51
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
52
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
53
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
54
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
55
|
Li Z, Ma R, Tang H, Guo J, Shah Z, Zhang J, Liu N, Cao S, Marcucci G, Artis D, Caligiuri MA, Yu J. Therapeutic application of human type 2 innate lymphoid cells via induction of granzyme B-mediated tumor cell death. Cell 2024; 187:624-641.e23. [PMID: 38211590 PMCID: PMC11442011 DOI: 10.1016/j.cell.2023.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.
Collapse
Affiliation(s)
- Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Rui Ma
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Hejun Tang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiamin Guo
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| | - Zahir Shah
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Ningyuan Liu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shuai Cao
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematologic Malignancies Research Institute, Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
56
|
Kowalczyk A, Zarychta J, Marszołek A, Zawitkowska J, Lejman M. Chimeric Antigen Receptor T Cell and Chimeric Antigen Receptor NK Cell Therapy in Pediatric and Adult High-Grade Glioma-Recent Advances. Cancers (Basel) 2024; 16:623. [PMID: 38339374 PMCID: PMC10854514 DOI: 10.3390/cancers16030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
High-grade gliomas (HGG) account for approximately 10% of central nervous system (CNS) tumors in children and 25% of CNS tumors in adults. Despite their rare occurrence, HGG are a significant clinical problem. The standard therapeutic procedure in both pediatric and adult patients with HGG is the surgical resection of the tumor combined with chemotherapy and radiotherapy. Despite intensive treatment, the 5-year overall survival in pediatric patients is below 20-30%. This rate is even lower for the most common HGG in adults (glioblastoma), at less than 5%. It is, therefore, essential to search for new therapeutic methods that can extend the survival rate. One of the therapeutic options is the use of immune cells (T lymphocytes/natural killer (NK) cells) expressing a chimeric antigen receptor (CAR). The objective of the following review is to present the latest results of preclinical and clinical studies evaluating the efficacy of CAR-T and CAR-NK cells in HGG therapy.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
57
|
Pawlowski KD, Duffy JT, Gottschalk S, Balyasnikova IV. Cytokine Modification of Adoptive Chimeric Antigen Receptor Immunotherapy for Glioblastoma. Cancers (Basel) 2023; 15:5852. [PMID: 38136398 PMCID: PMC10741789 DOI: 10.3390/cancers15245852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chimeric antigen receptor (CAR) cell-based therapies have demonstrated limited success in solid tumors, including glioblastoma (GBM). GBMs exhibit high heterogeneity and create an immunosuppressive tumor microenvironment (TME). In addition, other challenges exist for CAR therapy, including trafficking and infiltration into the tumor site, proliferation, persistence of CARs once in the tumor, and reduced functionality, such as suboptimal cytokine production. Cytokine modification is of interest, as one can enhance therapy efficacy and minimize off-target toxicity by directly combining CAR therapy with cytokines, antibodies, or oncolytic viruses that alter cytokine response pathways. Alternatively, one can genetically modify CAR T-cells or CAR NK-cells to secrete cytokines or express cytokines or cytokine receptors. Finally, CARs can be genetically altered to augment or suppress intracellular cytokine signaling pathways for a more direct approach. Codelivery of cytokines with CARs is the most straightforward method, but it has associated toxicity. Alternatively, combining CAR therapy with antibodies (e.g., anti-IL-6, anti-PD1, and anti-VEGF) or oncolytic viruses has enhanced CAR cell infiltration into GBM tumors and provided proinflammatory signals to the TME. CAR T- or NK-cells secreting cytokines (e.g., IL-12, IL-15, and IL-18) have shown improved efficacy within multiple GBM subtypes. Likewise, expressing cytokine-modulating receptors in CAR cells that promote or inhibit cytokine signaling has enhanced their activity. Finally, gene editing approaches are actively being pursued to directly influence immune signaling pathways in CAR cells. In this review, we summarize these cytokine modification methods and highlight any existing gaps in the hope of catalyzing an improved generation of CAR-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Kristen D. Pawlowski
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Joseph T. Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
58
|
Dagher OK, Posey AD. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat Immunol 2023; 24:1994-2007. [PMID: 38012406 DOI: 10.1038/s41590-023-01659-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023]
Abstract
The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.
Collapse
Affiliation(s)
- Oula K Dagher
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Liu W, Zhao Y, Liu Z, Zhang G, Wu H, Zheng X, Tang X, Chen Z. Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK. Cell Oncol (Dordr) 2023; 46:1747-1762. [PMID: 37420122 DOI: 10.1007/s13402-023-00842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
PURPOSE High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM. METHODS iNSCs cells expressing HSV-TK (iNSCsTK) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCsTK and the combinational therapeutics of iNSCsTK and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments. RESULTS PBMC-derived iNSCsTK possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCsTK/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCsTK/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice. CONCLUSIONS PBMC-derived iNSCsTK showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCsTK therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.
