51
|
Lan X, Bao H, Ge X, Cao J, Fan X, Zhang Q, Liu K, Zhang X, Tan Z, Zheng C, Wang A, Chen C, Zhu X, Wang J, Xu J, Zhu X, Wu X, Wang X, Shao Y, Ge M. Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Sci 2020; 111:2163-2173. [PMID: 32187423 PMCID: PMC7293069 DOI: 10.1111/cas.14389] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland, with a relatively high cure rate. Distant metastasis (DM) of PTC is uncommon, but when it occurs, it significantly decreases the survival of PTC patients. The molecular mechanisms of DM in PTC have not been systematically studied. We performed whole exome sequencing and GeneseeqPrime (425 genes) panel sequencing of the primary tumor, plasma and matched white blood cell samples from 20 PTC with DM and 46 PTC without DM. We identified somatic mutations, gene fusions and copy number alterations and analyzed their relationships with DM of PTC. BRAF-V600E was identified in 73% of PTC, followed by RET fusions (14%) in a mutually exclusive manner (P < 0.0001). We found that gene fusions (RET, ALK or NTRK1) (P < 0.01) and chromosome 22q loss (P < 0.01) were independently associated with DM in both univariate and multivariate analyses. A nomogram model consisting of chromosome 22q loss, gene fusions and three clinical variables was built for predicting DM in PTC (C-index = 0.89). The plasma circulating tumor DNA (ctDNA) detection rate in PTC was only 38.9%; however, it was significantly associated with the metastatic status (P = 0.04), tumor size (P = 0.001) and invasiveness (P = 0.01). In conclusion, gene fusions and chromosome 22q loss were independently associated with DM in PTC and could serve as molecular biomarkers for predicting DM. The ctDNA detection rate was low in non-DM PTC but significantly higher in PTC with DM.
Collapse
Affiliation(s)
- Xiabin Lan
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Hua Bao
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Xinyang Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
- Heartland Christian SchoolColumbianaOHUSA
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xiaojun Fan
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Qihong Zhang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kaihua Liu
- Nanjing Geneseeq Technology Inc.NanjingChina
| | - Xian Zhang
- Nanjing Geneseeq Technology Inc.NanjingChina
| | - Zhuo Tan
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Chuanming Zheng
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Ao Wang
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Chao Chen
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Jiafeng Wang
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Jiajie Xu
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xuhang Zhu
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xue Wu
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | | | - Yang Shao
- Nanjing Geneseeq Technology Inc.NanjingChina
- School of Public HealthNanjing Medical UniversityNanjingChina
| | - Minghua Ge
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
52
|
Ho KC, Lee JJ, Lin CH, Leung CH, Cheng SP. Loss of Integrase Interactor 1 (INI1) Expression in a Subset of Differentiated Thyroid Cancer. Diagnostics (Basel) 2020; 10:E280. [PMID: 32380731 PMCID: PMC7277944 DOI: 10.3390/diagnostics10050280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Alterations in the switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complex are enriched in advanced thyroid cancer. Integrase interactor 1 (INI1), encoded by the SMARCB1 gene on the long arm of chromosome 22, is one of the core subunits of the SWI/SNF complex. INI1 immunohistochemistry is frequently used for the diagnosis of malignant rhabdoid neoplasms. In the present study, we found normal and benign thyroid tissues generally had diffusely intense nuclear immunostaining. Loss of INI1 immunohistochemical expression was observed in 8% of papillary thyroid cancer and 30% of follicular thyroid cancer. Furthermore, loss of INI1 expression was associated with extrathyroidal extension (p < 0.001) and lymph node metastasis (p = 0.038). Analysis of The Cancer Genome Atlas database revealed that SMARCB1 underexpression was associated with the follicular variant subtype and aneuploidy in papillary thyroid cancer. We speculate that SMARCB1 is an important effector in addition to NF2 and CHEK2 inactivation among thyroid cancers with chromosome 22q loss.
Collapse
Affiliation(s)
- Kung-Chen Ho
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; (K.-C.H.); (J.-J.L.)
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; (K.-C.H.); (J.-J.L.)
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104215, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Ching-Hsiang Leung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan;
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei 104215, Taiwan; (K.-C.H.); (J.-J.L.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
53
|
Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, Dai J, Chen W, Gong K, Miao S, Li X, Sun H. m 6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer 2020; 19:40. [PMID: 32106857 PMCID: PMC7045432 DOI: 10.1186/s12943-020-01161-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The importance of mRNA methylation erased by ALKBH5 in mRNA biogenesis, decay, and translation control is an emerging research focus. Ectopically activated YAP is associated with the development of many human cancers. However, the mechanism whereby ALKBH5 regulates YAP expression and activity to inhibit NSCLC tumor growth and metastasis is not clear. METHODS Protein and transcript interactions were analyzed in normal lung cell and NSCLC cells. Gene expression was evaluated by qPCR and reporter assays. Protein levels were determined by immunochemical approaches. Nucleic acid interactions and status were analyzed by immunoprecipitation. Cell behavior was analyzed by standard biochemical tests. The m6A modification was analyzed by MeRIP. RESULTS Our results show that YAP expression is negatively correlated with ALKBH5 expression and plays an opposite role in the regulation of cellular proliferation, invasion, migration, and EMT of NSCLC cells. ALKBH5 reduced m6A modification of YAP. YTHDF3 combined YAP pre-mRNA depending on m6A modification. YTHDF1 and YTHDF2 competitively interacted with YTHDF3 in an m6A-independent manner to regulate YAP expression. YTHDF2 facilitated YAP mRNA decay via the AGO2 system, whereas YTHDF1 promoted YAP mRNA translation by interacting with eIF3a; both these activities are regulated by m6A modification. Furthermore, ALKBH5 decreased YAP activity by regulating miR-107/LATS2 axis in an HuR-dependent manner. Further, ALKBH5 inhibited tumor growth and metastasis in vivo by reducing the expression and activity of YAP. CONCLUSIONS The presented findings suggest m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Moreover, effective inhibition of m6A modification of ALKBH5 might constitute a potential treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Dan Jin
- Clinical Medical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China.
