noajnl/vdae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Background Based on preclinical studies showing that IDH-mutant (IDHm) gliomas could be vulnerable to PARP inhibition we launched a multicenter phase 2 study to test the efficacy of olaparib monotherapy in this population. Methods Adults with recurrent IDHm high-grade gliomas (HGGs) after radiotherapy and at least one line of alkylating chemotherapy were enrolled. The primary endpoint was a 6-month progression-free survival rate (PFS-6) according to response assessment in neuro-oncology criteria. Pre-defined threshold for study success was a PFS-6 of at least 50%. Results Thirty-five patients with recurrent IDHm HGGs were enrolled, 77% at ≥ 2nd recurrence. Median time since diagnosis and radiotherapy were 7.5 years and 33 months, respectively. PFS-6 was 31.4% (95% CI [16.9; 49.3%]). Two patients (6%) had an objective response and 14 patients (40%) had a stable disease as their best response. Median PFS and median overall survival were 2.05 and 15.9 months, respectively. Oligodendrogliomas (1p/19q codeleted) had a higher PFS-6 (53.4% vs. 15.7%, P = .05) than astrocytomas while an initial diagnosis of grade 4 astrocytoma tended to be associated with a lower PFS-6 compared to grade 2/3 gliomas (0% vs 31.4%, P = .16). A grade 2 or 3 treatment-related adverse event was observed in 15 patients (43%) and 5 patients (14%), respectively. No patient definitively discontinued treatment due to side effects. Conclusions Although it did not meet its primary endpoint, the present study shows that in this heavily pretreated population, olaparib monotherapy was well tolerated and resulted in some activity, supporting further PARP inhibitors evaluation in IDHm HGGs, especially in oligodendrogliomas.
Collapse
Affiliation(s)
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Olivier L Chinot
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Maxime Fontanilles
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rouen, France
- UNIROUEN, Inserm U1245, IRON group, Normandy Centre for Genomic and Personalized Medicine, Normandie university, Rouen University Hospital, Rouen, France
| | - Romain Rivoirard
- Oncology Department, CHU de Saint-Etienne, Saint Etienne, France
| | | | - Stéphanie Cartalat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Romain Appay
- Aix-Marseille University, CNRS, Inst Neurophysiopathol, Marseille, France
- Department of Pathology, AP-HM, University Hospital Timone, Marseille, France
| | | | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, Institut de Génomique Fonctionnelle, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Marc Barritault
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
- Department of Pathology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Remontet
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Delphine Maucort-Boulch
- Biostatistics-Bioinformatics Department, Public Health Unit. Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- MeLiS - UCBL-CNRS UMR 5284-INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Caroline Dehais
- Service de Neurologie 2, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
79
|
Altwerger G, Ghazarian M, Glazer PM. Harnessing the effects of hypoxia-like inhibition on homology-directed DNA repair. Semin Cancer Biol 2024; 98:11-18. [PMID: 38029867 PMCID: PMC10872265 DOI: 10.1016/j.semcancer.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is a hallmark feature of the tumor microenvironment which can promote mutagenesis and instability. This increase in mutational burden occurs as a result of the downregulation of DNA repair systems. Deficits in the DNA damage response can be exploited to induce cytotoxicity and treat advanced stage cancers. With the advent of precision medicine, agents such as Poly (ADP-ribose) polymerase (PARP) inhibitors have been used to achieve synthetic lethality in homology directed repair (HDR) deficient cancers. However, most cancers lack these predictive biomarkers. Treatment for the HDR proficient population represents an important unmet clinical need. There has been interest in the use of anti-angiogenic agents to promote tumor hypoxia and induce deficiency in a HDR proficient background. For example, the use of cediranib to inhibit PDGFR and downregulate enzymes of the HDR pathway can be used synergistically with a PARP inhibitor. This combination can improve therapeutic responses in HDR proficient cancers. Preclinical results and Phase II and III clinical trial data support the mechanistic rationale for the efficacy of these agents in combination. Future investigations should explore the effectiveness of cediranib and other anti-angiogenic agents with a PARP inhibitor to elicit an antitumor response and sensitize cancers to immunotherapy.
