51
|
Kondaskar A, Kondaskar S, Kumar R, Fishbein JC, Muvarak N, Lapidus RG, Sadowska M, Edelman MJ, Bol GM, Vesuna F, Raman V, Hosmane RS. Novel, Broad Spectrum Anti-Cancer Agents Containing the Tricyclic 5:7:5-Fused Diimidazodiazepine Ring System. ACS Med Chem Lett 2010; 2:252-256. [PMID: 21572541 DOI: 10.1021/ml100281b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synthesis of a series of novel, broad-spectrum anti-cancer agents containing the tricyclic 5:7:5-fused diimidazo[4,5-d:4',5'-f][1,3]diazepine ring system is reported. Compounds 1, 2, 8, 11, and 12 in the series show promising in vitro antitumor activity with low micromolar IC(50)'s against prostate, lung, breast, and ovarian cancer cell lines. Some notions about structure-activity relationships and a possible mechanism of biological activity are presented. Also presented are preliminary in vivo toxicity studies of 1 using SCID mice.
Collapse
Affiliation(s)
- Atul Kondaskar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Shilpi Kondaskar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Raj Kumar
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - James C. Fishbein
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Nidal Muvarak
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Rena G. Lapidus
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Mariola Sadowska
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Martin J. Edelman
- Translational Core Laboratory, University of Maryland Marlene & Stewart Greenbaum Cancer Center, 22 South Greene Street, Baltimore, Maryland 21201, United States
| | - Guus M. Bol
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Farhad Vesuna
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Venu Raman
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ramachandra S. Hosmane
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
52
|
The RNA helicase p68 modulates expression and function of the Δ133 isoform(s) of p53, and is inversely associated with Δ133p53 expression in breast cancer. Oncogene 2010; 29:6475-84. [PMID: 20818423 PMCID: PMC3016604 DOI: 10.1038/onc.2010.381] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA helicase p68 is a potent co-activator of p53-dependent transcription in response to DNA damage. Previous independent studies have indicated that p68 and the Δ133p53 isoforms, which modulate the function of full-length p53, are aberrantly expressed in breast cancers. Here we identify a striking inverse association of p68 and Δ133p53 expression in primary breast cancers. Consistent with these findings, small interfering RNA depletion of p68 in cell lines results in a p53-dependant increase of Δ133p53 in response to DNA damage, suggesting that increased Δ133p53 expression could result from downregulation of p68 and provide a potential mechanistic explanation for our observations in breast cancer. Δ133p53α, which has been shown to negatively regulate the function of full-length p53, reciprocally inhibits the ability of p68 to stimulate p53-dependent transcription from the p21 promoter, suggesting that Δ133p53α may be competing with p68 to regulate p53 function. This hypothesis is underscored by our observations that p68 interacts with the C-terminal domain of p53, co-immunoprecipitates 133p53α from cell extracts and interacts only with p53 molecules that are able to form tetramers. These data suggest that p68, p53 and 133p53α may form part of a complex feedback mechanism to regulate the expression of Δ133p53, with consequent modification of p53-mediated transcription, and may modulate the function of p53 in breast and other cancers that harbour wild-type p53.
Collapse
|
53
|
Carter CL, Lin C, Liu CY, Yang L, Liu ZR. Phosphorylated p68 RNA helicase activates Snail1 transcription by promoting HDAC1 dissociation from the Snail1 promoter. Oncogene 2010; 29:5427-36. [PMID: 20676135 PMCID: PMC2948064 DOI: 10.1038/onc.2010.276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nuclear p68 RNA helicase is a prototypical member of the DEAD-box family of RNA helicases. p68 RNA helicase has been implicated in cell proliferation and early organ development and maturation. However, the functional role of p68 RNA helicase in these biological processes at the molecular level is not well understood. We previously reported that tyrosine phosphorylation of p68 RNA helicase mediates the effects of platelet-derived growth factor (PDGF) in induction of epithelial mesenchymal transition by promoting β-catenin nuclear translocation. Here, we report that phosphorylation of p68 RNA helicase at Y593 upregulates transcription of the Snail1 gene. The phosphorylated p68 activates transcription of the Snail1 gene by promoting histone deacetylase (HDAC)1 dissociation from the Snail1 promoter. Our results showed that p68 interacted with the nuclear remodeling and deacetylation complex MBD3:Mi-2/NuRD. Thus, our data suggested that a DEAD-box RNA unwindase could potentially regulate gene expression by functioning as a protein 'displacer' to modulate protein-protein interactions at the chromatin-remodeling complex.