Collapse
Affiliation(s)
- Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yu Zhao
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Zhongfeng Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Guangji Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Huantong Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xihe Tang
- Neurosurgery Center of Aeronautical General Hospital, Beijing, 100012, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- , Beijing, China.
| |
Collapse
|
60
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
61
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
62
|
Li L, Li Z, Meng X, Wang X, Song D, Liu Y, Xu T, Qin J, Sun N, Tian K, Zhong J, Yu D, Song Y, Hou T, Jiang C, Chen Q, Cai J. Histone lactylation-derived LINC01127 promotes the self-renewal of glioblastoma stem cells via the cis-regulating the MAP4K4 to activate JNK pathway. Cancer Lett 2023; 579:216467. [PMID: 38084701 DOI: 10.1016/j.canlet.2023.216467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Gliomas are the most prevalent and aggressive brain tumors, exhibiting high proliferation, abnormal glycolysis, and poor prognosis. LncRNAs act as regulatory molecules and play crucial roles in the malignant behaviors of GBM cells, including cell self-renewal. However, the regulatory mechanisms involved are largely unknown. In this study, we performed bioinformatics analysis to explore NF-κB pathway-related lncRNAs. ECAR and qRT-PCR were used to measure the relationship between glycolytic activity and lncRNA expression. Assays such as RIP-PCR and ChIP-PCR were employed to reveal the regulatory mechanisms of the lncRNA. Neurosphere formation and limiting dilution assays were performed to evaluate the self-renewal capacity of GBM cells. In our study, we identified an NF-κB pathway-related lncRNA named LINC01127 in GBM, which was found to be associated with poor progression of GBM. Functionally, the NF-κB pathway promoted warburg effect, which, in turn, induced the lactylation of H3 histone and increased the expression of LINC01127. Consequently, this enhancement of LINC01127 expression led to the promotion of self-renewal in GBM cells. Furthermore, LINC01127 regulated MAP4K4 expression in cis by directly guiding POLR2A to the MAP4K4 promoter regions, thereby leading to JNK pathway activation, and ultimately modulating the self-renewal of GBM cells. Moreover, the activated JNK pathway promoted the phosphorylation of IκBα. Overall, targeting LINC01127-mediated axis impeded orthotopic tumor growth in GBM xenografts. Taken together these results revealed that warburg effect-induced histone lactylation drives NF-κB-related LINC01127 expression, thereby promoting the self-renewal of GBM cells through the MAP4K4/JNK/NF-κB axis, and providing substantial evidence that LINC01127 might provide a novel therapeutic strategy for GBM patients.
Collapse
Affiliation(s)
- Lulu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, PR China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Yu Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Tianlang Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China; The Six Affiliated Hospital of Harbin Medical University, 150028, Harbin, Heilongjiang Province, PR China.
| | - Qun Chen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, 310003, Hangzhou, Zhejiang Province, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, 150086, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
63
|
Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol 2023; 14:1286750. [PMID: 38022679 PMCID: PMC10663242 DOI: 10.3389/fimmu.2023.1286750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The ability to expand and activate natural Killer (NK) cells ex vivo has dramatically changed the landscape in the development of novel adoptive cell therapies for treating cancer over the last decade. NK cells have become a key player for cancer immunotherapy due to their innate ability to kill malignant cells while not harming healthy cells, allowing their potential use as an "off-the-shelf" product. Furthermore, recent advancements in NK cell genetic engineering methods have enabled the efficient generation of chimeric antigen receptor (CAR)-expressing NK cells that can exert both CAR-dependent and antigen-independent killing. Clinically, CAR-NK cells have shown promising efficacy and safety for treating CD19-expressing hematologic malignancies. While the number of pre-clinical studies using CAR-NK cells continues to expand, it is evident that solid tumors pose a unique challenge to NK cell-based adoptive cell therapies. Major barriers for efficacy include low NK cell trafficking and infiltration into solid tumor sites, low persistence, and immunosuppression by the harsh solid tumor microenvironment (TME). In this review we discuss the barriers posed by the solid tumor that prevent immune cell trafficking and NK cell effector functions. We then discuss promising strategies to enhance NK cell infiltration into solid tumor sites and activation within the TME. This includes NK cell-intrinsic and -extrinsic mechanisms such as NK cell engineering to resist TME-mediated inhibition and use of tumor-targeted agents such as oncolytic viruses expressing chemoattracting and activating payloads. We then discuss opportunities and challenges for using combination therapies to extend NK cell therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ana L. Portillo
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan K. Monteiro
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Eduardo A. Rojas
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
64
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
65
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
66
|
Cao W, Sun P, Luo S, Zeng Z, Xiao C, Yu W, Lei S. An immune signature to predict the prognosis of ATRX-wildtype glioma patients and guide immune checkpoint blockade therapy. Aging (Albany NY) 2023; 15:10453-10472. [PMID: 37812190 PMCID: PMC10599764 DOI: 10.18632/aging.205088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023]