Collapse
Affiliation(s)
- Gary Altwerger
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Maddie Ghazarian
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
80
|
Tsai AK, Kagalwalla S, Langer J, Le-Kumar T, Le-Kumar V, Antonarakis ES. Pembrolizumab for metastatic castration-resistant prostate cancer: trials and tribulations. Expert Opin Biol Ther 2024; 24:51-62. [PMID: 38284349 DOI: 10.1080/14712598.2024.2311750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized the management of various malignancies but have only recently been evaluated systematically in prostate cancer. Pembrolizumab, a programmed-death 1 (PD-1) blocking antibody, has been utilized in a small subset of prostate cancer patients with mismatch repair deficiency/microsatellite instability, but has now been assessed in broader populations of metastatic prostate cancer patients. AREAS COVERED The results of four pembrolizumab-based phase III clinical trials for metastatic castration-resistant prostate cancer (mCRPC) and metastatic hormone-sensitive prostate cancer (mHSPC) patients, including KEYNOTE-641, KEYNOTE-921, KEYNOTE-991, and KEYLYNK-010 are summarized. Programmed death-ligand 1 (PD-L1) expression, the efficacy of pembrolizumab in prostate cancer patients with certain molecular defects, and emerging pembrolizumab-based therapeutic combinations are also reviewed. EXPERT OPINION Pembrolizumab has not benefitted unselected metastatic prostate cancer patients when combined with chemotherapy, next-generation hormonal agents (NHA), or poly(ADP-ribose) polymerase inhibitors (PARPi). PD-L1 positivity does not predict the response to pembrolizumab in this disease. A small number of responding patients can likely be explained by rare genetic and molecular defects, and more innovative combination strategies are needed to improve outcomes in prostate cancer patients who are not sensitive to pembrolizumab. Emphasis should be placed on developing additional or alternative immuno-oncology approaches beyond classical immune checkpoint inhibition.
Collapse
Affiliation(s)
- Alexander K Tsai
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sana Kagalwalla
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Jenna Langer
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Thuy Le-Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Vikas Le-Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Emmanuel S Antonarakis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
81
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
82
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
83
|
Bruyer A, Dutrieux L, de Boussac H, Martin T, Chemlal D, Robert N, Requirand G, Cartron G, Vincent L, Herbaux C, Lutzmann M, Bret C, Pasero P, Moreaux J, Ovejero S. Combined inhibition of Wee1 and Chk1 as a therapeutic strategy in multiple myeloma. Front Oncol 2023; 13:1271847. [PMID: 38125947 PMCID: PMC10730928 DOI: 10.3389/fonc.2023.1271847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an abnormal clonal proliferation of malignant plasma cells. Despite the introduction of novel agents that have significantly improved clinical outcome, most patients relapse and develop drug resistance. MM is characterized by genomic instability and a high level of replicative stress. In response to replicative and DNA damage stress, MM cells activate various DNA damage signaling pathways. In this study, we reported that high CHK1 and WEE1 expression is associated with poor outcome in independent cohorts of MM patients treated with high dose melphalan chemotherapy or anti-CD38 immunotherapy. Combined targeting of Chk1 and Wee1 demonstrates synergistic toxicities on MM cells and was associated with higher DNA double-strand break induction, as evidenced by an increased percentage of γH2AX positive cells subsequently leading to apoptosis. The therapeutic interest of Chk1/Wee1 inhibitors' combination was validated on primary MM cells of patients. The toxicity was specific of MM cells since normal bone marrow cells were not significantly affected. Using deconvolution approach, MM patients with high CHK1 expression exhibited a significant lower percentage of NK cells whereas patients with high WEE1 expression displayed a significant higher percentage of regulatory T cells in the bone marrow. These data emphasize that MM cell adaptation to replicative stress through Wee1 and Chk1 upregulation may decrease the activation of the cell-intrinsic innate immune response. Our study suggests that association of Chk1 and Wee1 inhibitors may represent a promising therapeutic approach in high-risk MM patients characterized by high CHK1 and WEE1 expression.