Collapse
Affiliation(s)
- C L Carter
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
54
|
Mooney SM, Goel A, D'Assoro AB, Salisbury JL, Janknecht R. Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem 2010; 285:30443-52. [PMID: 20663877 DOI: 10.1074/jbc.m110.143792] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we demonstrate that p68 (DDX5) and p72 (DDX17), two homologous RNA helicases and transcriptional cofactors, are substrates for the acetyltransferase p300 in vitro and in vivo. Mutation of acetylation sites affected the binding of p68/p72 to histone deacetylases, but not to p300 or estrogen receptor. Acetylation additionally increased the stability of p68 and p72 RNA helicase and stimulated their ability to coactivate the estrogen receptor, thereby potentially contributing to its aberrant activation in breast tumors. Also, acetylation of p72, but not of p68 RNA helicase, enhanced p53-dependent activation of the MDM2 promoter, pointing at another mechanism of how p72 acetylation may facilitate carcinogenesis by boosting the negative p53-MDM2 feedback loop. Furthermore, blocking p72 acetylation caused cell cycle arrest and apoptosis, revealing an essential role for p72 acetylation. In conclusion, our report has identified for the first time that acetylation modulates RNA helicases and provides multiple mechanisms how acetylation of p68 and p72 may affect normal and tumor cells.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
55
|
Verma B, Hawkins OE, Neethling FA, Caseltine SL, Largo SR, Hildebrand WH, Weidanz JA. Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 2010; 59:563-73. [PMID: 19779714 PMCID: PMC11031085 DOI: 10.1007/s00262-009-0774-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The identification and validation of new cancer-specific T cell epitopes continues to be a major area of research interest. Nevertheless, challenges remain to develop strategies that can easily discover and validate epitopes expressed in primary cancer cells. Regarded as targets for T cells, peptides presented in the context of the major histocompatibility complex (MHC) are recognized by monoclonal antibodies (mAbs). These mAbs are of special importance as they lend themselves to the detection of epitopes expressed in primary tumor cells. Here, we use an approach that has been successfully utilized in two different infectious disease applications (WNV and influenza). A direct peptide-epitope discovery strategy involving mass spectrometric analysis led to the identification of peptide YLLPAIVHI in the context of MHC A*02 allele (YLL/A2) from human breast carcinoma cell lines. We then generated and characterized an anti-YLL/A2 mAb designated as RL6A TCRm. Subsequently, the TCRm mAb was used to directly validate YLL/A2 epitope expression in human breast cancer tissue, but not in normal control breast tissue. Moreover, mice implanted with human breast cancer cells grew tumors, yet when treated with RL6A TCRm showed a marked reduction in tumor size. These data demonstrate for the first time a coordinated direct discovery and validation strategy that identified a peptide/MHC complex on primary tumor cells for antibody targeting and provide a novel approach to cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/diagnosis
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cancer Vaccines/therapeutic use
- DEAD-box RNA Helicases/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Nude
- Molecular Mimicry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Bhavna Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
| | - Oriana E. Hawkins
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | | | | | | | - William H. Hildebrand
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jon A. Weidanz
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX 79601 USA
- Receptor Logic, Inc, Abilene, TX 79601 USA
| |
Collapse
|
56
|
In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 2009; 6:22-4. [PMID: 19946274 PMCID: PMC2795795 DOI: 10.1038/nchembio.277] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 10/08/2009] [Indexed: 02/02/2023]
Abstract
In an effort to target the in vivo context of tumor-specific moieties, a large library of nuclease-resistant RNA oligonucleotides was screened in tumor-bearing mice to identify candidate molecules with the ability to localize to hepatic colon cancer metastases. One of the selected molecules is an RNA aptamer that binds to protein p68, an RNA helicase that has been shown to be upregulated in colorectal cancer.