Abstract
Immune and stromal cells contribute to glioma progression by infiltrating the tumor microenvironment. We used clinical characteristics, RNA sequencing data and the ESTIMATE algorithm to obtain stromal and immune scores for alpha thalassemia retardation syndrome X-linked (ATRX)-mutation-type (ATRX-mt) and ATRX-wildtype (ATRX-wt) glioma tissues from The Cancer Genome Atlas. To identify specific immune biomarkers of glioma, we compared the gene expression profiles of ATRX-wt glioma tissues with high vs. low immune/stromal scores, and discovered 162 differentially expressed genes. The protein-protein interaction network based on these results contained 80 interacting genes, of which seven (HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH) were identified as key prognostic genes via LASSO and Cox regression analyses. A risk model constructed using the expression of these seven genes could predict survival for ATRX-wt glioma patients, but was ineffective for ATRX-mt patients. T cells and macrophages were more prevalent in low-risk than in high-risk glioma tissues. Immune checkpoint blockade treatment was highly beneficial for patients with low risk scores. High-risk gliomas were predicted to be more sensitive to rapamycin, dasatinib, 5-fluorouracil and gemcitabine. Thus, our model can be used for the diagnosis, prognostic prediction and treatment planning of ATRX-wt glioma patients.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Ping Sun
- Department of Neurosurgery, The Second People Hospital of Guiyang, Guiyang 550009, Guizhou, China
| | - Shipeng Luo
- Department of Anatomy, Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Chaolun Xiao
- Department of Anatomy, Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Wenfeng Yu
- Department of Anatomy, Key Laboratory of Human Brain bank for Functions and Diseases of Department of Education of Guizhou, Guizhou Medical University, Guiyang 550009, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| |
Collapse
|
67
|
Ding J, Zheng Y, Zhu F, Wang M, Fang L, Li H, Tian H, Liu Y, Wang G, Zheng J, Chai D. Adenovirus-assembled DC vaccine induces dual-targeting CTLs for tumor antigen and adenovirus to eradicate tumors. Int Immunopharmacol 2023; 123:110722. [PMID: 37573687 DOI: 10.1016/j.intimp.2023.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Liu
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
68
|
Mao D, Zhou Z, Chen H, Liu X, Li D, Chen X, He Y, Liu M, Zhang C. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett 2023; 572:216351. [PMID: 37591356 DOI: 10.1016/j.canlet.2023.216351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Immune escape is a major challenge in tumour immunotherapy. Pleckstrin-2(PLEK2) plays a critical role in tumour progression, but its role in immune escape in gastric cancer (GC) remains uncharacterized. RNA sequencing was used to explore the differentially expressed genes in a GC cell line that was resistant to the antitumor effect of Natural killer (NK) cells. Apoptosis and the expression of IFN-γ and TNF-α were detected by flow cytometry (FCM). PLEK2 expression was examined by Western blotting and immunohistochemistry (IHC). PLEK2 was upregulated in MGC803R cells that were resistant to the antitumor effect of NK cells. PLEK2 knockout increased the sensitivity of GC cells to NK cell killing. PLEK2 expression was negatively correlated with MICA and positively correlated with MT1-MMP expression both in vitro and in vivo. PLEK2 promoted Sp1 phosphorylation through the PI3K-AKT pathway, thereby upregulating MT1-MMP expression, which ultimately led to MICA shedding. In mouse xenograft models, PLEK2 knockout inhibited intraperitoneal metastasis of GC cells and promoted NK cell infiltration. In summary, PLEK2 suppressed NK cell immune surveillance by promoting MICA shedding, which serves as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Deli Mao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xinran Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Dongsheng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
69
|
Ji F, Xu L, Long K, Zhang F, Zhang M, Lu X, Xia M, Chen J, Du Y, Tang Y, Wu H, Shi Y, Ma R, Li J, Chen Z, Xu B, Zhang Q, Liang J, Jia S, Hu Z, Guo Z. Rabies virus glycoprotein 29 (RVG29) promotes CAR-T immunotherapy for glioma. Transl Res 2023; 259:1-12. [PMID: 36977441 DOI: 10.1016/j.trsl.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/28/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has limited efficacy for treating glioma because of the infiltrative nature of the blood-brain barrier (BBB) and T cell exhaustion. Conjugation with rabies virus glycoprotein (RVG) 29 enhances the brain-related efficacy of various agents. Here we assess whether RVG enhances the ability of CAR-T cells to cross the BBB and improves their immunotherapy. We generated 70R CAR-T cells (anti-CD70 CAR-T modified with RVG29) and validated their tumor-killing efficacy in vitro and in vivo. We validated their effects on tumor regression in a human glioma mouse orthotopic xenograft model as well as in patient-derived orthotopic xenograft (PDOX) models. The signaling pathways activated in 70R CAR-T cells were revealed by RNA sequencing. The 70R CAR-T cells we generated showed effective antitumor function against CD70+ glioma cells both in vitro and in vivo. 70R CAR-T cells were better able to cross the BBB into the brain than CD70 CAR-T cells under the same treatment conditions. Moreover, 70R CAR-T cells significantly promote the regression of glioma xenografts and improve the physical characteristics of mice without causing overt adverse effects. RVG modification enables CAR-T cells to cross the BBB, and stimulation with glioma cells induces 70R CAR-T cells to expand in a resting state. The modification of RVG29 has a positive impact on CAR-T therapy for brain tumors and may have potential in CAR-T therapy for glioma.
