51
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
52
|
Hu Z, Linn N, Li Q, Zhang K, Liao J, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160157. [PMID: 36379340 DOI: 10.1016/j.scitotenv.2022.160157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu), an environmental heavy metal pollutant, has been widely researched in its toxicology. Recently, an increasing number of mitochondrial microRNAs (mitomiRs) have been shown to involve in the metabolic regulation. However, the underlying mechanisms of mitomiRs on regulating apoptosis under Cu exposure are still unclear. Here, we proved that Cu induced mitochondria-mediated apoptosis in porcine jejunal epithelial cells, concomitant with distinct reduction of mitomiR-504 in vivo and in vitro. The miR-504 mimic notably enhanced the mRNA and protein expressions of Bak1, Bax, Cleaved-caspase3 and Caspase-9, and significantly decreased the apoptosis rate and Bcl-2 mRNA and protein levels, indicating that overexpression of mitomiR-504 attenuated the Cu-induced mitochondria-mediated apoptosis. Besides, Bak1 was confirmed as a direct target of mitomiR-504 by the bioinformatics analysis and dual-luciferase reporter assay. Subsequently, transfection of siRNA targeting Bak1 significantly enhanced the alleviating effect of miR-504 mimic on the Cu-induced mitochondria-mediated apoptosis. Overall, these suggested that overexpression of mitomiR-504 alleviated the Cu-induced mitochondria-mediated apoptosis in jejunal epithelial cells by suppressing Bak1 expression. These findings are conducive to elucidating the mechanism of Cu-induced jejunal epithelial pathologies, providing a new research idea for the Cu toxicology.
Collapse
Affiliation(s)
- Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Nandar Linn
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
53
|
Nalavade R, Singh M. Intracellular Compartmentalization: A Key Determinant of MicroRNA Functions. Microrna 2023; 12:114-130. [PMID: 37638608 DOI: 10.2174/2211536612666230330184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 08/29/2023]
Abstract
Being an integral part of the eukaryotic transcriptome, miRNAs are regarded as vital regulators of diverse developmental and physiological processes. Clearly, miRNA activity is kept in check by various regulatory mechanisms that control their biogenesis and decay pathways. With the increasing technical depth of RNA profiling technologies, novel insights have unravelled the spatial diversity exhibited by miRNAs inside a cell. Compartmentalization of miRNAs adds complexity to the regulatory circuits of miRNA expression, thereby providing superior control over the miRNA function. This review provides a bird's eye view of miRNAs expressed in different subcellular locations, thus affecting the gene regulatory pathways therein. Occurrence of miRNAs in diverse intracellular locales also reveals various unconventional roles played by miRNAs in different cellular organelles and expands the scope of miRNA functions beyond their traditionally known repressive activities.
Collapse
Affiliation(s)
- Rohit Nalavade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
54
|
Sun W, Lu Y, Zhang H, Zhang J, Fang X, Wang J, Li M. Mitochondrial Non-Coding RNAs Are Potential Mediators of Mitochondrial Homeostasis. Biomolecules 2022; 12:biom12121863. [PMID: 36551291 PMCID: PMC9775270 DOI: 10.3390/biom12121863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the energy production center in cells, which regulate aerobic metabolism, calcium balance, gene expression and cell death. Their homeostasis is crucial for cell viability. Although mitochondria own a nucleus-independent and self-replicating genome, most of the proteins, which fulfill mitochondrial functions and mitochondrial quality control, are encoded by the nuclear genome and are imported into mitochondria. Hence, the regulation of mitochondrial protein expression and translocation is considered essential for mitochondrial homeostasis. By means of high-throughput RNA sequencing and bioinformatic analysis, non-coding RNAs localized in mitochondria have been generally identified. They are either generated from the mitochondrial genome or the nuclear genome. The mitochondrial non-coding RNAs can directly interact with mitochondrial DNAs or transcripts to affect gene expression. They can also bind nuclear genome-encoded mitochondrial proteins to regulate their mitochondrial import, protein level and combination. Generally, mitochondrial non-coding RNAs act as regulators for mitochondrial processes including oxidative phosphorylation and metabolism. In this review, we would like to introduce the latest research progressions regarding mitochondrial non-coding RNAs and summarize their identification, biogenesis, translocation, molecular mechanism and function.
Collapse
|
55
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
56
|
Sang L, Yang L, Ge Q, Xie S, Zhou T, Lin A. Subcellular distribution, localization, and function of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1729. [PMID: 35413151 DOI: 10.1002/wrna.1729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/06/2022]
Abstract
Eukaryotic cells contain subcellular organelles with spatiotemporal regulation to coordinate various biochemical reactions. The various organelles perform their essential biological functions by employing specific biomolecules, including nucleic acids. Recent studies have revealed that noncoding RNAs (ncRNAs) are highly compartmentalized in cells and that their spatial distribution is intimately related to their functions. Dysregulation of subcellular ncRNAs can disrupt cellular homeostasis and cause human diseases. Mitochondria are responsible for energy generation to fuel cell growth and proliferation. Therefore, identifying mitochondria-associated ncRNAs helps to reveal new regulatory mechanisms and physiological functions of mitochondria. In this review, we summarize the latest advances in subcellular ncRNAs derived from either the nuclear or mitochondrial genome. We also discuss available biological approaches for investigating organelle-specific ncRNAs. Exploring the distribution and function of subcellular ncRNAs may facilitate the understanding of endomembrane dynamics and provide potential strategies for clinical transformation. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Lingjie Sang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luojia Yang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiwei Ge
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aifu Lin
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
57
|
Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D, van Herwijnen MHM, Lundh T, Bergdahl IA, Kyrtopoulos SA, de Kok TM, Smeets HJM, Briedé JJ, Krauskopf J. Lead-exposure associated miRNAs in humans and Alzheimer's disease as potential biomarkers of the disease and disease processes. Sci Rep 2022; 12:15966. [PMID: 36153426 PMCID: PMC9509380 DOI: 10.1038/s41598-022-20305-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that eventually affects memory and behavior. The identification of biomarkers based on risk factors for AD provides insight into the disease since the exact cause of AD remains unknown. Several studies have proposed microRNAs (miRNAs) in blood as potential biomarkers for AD. Exposure to heavy metals is a potential risk factor for onset and development of AD. Blood cells of subjects that are exposed to lead detected in the circulatory system, potentially reflect molecular responses to this exposure that are similar to the response of neurons. In this study we analyzed blood cell-derived miRNAs derived from a general population as proxies of potentially AD-related mechanisms triggered by lead exposure. Subsequently, we analyzed these mechanisms in the brain tissue of AD subjects and controls. A total of four miRNAs were identified as lead exposure-associated with hsa-miR-3651, hsa-miR-150-5p and hsa-miR-664b-3p being negatively and hsa-miR-627 positively associated. In human brain derived from AD and AD control subjects all four miRNAs were detected. Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant differential expression in AD brains versus controls, in accordance with the change direction of lead exposure. The miRNAs' gene targets were validated for expression in the human brain and were found enriched in AD-relevant pathways such as axon guidance. Moreover, we identified several AD relevant transcription factors such as CREB1 associated with the identified miRNAs. These findings suggest that the identified miRNAs are involved in the development of AD and might be useful in the development of new, less invasive biomarkers for monitoring of novel therapies or of processes involved in AD development.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Julia Czuryło
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | - Ingvar A Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
58
|
Different platforms for mitomiRs in mitochondria: Emerging facets in regulation of mitochondrial functions. Mitochondrion 2022; 66:67-73. [DOI: 10.1016/j.mito.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
|
59
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
60
|
Ren L, Xu P, Yao J, Wang Z, Shi K, Han W, Wang H. Targeting the Mitochondria with Pseudo-Stealthy Nanotaxanes to Impair Mitochondrial Biogenesis for Effective Cancer Treatment. ACS NANO 2022; 16:10242-10259. [PMID: 35820199 DOI: 10.1021/acsnano.1c08008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.