Collapse
|
57
|
Joo JH, Kim YH, Dunn NW, Sugrue SP. Disruption of mouse corneal epithelial differentiation by conditional inactivation of pnn. Invest Ophthalmol Vis Sci 2009; 51:1927-34. [PMID: 19892877 DOI: 10.1167/iovs.09-4591] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. To investigate the specific role of Pinin (Pnn) in the development of anterior eye segment in mice. Methods. Conditional inactivation of Pnn in the developing surface eye ectoderm and lens was achieved by creating mice carrying a Pnn null and a floxed Pnn allele as well as a Pax6-Cre-GFP (Le-Cre) transgene. The resultant Pnn conditional knockout mice were examined by histologic and immunohistologic approaches. Results. Pax6-Cre-mediated deletion of Pnn resulted in severe malformation of lens placode-derived tissues including cornea and lens. Pnn mutant corneal epithelium displayed the loss of corneal epithelial identity and appeared epidermis-like, downregulating corneal keratins (K12) and ectopically expressing epidermal keratins (K10 and K14). This squamous metaplasia of Pnn mutant corneal epithelium closely correlated with significantly elevated beta-catenin activity and Tcf4 level. In addition, Pnn inactivation also led to misregulated level of p68 RNA helicase in mutant corneal epithelium. Conclusions. These data indicate that Pnn plays an essential role in modulating and/or orchestrating the activities of major developmental factors of anterior eye segments.
Collapse
Affiliation(s)
- Jeong-Hoon Joo
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
58
|
Abstract
P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. In consistence with the function of the protein in transcriptional regulation and pre-mRNA splicing, p68 was found to predominately localize in the cell nucleus. However, recent experiments demonstrate a transient cytoplasmic localization of the protein. We report here that p68 shuttles between the nucleus and the cytoplasm. The nucleocytoplasmic shuttling of p68 is mediated by two nuclear localization signal (NLS) and two nuclear exporting signal (NES) sequence elements. Our experiments reveal that p68 shuttles via a classical RanGTPase dependent pathway.
Collapse
|
59
|
Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P, Mukadam S, Van Diest P, Chen JH, Farabaugh P, Patel AH, Raman V. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 2008; 27:3912-22. [PMID: 18264132 DOI: 10.1038/onc.2008.33] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benzo[a]pyrene diol epoxide (BPDE), the active metabolite of benzo[a]pyrene present in tobacco smoke, is a major cancer-causing compound. To evaluate the effects of BPDE on human breast epithelial cells, we exposed an immortalized human breast cell line, MCF 10A, to BPDE and characterized the gene expression pattern. Of the differential genes expressed, we found consistent activation of DDX3, a member of the DEAD box RNA helicase family. Overexpression of DDX3 in MCF 10A cells induced an epithelial-mesenchymal-like transformation, exhibited increased motility and invasive properties, and formed colonies in soft-agar assays. Besides the altered phenotype, MCF 10A-DDX3 cells repressed E-cadherin expression as demonstrated by both immunoblots and by E-cadherin promoter-reporter assays. In addition, an in vivo association of DDX3 and the E-cadherin promoter was demonstrated by chromatin immunoprecipitation assays. Collectively, these results demonstrate that the activation of DDX3 by BPDE, can promote growth, proliferation and neoplastic transformation of breast epithelial cells.
Collapse
Affiliation(s)
- M Botlagunta
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Godbout R, Li L, Liu RZ, Roy K. Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol 2008; 3:575-87. [PMID: 17927523 DOI: 10.2217/14796694.3.5.575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Analysis of hereditary and nonhereditary retinoblastoma led to the formulation of the two-hit hypothesis of cancer in the early 1970s. The two-hit hypothesis was validated in the 1980s when both copies of the RB1 gene were shown to be mutated in hereditary and nonhereditary retinoblastoma. However, consistent genetic abnormalities other than RB1 mutations suggest that additional events may be required for the formation of these malignant tumors. For example, MYCN amplification has long been known to occur in both retinoblastoma and neuroblastoma tumors and is strongly associated with poor prognosis in neuroblastoma. The DEAD box gene, DEAD box 1 (DDX1), is often coamplified with MYCN in both these childhood tumors. Here, we examine possible roles for DDX1 overexpression in retinoblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Roseline Godbout
- Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | | | | | |
Collapse
|
61
|
Mathieu MG, Knights AJ, Pawelec G, Riley CL, Wernet D, Lemonnier FA, Straten PT, Mueller L, Rees RC, McArdle SEB. HAGE, a cancer/testis antigen with potential for melanoma immunotherapy: identification of several MHC class I/II HAGE-derived immunogenic peptides. Cancer Immunol Immunother 2007; 56:1885-95. [PMID: 17487488 PMCID: PMC11030838 DOI: 10.1007/s00262-007-0331-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 04/13/2007] [Indexed: 11/30/2022]
Abstract
There remains a need to identify novel epitopes of potential tumour target antigens for use in immunotherapy of cancer. Here, several melanoma tissues and cell lines but not normal tissues were found to overexpress the cancer-testis antigen HAGE at the mRNA and protein level. We identified a HAGE-derived 15-mer peptide containing a shorter predicted MHC class I-binding sequence within a class II-binding sequence. However, only the longer peptide was found to be both endogenously processed and immunogenic for T cells in transgenic mice in vivo, as well as for human T cells in vitro. A different class I-binding peptide, not contained within a longer class II sequence, was subsequently found to be both immunogenic and endogenously processed in transgenic mice, as was a second class II epitope. These novel HAGE-derived epitopes may contribute to the range of immunotherapeutic targets for use in cancer vaccination programs.