Collapse
Affiliation(s)
- Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Zhongda Hospital, Southeast University, Nanjing, China.
| | - Luxia Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kaili Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Miaomiao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao Lu
- Xiamen University, Xiamen, China
| | - Mingyue Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yu Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yong Tang
- Nanjing First Hospital, Nanjing, China
| | - Heming Wu
- Nanjing First Hospital, Nanjing, China
| | - Yan Shi
- Nanjing First Hospital, Nanjing, China
| | - Ruiting Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhengliang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Xu
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Qi Zhang
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Junqing Liang
- The Affiliated People's Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Shaochang Jia
- Jinling Hospital of Nanjing University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
70
|
Linares CA, Varghese A, Ghose A, Shinde SD, Adeleke S, Sanchez E, Sheriff M, Chargari C, Rassy E, Boussios S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int J Mol Sci 2023; 24:13215. [PMID: 37686020 PMCID: PMC10487469 DOI: 10.3390/ijms241713215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas are aggressive, primary central nervous system tumours arising from glial cells. Glioblastomas are the most malignant. They are known for their poor prognosis or median overall survival. The current standard of care is overwhelmed by the heterogeneous, immunosuppressive tumour microenvironment promoting immune evasion and tumour proliferation. The advent of immunotherapy with its various modalities-immune checkpoint inhibitors, cancer vaccines, oncolytic viruses and chimeric antigen receptor T cells and NK cells-has shown promise. Clinical trials incorporating combination immunotherapies have overcome the microenvironment resistance and yielded promising survival and prognostic benefits. Rolling these new therapies out in the real-world scenario in a low-cost, high-throughput manner is the unmet need of the hour. These will have practice-changing implications to the glioma treatment landscape. Here, we review the immunobiological hallmarks of the TME of gliomas, how the TME evades immunotherapies and the work that is being conducted to overcome this interplay.
Collapse
Affiliation(s)
- Christian A. Linares
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
| | - Anjana Varghese
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent ME16 9QQ, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Sola Adeleke
- Guy’s Cancer Centre, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (C.A.L.); (S.A.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.); (M.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent and Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
71
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
72
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
73
|
Zhao X, Lin M, Huang X. Current status and future perspective of natural killer cell therapy for cancer. MEDICAL REVIEW (2021) 2023; 3:305-320. [PMID: 38235405 PMCID: PMC10790210 DOI: 10.1515/mr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 01/19/2024]
Abstract
Natural killer (NK) cells possess innate abilities to effectively eliminate cancer cells. However, because of difficulties of proliferation and easy to be induced dysfunction in the setting of cancer post NK cell therapy, the curative effect of NK cell infusion has been constrained and not been widely applicable in clinical practice. The rapid development of biotechnology has promoted the development of NK cell therapy for cancer treatment. In this review, we will provide a comprehensive analysis of the current status and future prospects of NK cell therapy for cancer, focusing on the biological characteristics of NK cells, as well as strategies to enhance their targeting capabilities and overcome tumor immune suppression within the microenvironment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Minghao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
74
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
75
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
76
|
Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:210. [PMID: 37217462 DOI: 10.1038/s41392-023-01480-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Over decades, researchers have focused on the epigenetic control of DNA-templated processes. Histone modification, DNA methylation, chromatin remodeling, RNA modification, and noncoding RNAs modulate many biological processes that are crucial to the development of cancers. Dysregulation of the epigenome drives aberrant transcriptional programs. A growing body of evidence suggests that the mechanisms of epigenetic modification are dysregulated in human cancers and might be excellent targets for tumor treatment. Epigenetics has also been shown to influence tumor immunogenicity and immune cells involved in antitumor responses. Thus, the development and application of epigenetic therapy and cancer immunotherapy and their combinations may have important implications for cancer treatment. Here, we present an up-to-date and thorough description of how epigenetic modifications in tumor cells influence immune cell responses in the tumor microenvironment (TME) and how epigenetics influence immune cells internally to modify the TME. Additionally, we highlight the therapeutic potential of targeting epigenetic regulators for cancer immunotherapy. Harnessing the complex interplay between epigenetics and cancer immunology to develop therapeutics that combine thereof is challenging but could yield significant benefits. The purpose of this review is to assist researchers in understanding how epigenetics impact immune responses in the TME, so that better cancer immunotherapies can be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
77
|
Yuile A, Wei JQ, Mohan AA, Hotchkiss KM, Khasraw M. Interdependencies of the Neuronal, Immune and Tumor Microenvironment in Gliomas. Cancers (Basel) 2023; 15:2856. [PMID: 37345193 PMCID: PMC10216320 DOI: 10.3390/cancers15102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Gliomas are the most common primary brain malignancy and are universally fatal. Despite significant breakthrough in understanding tumor biology, treatment breakthroughs have been limited. There is a growing appreciation that major limitations on effective treatment are related to the unique and highly complex glioma tumor microenvironment (TME). The TME consists of multiple different cell types, broadly categorized into tumoral, immune and non-tumoral, non-immune cells. Each group provides significant influence on the others, generating a pro-tumor dynamic with significant immunosuppression. In addition, glioma cells are highly heterogenous with various molecular distinctions on the cellular level. These variations, in turn, lead to their own unique influence on the TME. To develop future treatments, an understanding of this complex TME interplay is needed. To this end, we describe the TME in adult gliomas through interactions between its various components and through various glioma molecular phenotypes.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, 3 Westbourne Street, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joe Q. Wei