Collapse
Affiliation(s)
- Lulu Ren
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Peirong Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jie Yao
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zihan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kewei Shi
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hangxiang Wang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
| |
Collapse
|
61
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
62
|
McCollum CR, Courtney CM, O’Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022; 8:3087-3106. [PMID: 35729709 PMCID: PMC9236218 DOI: 10.1021/acsbiomaterials.2c00510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The devastating effects of the coronavirus disease 2019 (COVID-19) pandemic have made clear a global necessity for antiviral strategies. Most fatalities associated with infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) result at least partially from uncontrolled host immune response. Here, we use an antisense compound targeting a previously identified microRNA (miRNA) linked to severe cases of COVID-19. The compound binds specifically to the miRNA in question, miR-2392, which is produced by human cells in several disease states. The safety and biodistribution of this compound were tested in a mouse model via intranasal, intraperitoneal, and intravenous administration. The compound did not cause any toxic responses in mice based on measured parameters, including body weight, serum biomarkers for inflammation, and organ histopathology. No immunogenicity from the compound was observed with any administration route. Intranasal administration resulted in excellent and rapid biodistribution to the lungs, the main site of infection for SARS-CoV-2. Pharmacokinetic and biodistribution studies reveal delivery to different organs, including lungs, liver, kidneys, and spleen. The compound was largely cleared through the kidneys and excreted via the urine, with no accumulation observed in first-pass organs. The compound is concluded to be a safe potential antiviral treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen R. McCollum
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
| | - Nolan J. O’Connor
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Yuchen Ding
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department of Microbiology, New York
University Langone, New York, New York 10016, United
States
| | - Keegan L. Rogers
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Jared M. Brown
- Department of Pharmaceutical Sciences,
University of Colorado Anschutz Medical Campus, Aurora,
Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering,
University of Colorado Boulder, 3415 Colorado Avenue,
Boulder, Colorado 80303, United States
- Sachi Bioworks, Inc., 685 S
Arthur Ave Unit 5, Colorado Technology Center, Louisville, Colorado 80027, United
States
- Antimicrobial Regeneration
Consortium, Boulder, Colorado 80301, United
States
| |
Collapse
|
63
|
Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun 2022; 13:3882. [PMID: 35794100 PMCID: PMC9259736 DOI: 10.1038/s41467-022-31417-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMitochondrial dynamics can regulate Major Histocompatibility Complex (MHC)-I antigen expression by cancer cells and their immunogenicity in mice and in patients with malignancies. A crucial role in the mitochondrial fragmentation connection with immunogenicity is played by the IRE1α-XBP-1s axis. XBP-1s is a transcription factor for aminopeptidase TPP2, which inhibits MHC-I complex cell surface expression likely by degrading tumor antigen peptides. Mitochondrial fission inhibition with Mdivi-1 upregulates MHC-I expression on cancer cells and enhances the efficacy of adoptive T cell therapy in patient-derived tumor models. Therefore mitochondrial fission inhibition might provide an approach to enhance the efficacy of T cell-based immunotherapy.
Collapse
|
64
|
Rad SMAH, Halpin JC, Tawinwung S, Suppipat K, Hirankarn N, McLellan AD. MicroRNA‐mediated metabolic reprogramming of chimeric antigen receptor T cells. Immunol Cell Biol 2022; 100:424-439. [PMID: 35507473 PMCID: PMC9322280 DOI: 10.1111/imcb.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Seyed Mohammad Ali Hosseini Rad
- Department of Microbiology and Immunology School of Biomedical Science University of Otago Dunedin Otago New Zealand
- Center of Excellence in Immunology and Immune‐mediated Diseases Chulalongkorn University Bangkok Thailand
- Department of Microbiology Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Joshua Colin Halpin
- Department of Microbiology and Immunology School of Biomedical Science University of Otago Dunedin Otago New Zealand
| | - Supannikar Tawinwung
- Center of Excellence in Immunology and Immune‐mediated Diseases Chulalongkorn University Bangkok Thailand
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University Bangkok Thailand
| | - Koramit Suppipat
- Center of Excellence in Immunology and Immune‐mediated Diseases Chulalongkorn University Bangkok Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune‐mediated Diseases Chulalongkorn University Bangkok Thailand
- Department of Microbiology Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Alexander D McLellan
- Department of Microbiology and Immunology School of Biomedical Science University of Otago Dunedin Otago New Zealand
| |
Collapse
|
65
|
Kuthethur R, Shukla V, Mallya S, Adiga D, Kabekkodu SP, Ramachandra L, Saxena PUP, Satyamoorthy K, Chakrabarty S. Expression analysis and function of mitochondrial genome-encoded microRNAs. J Cell Sci 2022; 135:jcs258937. [PMID: 35297485 DOI: 10.1242/jcs.258937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) play a significant role in nuclear and mitochondrial anterograde and retrograde signaling. Most of the miRNAs found inside mitochondria are encoded in the nuclear genome, with a few mitochondrial genome-encoded non-coding RNAs having been reported. In this study, we have identified 13 mitochondrial genome-encoded microRNAs (mitomiRs), which were differentially expressed in breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231), non-malignant breast epithelial cell line (MCF-10A), and normal and breast cancer tissue specimens. We found that mitochondrial DNA (mtDNA) depletion and inhibition of mitochondrial transcription led to reduced expression of mitomiRs in breast cancer cells. MitomiRs physically interacted with Ago2, an RNA-induced silencing complex (RISC) protein, in the cytoplasm and inside mitochondria. MitomiRs regulate the expression of both nuclear and mitochondrial transcripts in breast cancer cells. We showed that mitomiR-5 targets the PPARGC1A gene and regulates mtDNA copy number in breast cancer cells. MitomiRs identified in the present study may be a promising tool for expression and functional analysis in patients with a defective mitochondrial phenotype, including cancer and metabolic syndromes. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Lingadakai Ramachandra
- Department of Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P U Prakash Saxena
- Department of Radiation Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, Karnataka, 575001, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
66
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Kidane YH, Priebe W, Emmett MR, Meller R, Singh U, Bram Y, tenOever BR, Heise MT, Moorman NJ, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baxter VK, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, Wallace DC. TARGETED DOWN REGULATION OF CORE MITOCHONDRIAL GENES DURING SARS-COV-2 INFECTION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.19.481089. [PMID: 35233572 PMCID: PMC8887073 DOI: 10.1101/2022.02.19.481089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Joseph M. Dybas
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Hossein Fazelinia
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Man S. Kim
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
- Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | | | - Yuanchao Zhang
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Yentli Soto Albrecht
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | | | - Alessia Angelin
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Larry N. Singh
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Scott L. Weiss
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Sonja M. Best
- COVID-19 International Research Team
- Rocky Mountain Laboratories NIAID, Hamilton, MT 59840
| | - Marie T. Lott
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Henry Cope
- University of Nottingham, Nottingham, UK
| | - Viktorija Zaksas
- COVID-19 International Research Team
- University of Chicago, Chicago, IL, 60615, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team
- Logyx, LLC, Mountain View, CA 94043, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
| | | | | | - Yared H. Kidane
- COVID-19 International Research Team
- Scottish Rite for Children, Dallas, TX 75219, USA
| | - Waldemar Priebe
- COVID-19 International Research Team