Collapse
Affiliation(s)
- Morgan G. Mathieu
- School of Biomedical and Natural Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Ashley J. Knights
- Section for Transplantation Immunology and Immunohaematology, ZMF, University Hospital Tübingen, Waldhörnlestrasse 22, Tübingen, Germany
- Division of Oncology, University Hospital Zürich, Zurich, Switzerland
| | - Graham Pawelec
- Section for Transplantation Immunology and Immunohaematology, ZMF, University Hospital Tübingen, Waldhörnlestrasse 22, Tübingen, Germany
| | - Catherine L. Riley
- School of Biomedical and Natural Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Dorothee Wernet
- Department of Transfusion Medicine, Eberhard Karls University, Tübingen, Germany
| | - François A. Lemonnier
- AIDS-Retrovirus Department, Antiviral Cellular Immunity Unit, Pasteur Institute, Paris, France
| | - Per Thor Straten
- Center for Cancer Immunotherapy (CCIT), Department of Hematology, Herlev University Hospital, Copenhagen, Denmark
| | - Ludmila Mueller
- Section for Transplantation Immunology and Immunohaematology, ZMF, University Hospital Tübingen, Waldhörnlestrasse 22, Tübingen, Germany
| | - Robert C. Rees
- School of Biomedical and Natural Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Stephanie E. B. McArdle
- School of Biomedical and Natural Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| |
Collapse
|
62
|
Abstract
The homologous proteins p68 and p72 are members of the DEAD box family of RNA helicases. Here, we show that expression of both of these helicases strongly increases during the polyp-->adenoma-->adenocarcinoma transition in the colon. Furthermore, p68 and p72 form complexes with beta-catenin and promote the ability of beta-catenin to activate gene transcription. Conversely, simultaneous knockdown of p68 and p72 leads to reduced expression of the beta-catenin-regulated genes, c-Myc, cyclin D1, c-jun, and fra-1, all of which are proto-oncogenes. Moreover, transcription of the cell cycle inhibitor p21(WAF1/CIP1), whose expression is suppressed by c-Myc, is enhanced on p68/p72 knockdown. Thus, p68/p72 may contribute to colon cancer formation by directly up-regulating proto-oncogenes and indirectly by down-regulating the growth suppressor p21(WAF1/CIP1). Accordingly, knockdown of p68 and p72 in colon cancer cells inhibits their proliferation and diminishes their ability to form tumors in vivo. Altogether, these results suggest that p68/p72 overexpression is not only a potential marker of colon cancer but is also causally linked to this disease. Therefore, p68 and p72 may be novel targets in the combat against colon cancer.