Collapse
Affiliation(s)
| | - Laure Dutrieux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | | | - Thibaut Martin
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Djamila Chemlal
- Diag2Tec, Montpellier, France
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Charles Herbaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Malik Lutzmann
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Caroline Bret
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sara Ovejero
- Institute of Human Genetics, UMR CNRS-UM 9002, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| |
Collapse
|
84
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
85
|
Smussi D, Mattavelli D, Paderno A, Gurizzan C, Lorini L, Romani C, Bignotti E, Grammatica A, Ravanelli M, Bossi P. Revisiting the concept of neoadjuvant and induction therapy in head and neck cancer with the advent of immunotherapy. Cancer Treat Rev 2023; 121:102644. [PMID: 37862833 DOI: 10.1016/j.ctrv.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
The treatment of locally advanced (LA) Head and Neck Squamous Cell Carcinoma (HNSCC) is based on surgery followed by (chemo)radiation or on curative (chemo)radiation, depending on site and stage. Despite optimal locoregional treatment, about 50% of patients recur, with a huge impact on prognosis and substantial morbidity. The advent of immunotherapy (IT) with immune checkpoint inhibitors (ICIs) changed the paradigm of systemic treatment for recurrent/metastatic (RM) disease, showing activity, efficacy, and safety in both platinum-resistant and platinum-naïve patients. Such data led clinicians to design clinical trials to investigate early administration of IT even in the neoadjuvant or window of opportunity setting. In this review, we examine the published and ongoing trials investigating IT in the neoadjuvant setting for LA HNSCC. We address the current challenges of this treatment modality: optimal patient selection for neoadjuvant IT; choosing the appropriate systemic approach to enhance response without compromising tolerability; determining the ideal study endpoint, with a focus on major pathological response as a potential surrogate for overall survival; evaluating treatment response through imaging, considering the discordance between radiological and pathological assessments; and the influence of neoadjuvant IT response on locoregional treatment de-escalation strategies.
Collapse
Affiliation(s)
- Davide Smussi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Davide Mattavelli
- Otorhinolaryngology - Head and Neck Surgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Alberto Paderno
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Cristina Gurizzan
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Luigi Lorini
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Chiara Romani
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eliana Bignotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alberto Grammatica
- Otorhinolaryngology - Head and Neck Surgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
86
|
Tian A, Wu T, Zhang Y, Chen J, Sha J, Xia W. Triggering pyroptosis enhances the antitumor efficacy of PARP inhibitors in prostate cancer. Cell Oncol (Dordr) 2023; 46:1855-1870. [PMID: 37610690 DOI: 10.1007/s13402-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE PARP inhibitors have revolutionized the treatment landscape for advanced prostate cancer (PCa) patients who harboring mutations in homologous recombination repair (HRR) genes. However, the molecular mechanisms underlying PARP inhibitors function beyond DNA damage repair pathways remain elusive, and identifying novel predictive targets that favorably respond to PARP inhibitors in PCa is an active area of research. METHODS The expression of GSDME in PCa cell lines and human PCa samples was determined by western blotting. Targeted bisulfite sequencing, gene enrichment analysis (GSEA), clone formation, construction of the stably transfected cell lines, lactate dehydrogenase (LDH) assay, western blotting as well as a mouse model of subcutaneous xenografts were used to investigate the role of GSDME in PCa. The combinational therapeutic effect of olaparib and decitabine was determined using both in vitro and in vivo experiments. RESULTS We have found low expression of GSDME in PCa. Interestingly, we demonstrated that GSDME activity is robustly induced in olaparib-treated cells undergoing pyroptosis, and that high methylation of the GSDME promoter dampens its activity in PCa cells. Intriguingly, genetically overexpressing GSDME does not inhibit tumor cell proliferation but instead confers sensitivity to olaparib. Furthermore, pharmacological treatment with the combination of olaparib and decitabine synergistically induces GSDME expression and cleavage through caspase-3 activation, thus promoting pyroptosis and enhancing anti-tumor response, ultimately resulting in tumor remission. CONCLUSION Our findings highlight a novel therapeutic strategy for enhancing the long-term response to olaparib beyond HRR-deficient tumors in PCa, underscoring the critical role of GSDME in regulating tumorigenesis.