- University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark R. Emmett
- COVID-19 International Research Team
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Meller
- COVID-19 International Research Team
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Urminder Singh
- COVID-19 International Research Team
- Iowa State University, Ames, IA 50011, USA
| | | | | | - Mark T. Heise
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Emily A. Madden
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Wes A. Sanders
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Stephen B. Baylin
- COVID-19 International Research Team
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team
- Iowa State University, Ames, IA 50011, USA
| | | | - Deanne Taylor
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Christopher E. Mason
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
- New York Genome Center, NY, USA
| | - Jonathan C. Schisler
- COVID-19 International Research Team
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert E. Schwartz
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
| | - Afshin Beheshti
- COVID-19 International Research Team
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- KBR, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Douglas C. Wallace
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
- University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
67
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
68
|
Lin YH, Lim SN, Chen CY, Chi HC, Yeh CT, Lin WR. Functional Role of Mitochondrial DNA in Cancer Progression. Int J Mol Sci 2022; 23:1659. [PMID: 35163579 PMCID: PMC8915179 DOI: 10.3390/ijms23031659] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been identified as a significant genetic biomarker in disease, cancer and evolution. Mitochondria function as modulators for regulating cellular metabolism. In the clinic, mtDNA variations (mutations/single nucleotide polymorphisms) and dysregulation of mitochondria-encoded genes are associated with survival outcomes among cancer patients. On the other hand, nuclear-encoded genes have been found to regulate mitochondria-encoded gene expression, in turn regulating mitochondrial homeostasis. These observations suggest that the crosstalk between the nuclear genome and mitochondrial genome is important for cellular function. Therefore, this review summarizes the significant mechanisms and functional roles of mtDNA variations (DNA level) and mtDNA-encoded genes (RNA and protein levels) in cancers and discusses new mechanisms of crosstalk between mtDNA and the nuclear genome.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
69
|
Liao J, Li Q, Hu Z, Yu W, Zhang K, Ma F, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126899. [PMID: 34418838 DOI: 10.1016/j.jhazmat.2021.126899] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), a hazardous heavy metal, can lead to toxic effects on host physiology. Recently, specific mitochondria-localized miRNAs (mitomiRs) were shown to modulate mitochondrial function, but the underlying mechanisms remain undefined. Here, we identified mitomiR-1285 as an important molecule regulating mitochondrial dysfunction and mitophagy in jejunal epithelial cells under Cu exposure. Mitochondrial dysfunction and mitophagy were the important mechanisms of Cu-induced pathological damage in jejunal epithelial cells, which were accompanied by significant increase of mitomiR-1285 in vivo and in vitro. Knockdown of mitomiR-1285 significantly attenuated Cu-induced mitochondrial respiratory dysfunction, ATP deficiency, mitochondrial membrane potential reduction, mitochondrial reactive oxygen species accumulation, and mitophagy. Subsequently, bioinformatics analysis and luciferase reporter assay demonstrated that IDH2 was a direct target of mitomiR-1285. RNA interference of IDH2 dramatically reversed the effect that mitomiR-1285 knockdown relieved mitochondrial dysfunction and mitophagy induced by Cu, and the opposite effect was shown by overexpression of IDH2. Therefore, our results suggested that mitomiR-1285 aggravated Cu-induced mitochondrial dysfunction and mitophagy via suppressing IDH2 expression. These findings identified the important mechanistic connection between mitomiRs and mitochondrial metabolism under Cu exposure, providing a new insight into Cu toxicology.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
70
|
Xia M, Zu X, Chen Z, Wen G, Zhong J. Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. Cancer Lett 2021; 523:100-110. [PMID: 34601022 DOI: 10.1016/j.canlet.2021.09.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype among breast cancers with high recurrence and this condition is partly due to chemoresistance. Therefore, fully understanding the mechanism of TNBC-resistance is the key to overcoming chemoresistance, which will be an effective strategy for TNBC therapy. Various potential mechanisms involved in the chemoresistance of TNBC have been investigated and indicated that noncoding RNAs (ncRNAs) especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) take part in most TNBC resistance. The ncRNA-induced chemoresistance process is involved in the alteration of many activities. here, we mainly summarize the mechanisms of ncRNAs in the chemoresistance of TNBC and discuss the potential clinical application of ncRNAs in the treatment of TNBC, indicating that targeting ncRNAs might be a promising strategy for resensitization to chemotherapies.
Collapse
Affiliation(s)
- Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Zuyao Chen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
71
|
Sueta A, Fujiki Y, Goto-Yamaguchi L, Tomiguchi M, Yamamoto-Ibusuki M, Iwase H, Yamamoto Y. Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment. Oncol Lett 2021; 22:819. [PMID: 34671433 PMCID: PMC8503811 DOI: 10.3892/ol.2021.13080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressive clinicopathological features and is associated with a poor prognosis. Identifying patients that are non-responsive to chemotherapy remains a critical goal for effective personalized therapies. In the present study, the predictive value of exosomal microRNAs (miRNAs) was investigated in patients with TNBC. Exosomes were isolated from patients with TNBC undergoing neoadjuvant chemotherapy. Microarray-based miRNA profiles were compared between patients with pathological complete response (pCR; n=12) and non-pCR (n=12). Furthermore, the miRNA profiles of non-pCR patients with breast cancer recurrence were compared with those with no recurrence. A total of 16 differentially expressed exosomal miRNAs were identified between the patients with pCR and non-pCR by microarray analysis. Of these, a combined signature of four miRNAs (miR-4448, miR-2392, miR-2467-3p and miR-4800-3p) could be used to discriminate between pCR and non-pCR patients with TNBC with an area under the curve value of 0.7652. Furthermore, this study found 43 differentially expressed miRNAs between the patients with non-pCR and recurrence and non-pCR patients without recurrence. In network analysis, 'pathway in cancer', 'focal adhesion' and 'cell cycle' were identified as the crucial pathways in patients with non-pCR who also developed recurrence. Several exosomal miRNAs may be useful biomarkers to predict treatment efficacy for TNBC. The present study identified patients who were resistant to standard chemotherapy and therefore more likely to develop breast cancer recurrence.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Yoshitaka Fujiki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Lisa Goto-Yamaguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Mai Tomiguchi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| | - Hirotaka Iwase
- Department of Breast Surgery, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860-8556, Japan
| |
Collapse
|
72
|
Sharma P, Sharma V, Ahluwalia TS, Dogra N, Kumar S, Singh S. Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4. Cancer Cell Int 2021; 21:629. [PMID: 34838007 PMCID: PMC8627041 DOI: 10.1186/s12935-021-02339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNA (miRNA) that translocate from the nucleus to mitochondria are referred to as mitochondrial microRNA (mitomiR). Albeit mitomiRs have been shown to modulate gene expression, their functional impact within mitochondria is unknown. The main objective of this study is to investigate whether the mitochondrial genome is regulated by miR present inside the mitochondria. METHODS AND RESULTS Here, we report mitomiR let-7a regulates mitochondrial transcription in breast cancer cells and reprogram the metabolism accordingly. These effects were mediated through the interaction of let-7a with mtDNA, as studied by RNA pull-down assays, altering the activity of Complex I in a cell line-specific manner. Our study, for the first time, identifies the role of mitomiR (let-7a) in regulating the mitochondrial genome by transcriptional repression and its contribution to regulating mitochondrial metabolism of breast cancer cells. CONCLUSION These findings uncover a novel mechanism by which mitomiR regulates mitochondrial transcription.