Collapse
Affiliation(s)
- Sook Shin
- Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
63
|
Yang L, Lin C, Zhao S, Wang H, Liu ZR. Phosphorylation of p68 RNA helicase plays a role in platelet-derived growth factor-induced cell proliferation by up-regulating cyclin D1 and c-Myc expression. J Biol Chem 2007; 282:16811-9. [PMID: 17412694 DOI: 10.1074/jbc.m610488200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p68 RNA helicase is a protypical member of DEAD box family RNA helicase. The protein plays an important role in the cell developmental program and organ maturation. We demonstrated previously that, in response to growth factor platelet-derived growth factor (PDGF)-BB stimulation, p68 is phosphorylated at Tyr(593), and the phosphorylation of p68 promotes epithelial-mesenchymal transition via promoting beta-catenin nuclear translocation (Yang, L., Lin, C., and Liu, Z. R. (2006) Cell 127, 139-155). We show here that the tyrosine phosphorylation of p68 also mediates the effects of PDGF in stimulating cell proliferation. The phosphorylated p68 (referred to as phospho-p68) promotes cell proliferation by activating the transcription of cyclin D1 and c-Myc genes. We show that the ATPase/helicase activities of p68 are required for the activation of cyclin D1 transcription. The phospho-p68 participates in the complex assembled at the cyclin D1 and c-Myc promoters, which strongly suggests a direct role in transcriptional regulation. Furthermore, our data demonstrated that the phosphorylation of p68 at Tyr(593) plays a role in mediating the autocrine loop effects of PDGF, suggesting an important role for p68 phosphorylation in cell proliferation.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
64
|
Yang L, Lin C, Sun SY, Zhao S, Liu ZR. A double tyrosine phosphorylation of P68 RNA helicase confers resistance to TRAIL-induced apoptosis. Oncogene 2007; 26:6082-92. [PMID: 17384675 DOI: 10.1038/sj.onc.1210427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent with the capability of inducing apoptosis specifically in tumor cells. However, cancer cells of many cancer types developed TRAIL resistance, limiting the applications of TRAIL in cancer therapies. We show here that p68 acquires a double tyrosine phosphorylation at Y593 and Y595 in TRAIL-resistant T98G glioblastoma cells. The double phosphorylations are induced by platelet-derived growth factor autocrine loop. The double phosphorylation mediates resistance to TRAIL-induced apoptosis. Our data suggest that the phosphorylated p68 protects the cells from programmed cell death by preventing procaspase-8 from proteolytic cleavage. The double-phosphorylated p68 may also confer apoptosis resistance by upregulation of X-chromosome-linked inhibitor apoptosis protein-associated factor 1. In addition, exogenous expression of p68 mutant that carries mutations at the phosphorylation sites (Y593/595F) dramatically sensitizes TRAIL-resistant cells to TRAIL-induced apoptosis, suggesting a potential therapeutic strategy to overcome TRAIL resistance.
Collapse
Affiliation(s)
- L Yang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
65
|
Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006; 127:139-55. [PMID: 17018282 DOI: 10.1016/j.cell.2006.08.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/26/2006] [Accepted: 08/01/2006] [Indexed: 12/27/2022]
Abstract
The nuclear p68 RNA helicase (referred to as p68) is a prototypical member of the DEAD box family of RNA helicases. The protein plays a very important role in early organ development. In the present study, we characterized the tyrosine phosphorylation of p68 under platelet-derived growth factor (PDGF) stimulation. We demonstrated that tyrosine phosphorylation of p68 at Y593 mediated PDGF-stimulated epithelial-mesenchymal transition (EMT). We showed that PDGF treatment led to phosphorylation of p68 at Y593 in the cell nucleus. The Y593-phosphorylated p68 (referred to as phosphor-p68) promotes beta-catenin nuclear translocation via a Wnt-independent pathway. The phosphor-p68 facilitates beta-catenin nuclear translocation by blocking phosphorylation of beta-catenin by GSK-3beta and displacing Axin from beta-catenin. The beta-catenin nuclear translocation and subsequent interaction with the LEF/TCF was required for the EMT process. These data demonstrated a novel mechanism of phosphor-p68 in mediating the growth factor-induced EMT and uncovered a new pathway to promote beta-catenin nuclear translocation.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
66
|
Abstract
In this issue of Cell, Yang et al. (2006b) show that PDGF, a growth factor that induces the transition of epithelial cells to mesenchymal cells, stimulates the c-Abl kinase-dependent phosphorylation of p68 RNA helicase. Phosphorylated p68 dissociates beta-catenin from the Axin destruction complex, thereby promoting nuclear beta-catenin signaling independent of Wnt activation.
Collapse
Affiliation(s)
- Xi He
- Program of Neurobiology, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA.