Collapse
Affiliation(s)
- Ao Tian
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Tingyu Wu
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jianjun Sha
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle road, Shanghai, 200001, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
87
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
88
|
Maiorano BA, Conteduca V, Catalano M, Antonuzzo L, Maiello E, De Giorgi U, Roviello G. Personalized medicine for metastatic prostate cancer: The paradigm of PARP inhibitors. Crit Rev Oncol Hematol 2023; 192:104157. [PMID: 37863403 DOI: 10.1016/j.critrevonc.2023.104157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Despite remarkable progress in the last decade, metastatic prostate cancer (mPCa) remains incurable. The approval of PARP inhibitors (PARPis) represents a milestone in this field, which definitively enters the era of precision medicine, as mPCa is often enriched for defects of homologous recombination repair genes. PARPis are now used as single agents for patients with metastatic castration-resistant PCa. Moreover, combinations of PARPis plus androgen-receptor targeted agents and immune checkpoint inhibitors, and earlier applications of PARPis in the metastatic hormone-sensitive PCa are under evaluation, representing the possible upcoming applications of these agents. Mechanisms of sensitization and resistance have been only partially elucidated. In our review, we summarize the current clinical evidence regarding PARPis in mPCa and the future directions of these targeted agents.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Vincenza Conteduca
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Martina Catalano
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, and Medical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Evaristo Maiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
89
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Classen S, Petersen C, Borgmann K. Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Strahlenther Onkol 2023; 199:1152-1163. [PMID: 37420037 PMCID: PMC10674014 DOI: 10.1007/s00066-023-02103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE This review article is intended to provide a perspective overview of potential strategies to overcome radiation resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors. METHODS A literature search was conducted in PubMed using the terms ("DNA repair* and DNA damage response* and intracellular immune response* and immune checkpoint inhibition* and radio*") until January 31, 2023. Articles were manually selected based on their relevance to the topics analyzed. RESULTS Modern radiotherapy offers a wide range of options for tumor treatment. Radiation-resistant subpopulations of the tumor pose a particular challenge for complete cure. This is due to the enhanced activation of molecular defense mechanisms that prevent cell death because of DNA damage. Novel approaches to enhance tumor cure are provided by immune checkpoint inhibitors, but their effectiveness, especially in tumors without increased mutational burden, also remains limited. Combining inhibitors of both immune checkpoints and DNA damage response with radiation may be an attractive option to augment existing therapies and is the subject of the data summarized here. CONCLUSION The combination of tested inhibitors of DNA damage and immune responses in preclinical models opens additional attractive options for the radiosensitization of tumors and represents a promising application for future therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
91
|
Veneziani AC, Gonzalez-Ochoa E, Alqaisi H, Madariaga A, Bhat G, Rouzbahman M, Sneha S, Oza AM. Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev Clin Oncol 2023; 20:820-842. [PMID: 37783747 DOI: 10.1038/s41571-023-00819-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Ovarian carcinoma is characterized by heterogeneity at the molecular, cellular and anatomical levels, both spatially and temporally. This heterogeneity affects response to surgery and/or systemic therapy, and also facilitates inherent and acquired drug resistance. As a consequence, this tumour type is often aggressive and frequently lethal. Ovarian carcinoma is not a single disease entity and comprises various subtypes, each with distinct complex molecular landscapes that change during progression and therapy. The interactions of cancer and stromal cells within the tumour microenvironment further affects disease evolution and response to therapy. In past decades, researchers have characterized the cellular, molecular, microenvironmental and immunological heterogeneity of ovarian carcinoma. Traditional treatment approaches have considered ovarian carcinoma as a single entity. This landscape is slowly changing with the increasing appreciation of heterogeneity and the recognition that delivering ineffective therapies can delay the development of effective personalized approaches as well as potentially change the molecular and cellular characteristics of the tumour, which might lead to additional resistance to subsequent therapy. In this Review we discuss the heterogeneity of ovarian carcinoma, outline the current treatment landscape for this malignancy and highlight potentially effective therapeutic strategies in development.
Collapse
Affiliation(s)
- Ana C Veneziani
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Husam Alqaisi
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ainhoa Madariaga
- Medical Oncology Department, 12 De Octubre University Hospital, Madrid, Spain
| | - Gita Bhat
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Toronto General Hospital, Toronto, Ontario, Canada
| | - Suku Sneha
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
92
|
Elorbany S, Malacrida B, Balkwill F. Interferon epsilon and ovarian cancer. Trends Cancer 2023; 9:985-986. [PMID: 37778961 DOI: 10.1016/j.trecan.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Most biologists know of the interferons IFNα, IFNβ, and IFNγ and their roles in immunity and infection, but they may not have heard of IFNε. A recent study in Nature suggests that IFNε can act as a tumor suppressor in serous ovarian cancers.