Collapse
Affiliation(s)
- Praveen Sharma
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vibhuti Sharma
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Nilambra Dogra
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Sandeep Singh
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
73
|
Rencelj A, Gvozdenovic N, Cemazar M. MitomiRs: their roles in mitochondria and importance in cancer cell metabolism. Radiol Oncol 2021; 55:379-392. [PMID: 34821131 PMCID: PMC8647792 DOI: 10.2478/raon-2021-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in almost all biological pathways. They regulate post-transcriptional gene expression by binding to the 3'untranslated region (3'UTR) of messenger RNAs (mRNAs). MitomiRs are miRNAs of nuclear or mitochondrial origin that are localized in mitochondria and have a crucial role in regulation of mitochondrial function and metabolism. In eukaryotes, mitochondria are the major sites of oxidative metabolism of sugars, lipids, amino acids, and other bio-macromolecules. They are also the main sites of adenosine triphosphate (ATP) production. CONCLUSIONS In the review, we discuss the role of mitomiRs in mitochondria and introduce currently well studied mitomiRs, their target genes and functions. We also discuss their role in cancer initiation and progression through the regulation of mRNA expression in mitochondria. MitomiRs directly target key molecules such as transporters or enzymes in cell metabolism and regulate several oncogenic signaling pathways. They also play an important role in the Warburg effect, which is vital for cancer cells to maintain their proliferative potential. In addition, we discuss how they indirectly upregulate hexokinase 2 (HK2), an enzyme involved in glucose phosphorylation, and thus may affect energy metabolism in breast cancer cells. In tumor tissues such as breast cancer and head and neck tumors, the expression of one of the mitomiRs (miR-210) correlates with hypoxia gene signatures, suggesting a direct link between mitomiR expression and hypoxia in cancer. The miR-17/92 cluster has been shown to act as a key factor in metabolic reprogramming of tumors by regulating glycolytic and mitochondrial metabolism. This cluster is deregulated in B-cell lymphomas, B-cell chronic lymphocytic leukemia, acute myeloid leukemia, and T-cell lymphomas, and is particularly overexpressed in several other cancers. Based on the current knowledge, we can conclude that there is a large number of miRNAs present in mitochondria, termed mitomiR, and that they are important regulators of mitochondrial function. Therefore, mitomiRs are important players in the metabolism of cancer cells, which need to be further investigated in order to develop a potential new therapies for cancer.
Collapse
Affiliation(s)
- Andrej Rencelj
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nada Gvozdenovic
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
74
|
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler JC, Mason CE, Chatterjee A, Meller R, Beheshti A. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep 2021; 37:109839. [PMID: 34624208 PMCID: PMC8481092 DOI: 10.1016/j.celrep.2021.109839] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
Collapse
Affiliation(s)
- J Tyson McDonald
- COVID-19 International Research Team; Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Francisco J Enguita
- COVID-19 International Research Team; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Deanne Taylor
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Griffin
- COVID-19 International Research Team; University of Arkansas for Medical Sciences, Little Rock, AK 72211, USA
| | - Waldemar Priebe
- COVID-19 International Research Team; University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark R Emmett
- COVID-19 International Research Team; University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Anthony D Harris
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean Clement
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph M Dybas
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Joseph W Guarnieri
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N Singh
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter Grabham
- COVID-19 International Research Team; Columbia University, New York, NY 10032, USA
| | - Stephen B Baylin
- COVID-19 International Research Team; Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Aliza Yousey
- COVID-19 International Research Team; Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | - Peter M Corry
- COVID-19 International Research Team; University of Arkansas for Medical Sciences, Little Rock, AK 72211, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team; Logyx LLC, Mountain View, CA 94043, USA; NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Sadhana Sharma
- University of Colorado Boulder, Boulder, CO 80303, USA; Sachi Bioworks Inc., Boulder, CO 80301, USA
| | - Prashant Nagpal
- Sachi Bioworks Inc., Boulder, CO 80301, USA; Antimicrobial Regeneration Consortium, Boulder Labs, Boulder, CO 80301, USA; Quantum Biology Inc., Boulder, CO 80301, USA
| | - Cem Meydan
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | - Bianca Cerqueira
- COVID-19 International Research Team; KBR Space & Science, San Antonio, TX 78235, USA; United States Air Force School of Aerospace Medicine, Lackland AFB, San Antonio, TX 78236, USA
| | - Viktorija Zaksas
- COVID-19 International Research Team; University of Chicago, Chicago, IL 60615, USA
| | - Urminder Singh
- COVID-19 International Research Team; Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team; Iowa State University, Ames, IA 50011, USA
| | | | | | - Diego Galeano
- COVID-19 International Research Team; Fundação Getulio Vargas, Rio de Janeiro, Brazil; National University of Asuncion, San Lorenzo, Central, Paraguay
| | - Alberto Paccanaro
- COVID-19 International Research Team; Fundação Getulio Vargas, Rio de Janeiro, Brazil; University of London, Egham Hill, Egham, UK
| | - Suzanne L Meinig
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert S Hagan
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie M Bowman
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Selin Altinok
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | - Douglas C Wallace
- COVID-19 International Research Team; The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan C Schisler
- COVID-19 International Research Team; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher E Mason
- COVID-19 International Research Team; Weill Cornell Medicine, New York, NY 10065, USA; New York Genome Center, New York, NY, USA
| | - Anushree Chatterjee
- COVID-19 International Research Team; University of Colorado Boulder, Boulder, CO 80303, USA; Sachi Bioworks Inc., Boulder, CO 80301, USA; Antimicrobial Regeneration Consortium, Boulder Labs, Boulder, CO 80301, USA
| | - Robert Meller
- COVID-19 International Research Team; Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Afshin Beheshti
- COVID-19 International Research Team; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
75
|
Wu K, Mao YY, Chen Q, Zhang B, Zhang S, Wu HJ, Li Y. Hypoxia-induced ROS promotes mitochondrial fission and cisplatin chemosensitivity via HIF-1α/Mff regulation in head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2021; 44:1167-1181. [PMID: 34460078 DOI: 10.1007/s13402-021-00629-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Chemotherapy based on cisplatin (CDDP) has been established as the treatment of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironmental alterations through a dynamic balance between mitochondrial fission and fusion. HNSCCs are known to exhibit hypoxic conditions, yet the respective effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain to be resolved. METHODS The effect of hypoxia on the chemosensitivity of HNCC cells was determined by flow cytometry. Mitochondrial fission factor (Mff) expression was assessed by RT-PCR and Western blotting in hypoxic HNSCC cells, and further verified in primary CDDP-sensitive and CDDP-resistant HSNCC samples. The biological function of Mff was evaluated by loss of function and gain of function analyses, both in vitro and in vivo. RESULTS We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was found to be correlated with chemosensitivity in primary clinical samples under hypoxic conditions. Hypoxia-inducible factor 1α (HIF-1α) was found to markedly increase Mff transcription and to directly bind to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1α in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1α expression, Mff expression and mitochondrial fission. Moreover, Mff knockdown led to suppression of hypoxia-induced mitochondrial fission and to decreased CDDP chemosensitivity in vivo and in vitro. CONCLUSIONS Our findings indicate that hypoxia-induced release of ROS can promote mitochondrial fission and CDDP chemosensitivity via HIF1α/Mff regulation in HNSCC cells, indicating that Mff may serve as a biomarker to predict neoadjuvant chemosensitivity in HNSCC patients and as a target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Kun Wu
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China
| | - Yuan-Yuan Mao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chen
- Department of Stomatology Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bolin Zhang
- Department of Stomatology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Zhang
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China.
| | - Han-Jiang Wu
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China.