| |
Collapse
|
67
|
Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 2006; 34:4206-15. [PMID: 16935882 PMCID: PMC1616952 DOI: 10.1093/nar/gkl460] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The DExD/H box family of proteins includes a large number of proteins that play important roles in RNA metabolism. Members of this family have been shown to act as RNA helicases or unwindases, using the energy from ATP hydrolysis to unwind RNA structures or dissociate RNA–protein complexes in cellular processes that require modulation of RNA structures. However, it is clear that several members of this family are multifunctional and, in addition to acting as RNA helicases in processes such as pre-mRNA processing, play important roles in transcriptional regulation. In this review I shall concentrate on RNA helicase A (Dhx9), DP103 (Ddx20), p68 (Ddx5) and p72 (Ddx17), proteins for which there is a strong body of evidence showing that they play important roles in transcription, often as coactivators or corepressors through their interaction with key components of the transcriptional machinery, such as CREB-binding protein, p300, RNA polymerase II and histone deacetylases.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Cancer Biology Group, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
68
|
Abstract
RNA helicases function as molecular motors that rearrange RNA secondary structure, potentially performing roles in any cellular process involving RNA metabolism. Although RNA helicase association with a range of cellular functions is well documented, their importance in response to abiotic stress is only beginning to emerge. This review summarizes the available data on the expression, biochemistry and physiological function(s) of RNA helicases regulated by abiotic stress. Examples originate primarily from non-mammalian organisms while instances from mammalian sources are restricted to post-translational regulation of helicase biochemical activity. Common emerging themes include the requirement of a cold-induced helicase in non-homeothermic organisms, association and regulation of helicase activity by stress-induced phosphorylation cascades, altered nuclear–cytoplasmic shuttling in eukaryotes, association with the transcriptional apparatus and the diversity of biochemical activities catalyzed by a subgroup of stress-induced helicases. The data are placed in the context of a mechanism for RNA helicase involvement in cellular response to abiotic stress. It is proposed that stress-regulated helicases can catalyze a nonlinear, reversible sequence of RNA secondary structure rearrangements which function in RNA maturation or RNA proofreading, providing a mechanism by which helicase activity alters the activation state of target RNAs through regulation of the reaction equilibrium.
Collapse
Affiliation(s)
- George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| |
Collapse
|
69
|
Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, Rice AM, Lee SB, Uren A. Oncoprotein EWS-FLI1 Activity Is Enhanced by RNA Helicase A. Cancer Res 2006; 66:5574-81. [PMID: 16740692 DOI: 10.1158/0008-5472.can-05-3293] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA helicase A (RHA), a member of the DEXH box helicase family of proteins, is an integral component of protein complexes that regulate transcription and splicing. The EWS-FLI1 oncoprotein is expressed as a result of the chromosomal translocation t(11;22) that occurs in patients with the Ewing's sarcoma family of tumors (ESFT). Using phage display library screening, we identified an EWS-FLI1 binding peptide containing homology to RHA. ESFT cell lines and patient tumors highly expressed RHA. GST pull-down and ELISA assays showed that EWS-FLI1 specifically bound RHA fragment amino acids 630 to 1020, which contains the peptide region discovered by phage display. Endogenous RHA was identified in a protein complex with EWS-FLI1 in ESFT cell lines. Chromatin immunoprecipitation experiments showed both EWS-FLI1 and RHA bound to EWS-FLI1 target gene promoters. RHA stimulated the transcriptional activity of EWS-FLI1 regulated promoters, including Id2, in ESFT cells. In addition, RHA expression in mouse embryonic fibroblast cells stably transfected with EWS-FLI1 enhanced the anchorage-independent phenotype above that with EWS-FLI1 alone. These results suggest that RHA interacts with EWS-FLI1 as a transcriptional cofactor to enhance its function.
Collapse
Affiliation(s)
- Jeffrey A Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gorla L, Cantù M, Miccichè F, Patelli C, Mondellini P, Pierotti MA, Bongarzone I. RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cell Signal 2006; 18:2272-82. [PMID: 16843637 DOI: 10.1016/j.cellsig.2006.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
We report the identification of proteins induced in response to RET/PTC2, an oncogene implicated in thyroid cancers. Anti-phosphotyrosine antibody affinity resin was used to purify Tyr(P)-containing and interacting proteins from 293T and NIH3T3 cells which were transfected with kinase active or inactive RET/PTC and RETMEN2 oncogenes. Proteins were separated by one-dimensional SDS-PAGE, extracted by in-gel digestion, and identified by MALDI-TOF peptide mass fingerprinting. The expression and tyrosine phosphorylation of Sam68, a protein implicated in mRNA nucleocytoplasmic translocation and splicing, were further examined in RET-transfected cells and thyroid tumors. Of relevance, cells transfected with RETMEN2B examined for anti-phosphotyrosine bound proteins, showed other proteins implicated in splicing: DEAD-box p68 RNA helicase, SYNCRIP, and hnRNP K. Western blotting analysis suggested that these proteins are singularly tyrosine phosphorylated in RETMEN2B-transfected cells, and that they constitutively bind with Sam68. The study concludes that regulation of splicing factors is likely to be important in RET-mediated thyroid carcinogenesis.
Collapse
Affiliation(s)
- L Gorla
- Proteomics Laboratory, Department of Experimental Oncology and Lab. Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan Italy
| | | | | | | | | | | | | |
Collapse
|