Collapse
Affiliation(s)
- Samar Elorbany
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Beatrice Malacrida
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Frances Balkwill
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
93
|
Liang B, Zhang EH, Ye Z, Storts H, Jin W, Zheng X, Hylton H, Zaleski O, Xing X, Miles W, Wang JJ. SIX4 Controls Anti-PD-1 Efficacy by Regulating STING Expression. CANCER RESEARCH COMMUNICATIONS 2023; 3:2412-2419. [PMID: 37888903 PMCID: PMC10680432 DOI: 10.1158/2767-9764.crc-23-0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The cGAS/STING cytosolic DNA-sensing pathway plays a significant role in antitumor immunity. Expression of STING is tightly regulated and commonly reduced or defective in many types of cancer. We have identified SIX4 as a significant regulator of STING expression in colon cancer cells. We showed that knockout of SIX4 decreased STING expression at the mRNA and protein levels while ectopic expression of SIX4 increased STING expression. Depletion of SIX4 led to attenuated STING activation and downstream signaling. Reexpression of SIX4 or ectopic expression of STING in SIX4 knockout cells reversed the effect. Ectopic expression of SIX4 enhanced DMXAA and cGAMP-induced STING activation and downstream signaling. Importantly, decrease of SIX4 expression substantially decreased tumor infiltration of CD8+ T cells and reduced the efficacy of PD-1 antibodies to diminish tumor growth in immune competent mice in vivo. Finally, analysis of The Cancer Genome Atlas colon cancer dataset indicated that tumors with high SIX4 expression were significantly enriched in the Inflammatory Response pathway. SIX4 expression also correlated with expression of multiple IFN-stimulated genes, inflammatory cytokines, and CD8A. Taken together, our results implicate that SIX4 is a principal regulator of STING expression in colon cancer cells, providing an additional mechanism and genetic marker to predict effective immune checkpoint blockade therapy responses. SIGNIFICANCE Our studies demonstrate that SIX4 is an important regulator of STING expression, providing a genetic marker or a therapeutic target to predict or enhance immune checkpoint blockade therapy responses in colon cancer.
Collapse
Affiliation(s)
- Beiyuan Liang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Evan H. Zhang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Zhen Ye
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Wei Jin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Xinru Zheng
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Hannah Hylton
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Olivia Zaleski
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Xuanxuan Xing
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
94
|
Dong Q, Yu T, Chen B, Liu M, Sun X, Cao H, Liu K, Xu H, Wang Y, Zhuang S, Jin Z, Liang H, Hui Y, Gu Y. Mutant RB1 enhances therapeutic efficacy of PARPis in lung adenocarcinoma by triggering the cGAS/STING pathway. JCI Insight 2023; 8:e165268. [PMID: 37937640 PMCID: PMC10721263 DOI: 10.1172/jci.insight.165268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved for cancer therapy according to their synthetic lethal interactions, and clinical trials have been applied in non-small cell lung cancer. However, the therapeutic efficacy of PARPis in lung adenocarcinoma (LUAD) is still unknown. We explored the effect of a mutated retinoblastoma gene (RB1) on PARPi sensitivity in LUAD. Bioinformatic screening was performed to identify PARPi-sensitive biomarkers. Here, we showed that viability of LUAD cell lines with mutated RB1 was significantly decreased by PARPis (niraparib, rucaparib, and olaparib). RB1 deficiency induced genomic instability, prompted cytosolic double-stranded DNA (dsDNA) formation, activated the cGAS/STING pathway, and upregulated downstream chemokines CCL5 and CXCL10, triggering immune cell infiltration. Xenograft experiments indicated that PARPi treatment reduced tumorigenesis in RB1-KO mice. Additionally, single-cell RNA sequencing analysis showed that malignant cells with downregulated expression of RB1 had more communications with other cell types, exhibiting activation of specific signaling such as GAS, IFN response, and antigen-presenting and cytokine activities. Our findings suggest that RB1 mutation mediates the sensitivity to PARPis through a synthetic lethal effect by triggering the cGAS/STING pathway and upregulation of immune infiltration in LUAD, which may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Xiang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huiying Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Huanhuan Xu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Yuquan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zixin Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, and
| |
Collapse
|
95
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
96
|
Plas S, Pircher A, Heidegger I. Pembrolizumab in mCRPC - Combination therapies as breakthrough to success? Curr Opin Urol 2023; 33:458-471. [PMID: 37603022 DOI: 10.1097/mou.0000000000001121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICIs) have shown promising antitumor activity in various malignant diseases. This narrative review provides an update on ongoing clinical studies investigating the only FDA-approved ICI programmed death receptor 1 (PD-1) inhibitor pembrolizumab in mono- and combination therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). RECENT FINDINGS Although most clinical trials investigating pembrolizumab as mono- or combinational therapy did not meet their primary endpoints, there exist subgroups of patients that demonstrate impressive responses rates justifying further investigation of ICI in prostate cancer. Beside combination of pembrolizumab with approved mCRPC agents, innovative approaches, like combining pembrolizumab with radioligands, deoxyribonucleic acid vaccines or innovative immunotherapeutic agents (i.e., ONC-392, AMG160, BXCL701) are ongoing exerting promising preliminary findings. SUMMARY ICI monotherapy seems to be effective in a small biomarker-preselected population, however, there is evidence that especially novel ICI combination approaches can improve patient survival, which could ultimately refocus and revolutionize the treatment of mCRPC.