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aditya A. Mohan
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Kelly M. Hotchkiss
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| |
Collapse
|
78
|
Li X, Yan X, Wang Y, Kaur B, Han H, Yu J. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol 2023; 16:45. [PMID: 37131214 PMCID: PMC10155406 DOI: 10.1186/s13045-023-01439-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Dysregulation of the Notch signaling pathway, which is highly conserved across species, can drive aberrant epigenetic modification, transcription, and translation. Defective gene regulation caused by dysregulated Notch signaling often affects networks controlling oncogenesis and tumor progression. Meanwhile, Notch signaling can modulate immune cells involved in anti- or pro-tumor responses and tumor immunogenicity. A comprehensive understanding of these processes can help with designing new drugs that target Notch signaling, thereby enhancing the effects of cancer immunotherapy. Here, we provide an up-to-date and comprehensive overview of how Notch signaling intrinsically regulates immune cells and how alterations in Notch signaling in tumor cells or stromal cells extrinsically regulate immune responses in the tumor microenvironment (TME). We also discuss the potential role of Notch signaling in tumor immunity mediated by gut microbiota. Finally, we propose strategies for targeting Notch signaling in cancer immunotherapy. These include oncolytic virotherapy combined with inhibition of Notch signaling, nanoparticles (NPs) loaded with Notch signaling regulators to specifically target tumor-associated macrophages (TAMs) to repolarize their functions and remodel the TME, combining specific and efficient inhibitors or activators of Notch signaling with immune checkpoint blockers (ICBs) for synergistic anti-tumor therapy, and implementing a customized and effective synNotch circuit system to enhance safety of chimeric antigen receptor (CAR) immune cells. Collectively, this review aims to summarize how Notch signaling intrinsically and extrinsically shapes immune responses to improve immunotherapy.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Cancer Institute, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
| |
Collapse
|
79
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
80
|
Gene-based delivery of immune-activating cytokines for cancer treatment. Trends Mol Med 2023; 29:329-342. [PMID: 36828711 DOI: 10.1016/j.molmed.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Tumors evolve together with the tumor microenvironment (TME) and reshape it towards immunosuppression. Immunostimulating cytokines can be used to revert this state leading to effective antitumor immune responses, but their exploitation as anticancer drugs has been hampered by severe toxicity associated with systemic administration. Local, TME-targeted delivery of immune activating cytokines can deploy their antitumoral function more effectively than systemic administration while, at the same time, avoiding exposure of healthy organs and limiting toxicity. Here, we review different gene and cell therapy platforms developed for tumor-directed cytokine delivery highlighting their potential for clinical translation.
Collapse
|
81
|
Ma S, Han J, Li Z, Xiao S, Zhang J, Yan J, Tang T, Barr T, Kraft AS, Caligiuri MA, Yu J. An XBP1s-PIM-2 positive feedback loop controls IL-15-mediated survival of natural killer cells. Sci Immunol 2023; 8:eabn7993. [PMID: 36897958 DOI: 10.1126/sciimmunol.abn7993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Spliced X-box-binding protein 1 (XBP1s) is an essential transcription factor downstream of interleukin-15 (IL-15) and AKT signaling, which controls cell survival and effector functions of human natural killer (NK) cells. However, the precise mechanisms, especially the downstream targets of XBP1s, remain unknown. In this study, by using XBP1 conditional knockout mice, we found that XBP1s is critical for IL-15-mediated NK cell survival but not proliferation in vitro and in vivo. Mechanistically, XBP1s regulates homeostatic NK cell survival by targeting PIM-2, a critical anti-apoptotic gene, which in turn stabilizes XBP1s protein by phosphorylating it at Thr58. In addition, XBP1s enhances the effector functions and antitumor immunity of NK cells by recruiting T-bet to the promoter region of Ifng. Collectively, our findings identify a previously unknown mechanism by which IL-15-XBP1s signaling regulates the survival and effector functions of NK cells.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tingting Tang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
82
|
Wu YY, Sun TK, Chen MS, Munir M, Liu HJ. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front Cell Infect Microbiol 2023; 13:1142172. [PMID: 37009515 PMCID: PMC10050605 DOI: 10.3389/fcimb.2023.1142172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Recent reports have revealed that oncolytic viruses (OVs) play a significant role in cancer therapy. The infection of OVs such as oncolytic vaccinia virus (OVV), vesicular stomatitis virus (VSV), parvovirus, mammalian reovirus (MRV), human adenovirus, Newcastle disease virus (NDV), herpes simplex virus (HSV), avian reovirus (ARV), Orf virus (ORFV), inactivated Sendai virus (ISV), enterovirus, and coxsackievirus offer unique opportunities in immunotherapy through diverse and dynamic pathways. This mini-review focuses on the mechanisms of OVs-mediated virotherapy and their effects on immunogenic cell death (ICD), apoptosis, autophagy and regulation of the immune system.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Te-Kai Sun
- Tsairder Boitechnology Co. Ltd., Taichung, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Muhammad Munir
- Department of Biomedical and Life Sciences, Lancaster University, Lancashire, United Kingdom
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Hung-Jen Liu,
| |
Collapse
|
83
|