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Songjia Road, Shanghai, 200025, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
76
|
Giordani C, Silvestrini A, Giuliani A, Olivieri F, Rippo MR. MicroRNAs as Factors in Bidirectional Crosstalk Between Mitochondria and the Nucleus During Cellular Senescence. Front Physiol 2021; 12:734976. [PMID: 34566699 PMCID: PMC8458936 DOI: 10.3389/fphys.2021.734976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are essential organelles that generate most of the chemical energy to power the cell through ATP production, thus regulating cell homeostasis. Although mitochondria have their own independent genome, most of the mitochondrial proteins are encoded by nuclear genes. An extensive bidirectional communication network between mitochondria and the nucleus has been discovered, thus making them semi-autonomous organelles. The nucleus-to-mitochondria signaling pathway, called Anterograde Signaling Pathway can be deduced, since the majority of mitochondrial proteins are encoded in the nucleus, less is known about the opposite pathway, the so-called mitochondria-to-nucleus retrograde signaling pathway. Several studies have demonstrated that non-coding RNAs are essential "messengers" of this communication between the nucleus and the mitochondria and that they might have a central role in the coordination of important mitochondrial biological processes. In particular, the finding of numerous miRNAs in mitochondria, also known as mitomiRs, enabled insights into their role in mitochondrial gene transcription. MitomiRs could act as important mediators of this complex crosstalk between the nucleus and the mitochondria. Mitochondrial homeostasis is critical for the physiological processes of the cell. Disruption at any stage in their metabolism, dynamics and bioenergetics could lead to the production of considerable amounts of reactive oxygen species and increased mitochondrial permeability, which are among the hallmarks of cellular senescence. Extensive changes in mitomiR expression and distribution have been demonstrated in senescent cells, those could possibly lead to an alteration in mitochondrial homeostasis. Here, we discuss the emerging putative roles of mitomiRs in the bidirectional communication pathways between mitochondria and the nucleus, with a focus on the senescence-associated mitomiRs.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
77
|
Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22189692. [PMID: 34575852 PMCID: PMC8470532 DOI: 10.3390/ijms22189692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with poor prognosis. Only about 15-20% of patients diagnosed with pancreatic cancer can undergo surgical resection, while the remaining 80% are diagnosed with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). In these cases, chemotherapy and radiotherapy only confer marginal survival benefit. Recent progress has been made in understanding the pathobiology of pancreatic cancer, with a particular effort in discovering new diagnostic and prognostic biomarkers, novel therapeutic targets, and biomarkers that can predict response to chemo- and/or radiotherapy. Mitochondria have become a focus in pancreatic cancer research due to their roles as powerhouses of the cell, important subcellular biosynthetic factories, and crucial determinants of cell survival and response to chemotherapy. Changes in the mitochondrial genome (mtDNA) have been implicated in chemoresistance and metastatic progression in some cancer types. There is also growing evidence that changes in microRNAs that regulate the expression of mtDNA-encoded mitochondrial proteins (mitomiRs) or nuclear-encoded mitochondrial proteins (mitochondria-related miRs) could serve as diagnostic and prognostic cancer biomarkers. This review discusses the current knowledge on the clinical significance of changes of mtDNA, mitomiRs, and mitochondria-related miRs in pancreatic cancer and their potential role as predictors of cancer risk, as diagnostic and prognostic biomarkers, and as molecular targets for personalized cancer therapy.
Collapse
|
78
|
McDonald JT, Enguita FJ, Taylor D, Griffin RJ, Priebe W, Emmett MR, Sajadi MM, Harris AD, Clement J, Dybas JM, Aykin-Burns N, Guarnieri JW, Singh LN, Grabham P, Baylin SB, Yousey A, Pearson AN, Corry PM, Saravia-Butler A, Aunins TR, Sharma S, Nagpal P, Meydan C, Foox J, Mozsary C, Cerqueira B, Zaksas V, Singh U, Wurtele ES, Costes SV, Davanzo GG, Galeano D, Paccanaro A, Meinig SL, Hagan RS, Bowman NM, Wolfgang MC, Altinok S, Sapoval N, Treangen TJ, Moraes-Vieira PM, Vanderburg C, Wallace DC, Schisler J, Mason CE, Chatterjee A, Meller R, Beheshti A. The Great Deceiver: miR-2392's Hidden Role in Driving SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33948587 DOI: 10.1101/2021.04.23.441024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.
Collapse
|
79
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
80
|
Liu X, Shan G. Mitochondria Encoded Non-coding RNAs in Cell Physiology. Front Cell Dev Biol 2021; 9:713729. [PMID: 34395442 PMCID: PMC8362354 DOI: 10.3389/fcell.2021.713729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are the powerhouses of mammalian cells, which participate in series of metabolic processes and cellular events. Mitochondria have their own genomes, and it is generally acknowledged that human mitochondrial genome encodes 13 proteins, 2 rRNAs and 22 tRNAs. However, the complexity of mitochondria derived transcripts is just starting to be envisaged. Currently, there are at least 8 lncRNAs, some dsRNAs, various small RNAs, and hundreds of circRNAs known to be generated from mitochondrial genome. These non-coding RNAs either translocate into cytosol/nucleus or reside in mitochondria to play various biological functions. Here we present an overview of regulatory non-coding RNAs encoded by the mammalian mitochondria genome. For overall understandings of non-coding RNAs in mitochondrial function, a brief summarization of nuclear-encoded non-coding RNAs in mitochondria is also included. We discuss about roles of these non-coding RNAs in cellular physiology and the communication between mitochondria and the nucleus.
Collapse
Affiliation(s)
- Xu Liu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Ge Shan
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
81
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
82
|
Li J, Kong D, Gao X, Tian Z, Wang X, Guo Q, Wang Z, Zhang Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol Cell Endocrinol 2021; 530:111280. [PMID: 33862186 DOI: 10.1016/j.mce.2021.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
The elevated thyroid-stimulating hormone (TSH) levels contribute to the abnormal expression/activity of several key hepatic lipid metabolism enzymes. Although miRNAs have been shown to play key roles in hepatic lipid metabolism and are found in isolated mitochondria, very little is known about the pathological and physiological significance of their mitochondrial distributions in regulating liver lipid metabolism. Here, we found that TSH significantly reduced the distribution of some miRNAs in mitochondria of hepatocytes, especially miR-449a, miR-449b-5p, and miR-5194. These three miRNAs inhibited their target genes PGC1B, ABCD1, ADIPOR1 and the downstream molecule PPARA. These effects synergistically suppressed fatty acid (FA) β-oxidation in mitochondria and peroxisomes and decreased the translocation of cytosolic very long chain fatty acids to peroxisomes, which noticeably reduced FA catabolism and promoted triglyceride accumulation in hepatocytes. This study reveals the functional significance of changed miRNA mitochondrial-cytoplasmic distribution in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Danxia Kong
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Xueying Gao
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China
| | - Zhenyu Tian
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Qianqian Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhe Wang
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China.