Collapse
Affiliation(s)
- Stefan Plas
- Medical University of Innsbruck, Department of Urology
| | - Andreas Pircher
- Medical University of Innsbruck, Department of Internal Medicine V, Hematology and Oncology Innsbruck, Austria
| | | |
Collapse
|
97
|
Randall LM, O'Malley DM, Monk BJ, Coleman RL, Gaillard S, Adams S, Duska LR, Dalton H, Holloway RW, Huang M, Chon HS, Cloven NG, ElNaggar AC, O'Cearbhaill RE, Waggoner S, Tarkar A, Striha A, Nelsen LM, Baines A, Samnotra V, Konstantinopoulos PA. Niraparib and dostarlimab for the treatment of recurrent platinum-resistant ovarian cancer: results of a Phase II study (MOONSTONE/GOG-3032). Gynecol Oncol 2023; 178:161-169. [PMID: 37890345 PMCID: PMC11185194 DOI: 10.1016/j.ygyno.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE This study assessed the efficacy, safety, and health-related quality of life (HRQoL) of the treatment regimen of dostarlimab, a programmed death-1 inhibitor, combined with niraparib, a poly (ADP-ribose) polymerase inhibitor, in patients with BRCA wild type (BRCAwt) recurrent platinum-resistant ovarian cancer (PROC) who had previously received bevacizumab treatment. METHODS This Phase II, open-label, single-arm, multicenter study, conducted in the USA, enrolled patients with recurrent PROC to receive niraparib and dostarlimab until disease progression or unacceptable toxicity (up to 3 years). A preplanned interim futility analysis was performed after the first 41 patients had undergone ≥1 radiographic evaluation (approximately 9 weeks from the first treatment). RESULTS The prespecified interim futility criterion was met and the study was therefore terminated. For the 41 patients assessed, the objective response rate (ORR) was 7.3% (95% confidence interval: 1.5-19.9); no patients achieved a complete response, 3 patients (7.3%) achieved a partial response (duration of response; 3.0, 3.8, and 9.2 months, respectively), and 9 patients (22.0%) had stable disease. In total, 39 patients (95.1%) experienced a treatment-related adverse event, but no new safety issues were observed. HRQoL, assessed using FOSI, or Functional Assessment of Cancer Therapy - Ovarian Symptom Index scores, worsened over time compared with baseline scores. CONCLUSIONS The study was terminated due to the observed ORR at the interim futility analysis. This highlights a need for effective therapies in treating patients with recurrent BRCAwt PROC.
Collapse
Affiliation(s)
- Leslie M Randall
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA.