Fudaba H, Wakimoto H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin Biol Ther 2023; 23:269-282. [PMID: 36809883 DOI: 10.1080/14712598.2023.2184256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION To overcome the challenge of treating malignant brain tumors, oncolytic viruses (OVs) represent an innovative therapeutic approach, featuring unique mechanisms of action. The recent conditional approval of the oncolytic herpes simplex virus G47Δ as a therapeutic for malignant brain tumors marked a significant milestone in the long history of OV development in neuro-oncology. AREAS COVERED This review summarizes the results of recently completed and active clinical studies that investigate the safety and efficacy of different OV types in patients with malignant gliomas. The changing landscape of the OV trial design includes expansion of subjects to newly diagnosed tumors and pediatric populations. A variety of delivery methods and new routes of administration are vigorously tested to optimize tumor infection and overall efficacy. New therapeutic strategies such as combination with immunotherapies are proposed that take advantage of the characteristics of OV therapy as an immunotherapy. Preclinical studies of OV have been active and aim to translate new OV strategies to the clinic. EXPERT OPINION For the next decade, clinical trials and preclinical and translational research will continue to drive the development of innovative OV treatments for malignant gliomas and benefit patients and define new OV biomarkers.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
85
|
Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023; 9:122-139. [PMID: 36402738 PMCID: PMC9877109 DOI: 10.1016/j.trecan.2022.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Oncolytic viruses (OVs) provide novel and promising therapeutic options for patients with cancers resistant to traditional therapies. Natural or genetically modified OVs are multifaceted tumor killers. They directly lyse tumor cells while sparing normal cells, and indirectly potentiate antitumor immunity by releasing antigens and activating inflammatory responses in the tumor microenvironment. However, some limitations, such as limited penetration of OVs into tumors, short persistence, and the host antiviral immune response, are impeding the broad translation of oncolytic virotherapy into the clinic. If these challenges can be overcome, combination therapies, such as OVs plus immune checkpoint blockade (ICB), chimeric antigen receptor (CAR) T cells, or CAR natural killer (NK) cells, may provide powerful therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA.
| |
Collapse
|
86
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar.
| | - Varghese P Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- Department of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, USA
| | | | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
87
|
Yang K, Zhao Y, Sun G, Zhang X, Cao J, Shao M, Liang X, Wang L. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2023; 13:1081546. [PMID: 36741400 PMCID: PMC9892943 DOI: 10.3389/fimmu.2022.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an attractive research field in tumor immunotherapy. While CAR is genetically engineered to express certain molecules, it retains the intrinsic ability to recognize tumor cells through its own receptors. Additionally, NK cells do not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some differences to CAR-T cells in terms of more precise killing, numerous cell sources, and increased effectiveness in solid tumors. However, some problems still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection efficiency, and storage issues. Immune checkpoints inhibit immune cells from performing their normal killing function, and the clinical application of immune checkpoint inhibitors for cancer treatment has become a key therapeutic strategy. The application of CAR-T cells and immune checkpoint inhibitors is being evaluated in numerous ongoing basic research and clinical studies. Immune checkpoints may affect the function of CAR-NK cell therapy. In this review, we describe the combination of existing CAR-NK cell technology with immune checkpoint therapy and discuss the research of CAR-NK cell technology and future clinical treatments. We also summarize the progress of clinical trials of CAR-NK cells and immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangdi Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuze Zhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xu Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Mingcong Shao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| |
Collapse
|
88
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
89
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
Jiang S, Chai HH, Fang XL, Xu HS, Li TW, Tang QS, Gu JF, Zhang KJ, Liu XY, Shi ZF, Cao XP, Wu ZY, Zhou LF. Double-modified oncolytic adenovirus armed with a recombinant interferon-like gene enhanced abscopal effects against malignant glioma. Neurooncol Adv 2023; 5:vdad117. [PMID: 37841695 PMCID: PMC10572777 DOI: 10.1093/noajnl/vdad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background The development of new therapies for malignant gliomas has been stagnant for decades. Through the promising outcomes in clinical trials of oncolytic virotherapy, there is now a glimmer of hope in addressing this situation. To further enhance the antitumor immune response of oncolytic viruses, we have equipped a modified oncolytic adenovirus (oAds) with a recombinant interferon-like gene (YSCH-01) and conducted a comprehensive evaluation of the safety and efficacy of this modification compared to existing treatments. Methods To assess the safety of YSCH-01, we administered the oAds intracranially to Syrian hamsters, which are susceptible to adenovirus. The efficacy of YSCH-01 in targeting glioma was evaluated through in vitro and in vivo experiments utilizing various human glioma cell lines. Furthermore, we employed a patient-derived xenograft model of recurrent glioblastoma to test the effectiveness of YSCH-01 against temozolomide. Results By modifying the E1A and adding survivin promoter, the oAds have demonstrated remarkable safety and an impressive ability to selectively target tumor cells. In animal models, YSCH-01 exhibited potent therapeutic efficacy, particularly in terms of its distant effects. Additionally, YSCH-01 remains effective in inhibiting the recurrent GBM patient-derived xenograft model. Conclusions Our initial findings confirm that a double-modified oncolytic adenovirus armed with a recombinant interferon-like gene is both safe and effective in the treatment of malignant glioma. Furthermore, when utilized in combination with a targeted therapy gene strategy, these oAds exhibit a more profound effect in tumor therapy and an enhanced ability to inhibit tumor growth at remote sites.