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
83
|
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol 2021; 18:2168-2182. [PMID: 34110970 DOI: 10.1080/15476286.2021.1935572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial noncoding RNAs (mt-ncRNAs) include noncoding RNAs inside the mitochondria that are transcribed from the mitochondrial genome or nuclear genome, and noncoding RNAs transcribed from the mitochondrial genome that are transported to the cytosol or nucleus. Recent findings have revealed that mt-ncRNAs play important roles in not only mitochondrial functions, but also other cellular activities. This review proposes a classification of mt-ncRNAs and outlines the emerging understanding of mitochondrial circular RNAs (mt-circRNAs), mitochondrial microRNAs (mitomiRs), and mitochondrial long noncoding RNAs (mt-lncRNAs), with an emphasis on their identification and functions.
Collapse
Affiliation(s)
- Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shicheng Su
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
84
|
Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes (Basel) 2021; 12:genes12060856. [PMID: 34199614 PMCID: PMC8226975 DOI: 10.3390/genes12060856] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.
Collapse
|
85
|
Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs Regulating Mitochondrial Function in Cardiac Diseases. Front Pharmacol 2021; 12:663322. [PMID: 34122082 PMCID: PMC8194257 DOI: 10.3389/fphar.2021.663322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are the key organelles that supply cellular energy. As the most active organ in the body, the energy required to maintain the mechanical function of the heart requires a high quantity of high-quality mitochondria in cardiomyocytes. MicroRNAs (miRNAs) are single-stranded noncoding RNAs, approximately 22 nt in length, which play key roles in mediating post-transcriptional gene silencing. Numerous studies have confirmed that miRNAs can participate in the occurrence and development of cardiac diseases by regulating mitochondrial function-related genes and signaling pathways. Therefore, elucidating the crosstalk that occurs between miRNAs and mitochondria is important for the prevention and treatment of cardiac diseases. In this review, we discuss the biogenesis of miRNAs, the miRNA-mediated regulation of major genes involved in the maintenance of mitochondrial function, and the effects of miRNAs on mitochondrial function in cardiac diseases in order to provide a theoretical basis for the clinical prevention and treatment of cardiac disease and the development of new drugs.
Collapse
Affiliation(s)
- Guang-Qiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Sheng-Quan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling-Yun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yi-Ni Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| |
Collapse
|
86
|
Meseguer S. MicroRNAs and tRNA-Derived Small Fragments: Key Messengers in Nuclear-Mitochondrial Communication. Front Mol Biosci 2021; 8:643575. [PMID: 34026824 PMCID: PMC8138316 DOI: 10.3389/fmolb.2021.643575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
87
|
Lei X, Ou Z, Yang Z, Zhong J, Zhu Y, Tian J, Wu J, Deng H, Lin X, Peng Y, Li B, He L, Tu Z, Chen W, Li Q, Liu N, Zhang H, Wang Z, Fang Z, Yamada T, Lv X, Tian T, Pan G, Wu F, Xiao L, Zhang L, Cai T, Wang X, Tannous BA, Li J, Kontos F, Ferrone S, Fan S. A Pan-Histone Deacetylase Inhibitor Enhances the Antitumor Activity of B7-H3-Specific CAR T Cells in Solid Tumors. Clin Cancer Res 2021; 27:3757-3771. [PMID: 33811153 DOI: 10.1158/1078-0432.ccr-20-2487] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The limited efficacy of chimeric antigen receptor (CAR) T-cell therapies with solid malignancies prompted us to test whether epigenetic therapy could enhance the antitumor activity of B7-H3.CAR T cells with several solid cancer types. EXPERIMENTAL DESIGN We evaluated B7-H3 expression in many human solid cancer and normal tissue samples. The efficacy of the combinatorial therapy with B7-H3.CAR T cells and the deacetylase inhibitor SAHA with several solid cancer types and the potential underlying mechanisms were characterized with in vitro and ex vivo experiments. RESULTS B7-H3 is expressed in most of the human solid tumor samples tested, but exhibits a restricted expression in normal tissues. B7-H3.CAR T cells selectively killed B7-H3 expressing human cancer cell lines in vitro. A low dose of SAHA upregulated B7-H3 expression in several types of solid cancer cells at the transcriptional level and B7-H3.CAR expression on human transgenic T-cell membrane. In contrast, the expression of immunosuppressive molecules, such as CTLA-4 and TET2, by T cells was downregulated upon SAHA treatment. A low dose of SAHA significantly enhanced the antitumor activity of B7-H3.CAR T cells with solid cancers in vitro and ex vivo, including orthotopic patient-derived xenograft and metastatic models treated with autologous CAR T-cell infusions. CONCLUSIONS Our results show that our novel strategy which combines SAHA and B7-H3.CAR T cells enhances their therapeutic efficacy with solid cancers and justify its translation to a clinical setting.
Collapse
Affiliation(s)
- Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China.,State University of New York at Stony Brook, Stony Brook, New York
| | - Zhanpeng Ou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zhaohui Yang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianglong Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiannan Wu
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heran Deng
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Bowen Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lile He
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhiming Tu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weixiong Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qunxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Niu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Hanqing Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zhangsong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Zezhen Fang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Teppei Yamada
- Department of Gastroenterological Surgery, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Xiaobin Lv
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, the Third Affiliated Hospital, Nanchang University, Nanchang, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guokai Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Xiao
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Tingting Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China. .,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
88
|
Zakirova EG, Vyatkin YV, Verechshagina NA, Muzyka VV, Mazunin IO, Orishchenko KE. Study of the effect of the introduction of mitochondrial import determinants into the gRNA structure on the activity of the gRNA/SpCas9 complex in vitro. Vavilovskii Zhurnal Genet Selektsii 2021; 24:512-518. [PMID: 33659835 PMCID: PMC7716540 DOI: 10.18699/vj20.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It has long been known that defects in the structure of the mitochondrial genome can cause various neuromuscular
and neurodegenerative diseases. Nevertheless, at present there is no effective method for treating mitochondrial
diseases. The major problem with the treatment of such diseases is associated with mitochondrial DNA
(mtDNA) heteroplasmy. It means that due to a high copy number of the mitochondrial genome, mutant copies of
mtDNA coexist with wild-type molecules in the same organelle. The clinical symptoms of mitochondrial diseases and
the degree of their manifestation directly depend on the number of mutant mtDNA molecules in the cell. The possible
way to reduce adverse effects of the mutation is by shifting the level of heteroplasmy towards the wild-type
mtDNA molecules. Using this idea, several gene therapeutic approaches based on TALE and ZF nucleases have been
developed
for this purpose. However, the construction of protein domains of such systems is rather long and laborious
process. Meanwhile, the CRISPR/Cas9 system is fundamentally different from protein systems in that it is easy to use,
highly efficiency and has a different mechanism of action. All the characteristics and capabilities of the CRISPR/Cas9
system make it a promising tool in mitochondrial genetic engineering. In this article, we demonstrate for the first time
that the modification of gRNA by integration of specific mitochondrial import determinants in the gRNA scaffold does
not affect the activity of the gRNA/Cas9 complex in vitro.