| | - David M O'Malley
- The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, USA
| | - Bradley J Monk
- HonorHealth Research Institute, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Robert L Coleman
- Sarah Cannon Research Institute (SCRI) (GOG), Nashville, TN, USA
| | | | - Sarah Adams
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | | | | | | | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hye Sook Chon
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Roisin E O'Cearbhaill
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Park J, Kim JC, Lee M, Lee J, Kim YN, Lee YJ, Kim S, Kim SW, Park SH, Lee JY. Frequency of peripheral PD-1 +regulatory T cells is associated with treatment responses to PARP inhibitor maintenance in patients with epithelial ovarian cancer. Br J Cancer 2023; 129:1841-1851. [PMID: 37821637 PMCID: PMC10667217 DOI: 10.1038/s41416-023-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPis) are becoming the standard of care for epithelial ovarian cancer (EOC). Recently, clinical trials of triple maintenance therapy (PARPi+anti-angiogenic agent+anti-PD-1/L1) are actively ongoing. Here, we investigated the immunological effects of PARPi or triple maintenance therapy on T cells and their impact on clinical responses. METHODS We collected serial blood from EOC patients receiving PARPi therapy (cohort 1: PARPi, n = 49; cohort 2: olaparib+bevacizumab+pembrolizumab, n = 31). Peripheral T cells were analyzed using flow cytometry and compared according to the PARPi response. Progression-free survival (PFS) was assessed according to prognostic biomarkers identified in a comparative analysis. RESULTS Regulatory T cells (Tregs) were suppressed by PARPi therapy, whereas PD-1 was not significantly changed. Short PFS group exhibited a higher percentage of baseline PD-1+Tregs than long PFS group, and the patients with high percentage of PD-1+Tregs before treatment showed poor PFS in cohort 1. However, the expression of PD-1 on Tregs significantly decreased after receiving triple maintenance therapy, and the reduction in PD-1+Tregs was associated with superior PFS in cohort 2 (P = 0.0078). CONCLUSION PARPi suppresses Tregs, but does not affect PD-1 expression. Adding anti-PD-1 to PARPi decreases PD-1+Tregs, which have negative prognostic value for PARPi monotherapy.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHyang Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
99
|
Geng C, Zhang MC, Manyam GC, Vykoukal JV, Fahrmann JF, Peng S, Wu C, Park S, Kondraganti S, Wang D, Robinson BD, Loda M, Barbieri CE, Yap TA, Corn PG, Hanash S, Broom BM, Pilié PG, Thompson TC. SPOP Mutations Target STING1 Signaling in Prostate Cancer and Create Therapeutic Vulnerabilities to PARP Inhibitor-Induced Growth Suppression. Clin Cancer Res 2023; 29:4464-4478. [PMID: 37581614 PMCID: PMC11017857 DOI: 10.1158/1078-0432.ccr-23-1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNβ signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNβ signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man-Chao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shakuntala Kondraganti
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D. Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Christopher E. Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Department of Urology, Weill Cornell Medicine, New York, New York
| | - Timothy A. Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M. Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G. Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
100
|
Wang T, Liu W, Shen Q, Tao R, Li C, Shen Q, Lin Y, Huang Y, Yang L, Xie G, Bai J, Li R, Wang L, Tao K, Yin Y. Combination of PARP inhibitor and CDK4/6 inhibitor modulates cGAS/STING-dependent therapy-induced senescence and provides "one-two punch" opportunity with anti-PD-L1 therapy in colorectal cancer. Cancer Sci 2023; 114:4184-4201. [PMID: 37702298 PMCID: PMC10637067 DOI: 10.1111/cas.15961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Although PARP inhibitor (PARPi) has been proven to be a promising anticancer drug in cancer patients harboring BRCA1/2 mutation, it provides limited clinical benefit in colorectal cancer patients with a low prevalence of BRCA1/2 mutations. In our study, we found PARPi talazoparib significantly induced cellular senescence via inhibiting p53 ubiquitination and activating p21. Furthermore, CDK4/6i palbociclib amplified this therapy-induced senescence (TIS) in vitro and in vivo. Mechanistically, talazoparib and palbociclib combination induced senescence-associated secretory phenotype (SASP), and characterization of SASP components revealed type I interferon (IFN)-related mediators, which were amplified by cGAS/STING signaling. More importantly, RNA sequencing data indicated that combination therapy activated T cell signatures and combination treatment transformed the tumor microenvironment (TME) into a more antitumor state with increased CD8 T cells and natural killer (NK) cells and decreased macrophages and granulocytic myeloid-derived suppressor cells (G-MDSCs). Moreover, clearance of the TIS cells by αPD-L1 promoted survival in immunocompetent mouse colorectal cancer models. Collectively, we elucidated the synergistic antitumor and immunomodulatory mechanisms of the talazoparib-palbociclib combination. Further combination with PD-L1 antibody might be a promising "one-two punch" therapeutic strategy for colorectal cancer patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gastrointestinal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruikang Tao
- Center for Biomolecular Science and EngineeringUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qian Shen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Lin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongzhou Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lei Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lulu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of PharmacyTianjin Medical UniversityTianjinChina
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|