Collapse
Affiliation(s)
- Shan Jiang
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Hui-Hui Chai
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xian-Long Fang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Hou-Shi Xu
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Tian-Wen Li
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qi-Sheng Tang
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jin-Fa Gu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi-Feng Shi
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xue-Ping Cao
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Zan-Yi Wu
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liang-Fu Zhou
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
91
|
He B, Mai Q, Pang Y, Deng S, He Y, Xue R, Xu N, Zhou H, Liu X, Xuan L, Li C, Liu Q. Cytokines induced memory-like NK cells engineered to express CD19 CAR exhibit enhanced responses against B cell malignancies. Front Immunol 2023; 14:1130442. [PMID: 37207215 PMCID: PMC10191231 DOI: 10.3389/fimmu.2023.1130442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
CD19 chimeric antigen receptor (CAR) engineered NK cells have been used for treating patients with relapsed and/or refractory B cell malignancies and show encouraging outcomes and safety profile. However, the poor persistence of NK cells remains a major challenge for CAR NK cell therapy. Memory-like NK cells (MLNK) induced by IL-12, IL-15, and IL-18 have shown enhanced and prolonged responses to tumor re-stimulation, making them an attractive candidate for adoptive cellular immunotherapy. Here, we show efficient and stable gene delivery of CD19 CAR to memory-like NK cells using retroviral vectors with transduction efficiency comparable to those achieved with conventional NK cells. Analysis of surface molecules revealed a distinct phenotypic profile in CAR engineered memory-like NK cells (CAR MLNK), as evidenced by increased expression of CD94 and downregulation of NKp30 as well as KIR2DL1. Compared to conventional CAR NK cells, CAR MLNK cells exhibited significantly increased IFN-γ production and degranulation in response to CD19+ target cells, resulting in enhanced cytotoxic activity against CD19+ leukemia cells and lymphoma cells. Furthermore, memory properties induced by IL-12/-15/-18 improved the in vivo persistence of CAR MLNK cells and significantly suppressed tumor growth in a exnograft mouse model of lymphoma, leading to prolonged survival of CD19+ tumor-bearing mouse. Altogether, our data indicate that CD19 CAR engineered memory-like NK cells exhibited superior persistence and antitumor activity against CD19+ tumors, which might be an attractive approach for treating patient with relapse or refractory B cell malignancies.
Collapse
Affiliation(s)
- Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiusui Mai
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunyi Pang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Qifa Liu, ; Chengyao Li,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Qifa Liu, ; Chengyao Li,
| |
Collapse
|
92
|
Ma S, Barr T, Yu J. Recent Advances of RNA m 6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treat Res 2023; 190:49-94. [PMID: 38112999 DOI: 10.1007/978-3-031-45654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, 91010, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
93
|
Tian J, Bai T, Zhang Z, Zhai X, Wang K, Gao X, Yan B. Progress and prospects for use of cellular immunotherapy in pancreatic cancer. J Cancer Res Ther 2022; 18:1867-1875. [PMID: 36647944 DOI: 10.4103/jcrt.jcrt_976_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor with an increasing incidence rate in recent years. Because pancreatic cancer has an insidious onset, unknown pathophysiology, and poor prognosis, the overall survival rate of pancreatic cancer patients has not improved considerably even with extensive treatment methods such as surgery, radiation, biotherapy, and targeted therapy. Therefore, finding and developing more effective and safe treatments for pancreatic cancer is critical. Cellular immunotherapy has achieved considerable advances in the field of oncology in recent years. Technology is continuously advancing, with new breakthroughs virtually every month, and pancreatic cancer eradication is expected to improve considerably. This article examines the advance of chimeric antigen receptor NK cell immunotherapy (CAR-NK) cell immunotherapy for pancreatic cancer research, as well as research ideas for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jing Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiankai Bai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyong Zhang
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Xuan Zhai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangmin Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingyi Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Yan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
94
|
Wang L, Chen X, Zhang L, Niu B, Li L, Sun Y, Yuan X. CAR cell design strategies in solid tumors. Int Immunopharmacol 2022; 113:109345. [DOI: 10.1016/j.intimp.2022.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
95
|
Bahmanyar M, Vakil MK, Al-Awsi GRL, Kouhpayeh SA, Mansoori Y, Mansoori B, Moravej A, Mazarzaei A, Ghasemian A. Anticancer traits of chimeric antigen receptors (CARs)-Natural Killer (NK) cells as novel approaches for melanoma treatment. BMC Cancer 2022; 22:1220. [PMID: 36434591 PMCID: PMC9701052 DOI: 10.1186/s12885-022-10320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells (lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logistically cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have several advantages over T cells in the application for therapies such as availability, unique biological features, safety profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host disease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunotherapies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expanding and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME preparation and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can also overcome therapy limitations.