Collapse
Affiliation(s)
- E G Zakirova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | - V V Muzyka
- Novosibirsk State University, Novosibirsk, Russia
| | - I O Mazunin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - K E Orishchenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
89
|
Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021; 10:497. [PMID: 33669111 PMCID: PMC7996512 DOI: 10.3390/cells10030497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line chemotherapies for patients with unresectable pancreatic cancer (PC) are 5-fluorouracil (5-FU) and gemcitabine therapy. However, due to chemoresistance the prognosis of patients with PC has not been significantly improved. Mitochondria are essential organelles in eukaryotes that evolved from aerobic bacteria. In recent years, many studies have shown that mitochondria play important roles in tumorigenesis and may act as chemotherapeutic targets in PC. In addition, according to recent studies, mitochondria may play important roles in the chemoresistance of PC by affecting apoptosis, metabolism, mtDNA metabolism, and mitochondrial dynamics. Interfering with some of these factors in mitochondria may improve the sensitivity of PC cells to chemotherapeutic agents, such as gemcitabine, making mitochondria promising targets for overcoming chemoresistance in PC.
Collapse
Affiliation(s)
- Yibo Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Francesca Ricciardiello
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Lei You
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
90
|
Purohit PK, Saini N. Mitochondrial microRNA (MitomiRs) in cancer and complex mitochondrial diseases: current status and future perspectives. Cell Mol Life Sci 2021; 78:1405-1421. [PMID: 33084945 PMCID: PMC11072739 DOI: 10.1007/s00018-020-03670-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are not only important for cellular bioenergetics but also lie at the heart of critical metabolic pathways. They can rapidly adjust themselves in response to changing conditions and the metabolic needs of the cell. Mitochondrial involvement as well as its dysfunction has been found to be associated with variety of pathological processes and diseases. mitomiRs are class of miRNA(s) that regulate mitochondrial gene expression and function. This review sheds light on the role of mitomiRs in regulating different biological processes-mitochondrial dynamics, oxidative stress, cell metabolism, chemoresistance, apoptosis,and their relevance in metabolic diseases, neurodegenerative disorders, and cancer. Insilico analysis of predicted targets of mitomiRs targeting energy metabolism identified several significantly altered pathways (needs in vivo validations) that may provide a new therapeutic approach for the treatment of human diseases. Last part of the review discusses about the clinical aspects of miRNA(s) and mitomiRs in Medicine.
Collapse
Affiliation(s)
- Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
91
|
Chen CY, Lee DS, Choong OK, Chang SK, Hsu T, Nicholson MW, Liu LW, Lin PJ, Ruan SC, Lin SW, Hu CY, Hsieh PCH. Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy. Sci Rep 2021; 11:2377. [PMID: 33504864 PMCID: PMC7840921 DOI: 10.1038/s41598-021-81700-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
MicroRNA-125b, the first microRNA to be identified, is known to promote cardiomyocyte maturation from embryonic stem cells; however, its physiological role remains unclear. To investigate the role of miR-125b in cardiovascular biology, cardiac-specific miR-125b-1 knockout mice were generated. We found that cardiac-specific miR-125b-1 knockout mice displayed half the miR-125b expression of control mice resulting in a 60% perinatal death rate. However, the surviving mice developed hearts with cardiac hypertrophy. The cardiomyocytes in both neonatal and adult mice displayed abnormal mitochondrial morphology. In the deficient neonatal hearts, there was an increase in mitochondrial DNA, but total ATP production was reduced. In addition, both the respiratory complex proteins in mitochondria and mitochondrial transcription machinery were impaired. Mechanistically, using transcriptome and proteome analysis, we found that many proteins involved in fatty acid metabolism were significantly downregulated in miR-125b knockout mice which resulted in reduced fatty acid metabolism. Importantly, many of these proteins are expressed in the mitochondria. We conclude that miR-125b deficiency causes a high mortality rate in neonates and cardiac hypertrophy in adult mice. The dysregulation of fatty acid metabolism may be responsible for the cardiac defect in the miR-125b deficient mice.
Collapse
Affiliation(s)
- Chen-Yun Chen
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan ,grid.37589.300000 0004 0532 3167Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 320 Taiwan
| | - Desy S. Lee
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Oi Kuan Choong
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Sheng-Kai Chang
- grid.19188.390000 0004 0546 0241Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Tien Hsu
- grid.37589.300000 0004 0532 3167Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 320 Taiwan
| | - Martin W. Nicholson
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Li-Wei Liu
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Po-Ju Lin
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Shu-Chian Ruan
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Shu-Wha Lin
- grid.19188.390000 0004 0546 0241Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Chung-Yi Hu
- grid.19188.390000 0004 0546 0241Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Patrick C. H. Hsieh
- grid.19188.390000 0004 0546 0241Cardiovascular Division, Institute of Biomedical Science, Academia Sinica, National Taiwan University College of Medicine, 128 Academia Road, Sec. 2, Nankang, Taipei, 115 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100 Taiwan
| |
Collapse
|
92
|
Colella M, Cuomo D, Peluso T, Falanga I, Mallardo M, De Felice M, Ambrosino C. Ovarian Aging: Role of Pituitary-Ovarian Axis Hormones and ncRNAs in Regulating Ovarian Mitochondrial Activity. Front Endocrinol (Lausanne) 2021; 12:791071. [PMID: 34975760 PMCID: PMC8716494 DOI: 10.3389/fendo.2021.791071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
The number of mitochondria in the oocyte along with their functions (e.g., energy production, scavenger activity) decline with age progression. Such multifaceted functions support several processes during oocyte maturation, ranging from energy supply to synthesis of the steroid hormones. Hence, it is hardly surprising that their impairment has been reported in both physiological and premature ovarian aging, wherein they are crucial players in the apoptotic processes that arise in aged ovaries. In any form, ovarian aging implies the progressive damage of the mitochondrial structure and activities as regards to ovarian germ and somatic cells. The imbalance in the circulating hormones and peptides (e.g., gonadotropins, estrogens, AMH, activins, and inhibins), active along the pituitary-ovarian axis, represents the biochemical sign of ovarian aging. Despite the progress accomplished in determining the key role of the mitochondria in preserving ovarian follicular number and health, their modulation by the hormonal signalling pathways involved in ovarian aging has been poorly and randomly explored. Yet characterizing this mechanism is pivotal to molecularly define the implication of mitochondrial dysfunction in physiological and premature ovarian aging, respectively. However, it is fairly difficult considering that the pathways associated with ovarian aging might affect mitochondria directly or by altering the activity, stability and localization of proteins controlling mitochondrial dynamics and functions, either unbalancing other cellular mediators, released by the mitochondria, such as non-coding RNAs (ncRNAs). We will focus on the mitochondrial ncRNAs (i.e., mitomiRs and mtlncRNAs), that retranslocate from the mitochondria to the nucleus, as active players in aging and describe their role in the nuclear-mitochondrial crosstalk and its modulation by the pituitary-ovarian hormone dependent pathways. In this review, we will illustrate mitochondria as targets of the signaling pathways dependent on hormones and peptides active along the pituitary/ovarian axis and as transducers, with a particular focus on the molecules retrieved in the mitochondria, mainly ncRNAs. Given their regulatory function in cellular activities we propose them as potential diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
| | - Teresa Peluso
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Falanga
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
- Istituto per l’ endocrinologia e l’oncologia “Gaetano Salvatore” (IEOS)-Centro Nazionale delle Ricerche (CNR), Naples, Italy
- *Correspondence: Concetta Ambrosino,
| |
Collapse
|
93
|
Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. BIOLOGY 2020; 9:biology9120486. [PMID: 33371511 PMCID: PMC7767490 DOI: 10.3390/biology9120486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.