Collapse
Affiliation(s)
- Maryam Bahmanyar
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyed Amin Kouhpayeh
- grid.411135.30000 0004 0415 3047Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- grid.512728.b0000 0004 5907 6819Department of Immunology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
96
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
97
|
Aggarwal P, Luo W, Pehlivan KC, Hoang H, Rajappa P, Cripe TP, Cassady KA, Lee DA, Cairo MS. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front Immunol 2022; 13:1038096. [PMID: 36483545 PMCID: PMC9722734 DOI: 10.3389/fimmu.2022.1038096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
High grade gliomas are identified as malignant central nervous tumors that spread rapidly and have a universally poor prognosis. Historically high grade gliomas in the pediatric population have been treated similarly to adult high grade gliomas. For the first time, the most recent classification of central nervous system tumors by World Health Organization has divided adult from pediatric type diffuse high grade gliomas, underscoring the biologic differences between these tumors in different age groups. The objective of our review is to compare high grade gliomas in the adult versus pediatric patient populations, highlighting similarities and differences in epidemiology, etiology, pathogenesis and therapeutic approaches. High grade gliomas in adults versus children have varying clinical presentations, molecular biology background, and response to chemotherapy, as well as unique molecular targets. However, increasing evidence show that they both respond to recently developed immunotherapies. This review summarizes the distinctions and commonalities between the two in disease pathogenesis and response to therapeutic interventions with a focus on immunotherapy.
Collapse
Affiliation(s)
- Payal Aggarwal
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | | | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Prajwal Rajappa
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|
98
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
99
|
Watchmaker PB, Colton M, Pineo-Cavanaugh PL, Okada H. Future development of chimeric antigen receptor T cell therapies for patients suffering from malignant glioma. Curr Opin Oncol 2022; 34:661-669. [PMID: 35855503 PMCID: PMC9560977 DOI: 10.1097/cco.0000000000000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T cell therapy has been successful in some haematologic malignancies, but the central nervous system (CNS) presents unique obstacles to its use against tumours arising therein. This review discusses recent improvements in the delivery and design of these cells to improve the efficacy and safety of this treatment against malignant gliomas. RECENT FINDINGS The immunosuppressive environment of the CNS affects the functionality of CAR T cells, but recent developments using metabolic manipulation and cytokine delivery have shown that the performance of CAR T cells can be improved in this environment. Emerging techniques can improve the delivery of CAR T cells to the CNS parenchyma, which is normally well protected from peripheral immune cells. The implementation of novel antigens and CAR-expression regulation strategies will improve the specificity and efficacy of these cells. Finally, although autologous T cells have historically been the standard, recent developments have made the use of allogeneic T cells or natural killer (NK) cells more clinically feasible. SUMMARY The discoveries highlighted in this review will aid the development of CAR cells that are safer, more resilient against immunosuppressive signals in the CNS, and able to specifically target intracranial tumour cells.
Collapse
Affiliation(s)
| | - Maggie Colton
- Department of Neurosurgery, University of California, San Francisco
| | | | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy
| |
Collapse
|
100
|
Tian L, Xu B, Chen Y, Li Z, Wang J, Zhang J, Ma R, Cao S, Hu W, Chiocca EA, Kaur B, Caligiuri MA, Yu J. Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. NATURE CANCER 2022; 3:1318-1335. [PMID: 36357700 PMCID: PMC10150871 DOI: 10.1038/s43018-022-00448-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/20/2022] [Indexed: 11/12/2022]
Abstract
Chemokines such as C-C motif ligand 5 (CCL5) regulate immune cell trafficking in the tumor microenvironment (TME) and govern tumor development, making them promising targets for cancer therapy. However, short half-lives and toxic off-target effects limit their application. Oncolytic viruses (OVs) have become attractive therapeutic agents. Here, we generate an oncolytic herpes simplex virus type 1 (oHSV) expressing a secretable single-chain variable fragment of the epidermal growth factor receptor (EGFR) antibody cetuximab linked to CCL5 by an Fc knob-into-hole strategy that produces heterodimers (OV-Cmab-CCL5). OV-Cmab-CCL5 permits continuous production of CCL5 in the TME, as it is redirected to EGFR+ glioblastoma (GBM) tumor cells. OV-Cmab-CCL5 infection of GBM significantly enhances the migration and activation of natural killer cells, macrophages and T cells; inhibits tumor EGFR signaling; reduces tumor size; and prolongs survival of GBM-bearing mice. Collectively, our data demonstrate that OV-Cmab-CCL5 offers a promising approach to improve OV therapy for solid tumors.
Collapse
Affiliation(s)
- Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Yuqing Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jing Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Shuai Cao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvey Cushing Neurooncology Laboratories, Harvard Medical School, Boston, MA, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|