Collapse
Affiliation(s)
- Sílvia C. Rodrigues
- Exogenus Therapeutics, 3060-197 Cantanhede, Portugal;
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Filipe V. Duarte
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
94
|
Lai Y, Huang H, Abudoureyimu M, Lin X, Tian C, Wang T, Chu X, Wang R. Non-coding RNAs: emerging regulators of glucose metabolism in hepatocellular carcinoma. Am J Cancer Res 2020; 10:4066-4084. [PMID: 33414986 PMCID: PMC7783776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023] Open
Abstract
Reprogramming of metabolism is one of the hallmarks of cancer, among which glucose metabolism dysfunction is the most prominent feature. The glucose metabolism of tumor cells is significantly different from that of normal cells. Glucose metabolism reprogramming of hepatocellular carcinoma (HCC) has become an important research hotspot in the field of HCC, a variety of tumor metabolic interventions have been applied clinically. Moreover, various Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding (lncRNAs) as well as circular RNAs (circRNAs), have recently been proved to play potential roles in glucose metabolism. This review summarizes the effects of ncRNAs on HCC that participate in glucose metabolism and discuss the related mechanisms to find potential and effective targeted treatments for HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
| | - Hairong Huang
- Department of Cardiothoracic Surgery, Jinling HospitalNanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing, China
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing UniversityNanjing, China
| |
Collapse
|
95
|
Leung JY, Chia K, Ong DST, Taneja R. Interweaving Tumor Heterogeneity into the Cancer Epigenetic/Metabolic Axis. Antioxid Redox Signal 2020; 33:946-965. [PMID: 31841357 DOI: 10.1089/ars.2019.7942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: The epigenomic/metabolic landscape in cancer has been studied extensively in the past decade and forms the basis of various drug targets. Yet, cancer treatment remains a challenge, with clinical trials exhibiting limited efficacy and high relapse rates. Patients respond differently to therapy, which is fundamentally attributed to tumor heterogeneity, both across and within tumors. This review focuses on the interactions between the heterogeneous tumor microenvironment (TME) and the epigenomic/metabolic axis in cancer, as well as the emerging technologies under development to aid heterogeneity studies. Recent Advances: Interlinks between epigenetics and metabolism in cancer have been reported. Emerging studies have unveiled interactions between the TME and cancer cells that play a critical role in regulating epigenetics and reprogramming cancer metabolism, suggesting a three-way cross talk. Critical Issues: This cross talk accentuates the multiplex nature of cancer, and the importance of considering tumor heterogeneity in various epigenomic/metabolic cancer studies. Future Directions: With the advancement in single-cell profiling, it may be possible to identify cancer subclones and their unique vulnerabilities to develop a multimodal therapy. Drugs targeting the TME are currently being studied, and a better understanding of the TME in regulating cancer epigenetics and metabolism may hold the key to identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kimberly Chia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
96
|
Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:218-239. [PMID: 33251334 PMCID: PMC7666327 DOI: 10.1016/j.omto.2020.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Collapse
|
97
|
Sarshar M, Scribano D, Ambrosi C, Palamara AT, Masotti A. Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions. Cancers (Basel) 2020; 12:E2174. [PMID: 32764361 PMCID: PMC7463924 DOI: 10.3390/cancers12082174] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, short non-coding microRNAs (miRNAs), including circulating and fecal miRNAs have emerged as important modulators of various cellular processes by regulating the expression of target genes. Recent studies revealed the role of miRNAs as powerful biomarkers in disease diagnosis and for the development of innovative therapeutic applications in several human conditions, including intestinal diseases. In this review, we explored the literature and summarized the role of identified dysregulated fecal miRNAs in intestinal diseases, with particular focus on colorectal cancer (CRC) and celiac disease (CD). The aim of this review is to highlight one fascinating aspect of fecal miRNA function related to gut microbiota shaping and bacterial metabolism influencing. The role of miRNAs as "messenger" molecules for inter kingdom communications will be analyzed to highlight their role in the complex host-bacteria interactions. Moreover, whether fecal miRNAs could open up new perspectives to develop novel suitable biomarkers for disease detection and innovative therapeutic approaches to restore microbiota balance will be discussed.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy;
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| |
Collapse
|
98
|
Zhang S, Wang Y, Wang Y, Peng J, Yuan C, Zhou L, Xu S, Lin Y, Du Y, Yang F, Zhang J, Dai H, Yin W, Lu J. Serum miR-222-3p as a Double-Edged Sword in Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity for HER2-Positive Breast Cancer Patients Receiving Neoadjuvant Target Therapy. Front Oncol 2020; 10:631. [PMID: 32426280 PMCID: PMC7212359 DOI: 10.3389/fonc.2020.00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background: We aimed to explore whether the expression of serum miR-222-3p might contribute to early prediction of therapeutic response, clinical outcomes, and adverse events for HER2-positive breast cancer patients receiving neoadjuvant therapy (NAT). Methods: A total of 65 HER2-positive breast cancer patients receiving NAT were analyzed. The concentration of serum miR-222-3p was detected by quantitative real-time PCR. Logistic regression analysis was used to identify the association of serum miR-222-3p with pathological complete response (pCR). The relationship of serum miR-222-3p with disease-free survival (DFS) and overall survival (OS) was examined via log-rank test and Cox proportional hazards analysis. The ordered logistic regression was applied to evaluate the association between serum miR-222-3p and adverse events. Results: The miR-222-3p low group was more likely to achieve pCR [odds ratio (OR) = 0.258, P = 0.043]. The interaction between miR-222-3p and presenting Ki67 level was also detected for pCR (OR = 49.230, Pinteraction = 0.025). The miR-222-3p low group was correlated with superior DFS (P = 0.029) and OS (P = 0.0037). The expression of serum miR-222-3p was the independent protective factor for trastuzumab-induced cardiotoxicity (P < 0.05) and anemia (P = 0.013). Conclusions: Serum miR-222-3p is the potential factor to predict pCR, survival benefit and trastuzumab-induced cardiotoxicity for HER2-positive breast cancer patients receiving NAT.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
99
|
Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2415324. [PMID: 32411322 PMCID: PMC7204110 DOI: 10.1155/2020/2415324] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to an imbalance between reactive oxygen species (ROS) generation and body's capability to detoxify the reactive mediators or to fix the relating damage. MicroRNAs are considered to be important mediators that play essential roles in the regulation of diverse aspects of carcinogenesis. Growing studies have demonstrated that the ROS can regulate microRNA biogenesis and expression mainly through modulating biogenesis course, transcription factors, and epigenetic changes. On the other hand, microRNAs may in turn modulate the redox signaling pathways, altering their integrity, stability, and functionality, thus contributing to the pathogenesis of multiple diseases. Both ROS and microRNAs have been identified to be important regulators and potential therapeutic targets in cancers. However, the information about the interplay between oxidative stress and microRNA regulation is still limited. The present review is aimed at summarizing the current understanding of molecular crosstalk between microRNAs and the generation of ROS in the pathogenesis of cancer.
Collapse
|
100
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|