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Xuelin Li
- Cancer research institute, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Hongliang Sun
- Department of reproductive medicine, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| |
Collapse
|
54
|
YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. Nat Commun 2020; 11:74. [PMID: 31900393 PMCID: PMC6941996 DOI: 10.1038/s41467-019-13771-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the promising clinical efficacy of the second-generation anaplastic lymphoma kinase (ALK) inhibitor alectinib in patients with ALK-rearranged lung cancer, some tumor cells survive and eventually relapse, which may be an obstacle to achieving a cure. Limited information is currently available on the mechanisms underlying the initial survival of tumor cells against alectinib. Using patient-derived cell line models, we herein demonstrate that cancer cells survive a treatment with alectinib by activating Yes-associated protein 1 (YAP1), which mediates the expression of the anti-apoptosis factors Mcl-1 and Bcl-xL, and combinatorial inhibition against both YAP1 and ALK provides a longer tumor remission in ALK-rearranged xenografts when compared with alectinib monotherapy. These results suggest that the inhibition of YAP1 is a candidate for combinatorial therapy with ALK inhibitors to achieve complete remission in patients with ALK-rearranged lung cancer.
Collapse
|
55
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
56
|
Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, Li C, Sui C, Jiang J, Lu H, Zhao Z, Dionigi G, Sun H. miR-424-5p Promotes Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:248-260. [PMID: 31890869 PMCID: PMC6921161 DOI: 10.1016/j.omto.2019.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
miR-424-5p has been widely identified to function as an oncomiR in multiple human cancer types. However, the biological function of miR-424-5p in distant metastasis of thyroid cancer, as well as the underlying mechanism, remains not clarified yet. In the current study, miR-424-5p expression was elucidated in 10 paired fresh thyroid cancer tissues and the thyroid cancer dataset from The Cancer Genome Atlas (TCGA). Lung metastasis colonization models in vivo and functional assays in vitro were used to determine the role of miR-424-5p in thyroid cancer. Bioinformatics analysis, western blot, luciferase reporter, and immunofluorescence assays were applied to identify the potential targets and underlying mechanism involved in the functional role of miR-424-5p in lung metastasis of thyroid cancer. Here, we reported that miR-424-5p was upregulated in thyroid cancer, and overexpression of miR-424-5p significantly correlated with distant metastasis of thyroid cancer. Upregulating miR-424-5p promoted, whereas silencing miR-424-5p inhibited, anoikis resistance in vitro and lung metastasis in vivo. Mechanistic investigation further revealed that miR-424-5p promoted anoikis resistance and lung metastasis by inactivating Hippo signaling via simultaneously targeting WWC1, SAV1, and LAST2. Therefore, our results support the idea that miR-424-5p may serve as a potential therapeutic target in lung metastasis of thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Yantao Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Guang Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Daqi Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Nan Liang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Fang Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Jinxi Jiang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Hongzhi Lu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Zihan Zhao
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi," University Hospital "G. Martino," University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| |
Collapse
|
57
|
Correction: NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 2019; 9:1628. [DOI: 10.1158/2159-8290.cd-19-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
58
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
59
|
Nikitski AV, Rominski SL, Condello V, Kaya C, Wankhede M, Panebianco F, Yang H, Altschuler DL, Nikiforov YE. Mouse Model of Thyroid Cancer Progression and Dedifferentiation Driven by STRN-ALK Expression and Loss of p53: Evidence for the Existence of Two Types of Poorly Differentiated Carcinoma. Thyroid 2019; 29:1425-1437. [PMID: 31298630 PMCID: PMC6797076 DOI: 10.1089/thy.2019.0284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Thyroid tumor progression from well-differentiated cancer to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) involves step-wise dedifferentiation associated with loss of iodine avidity and poor outcomes. ALK fusions, typically STRN-ALK, are found with higher incidence in human PDTC compared with well-differentiated cancer and, as previously shown, can drive the development of murine PDTC. The aim of this study was to evaluate thyroid cancer initiation and progression in mice with concomitant expression of STRN-ALK and inactivation of the tumor suppressor p53 (Trp53) in thyroid follicular cells. Methods: Transgenic mice with thyroid-specific expression of STRN-ALK and biallelic p53 loss were generated and aged on a regular diet or with methimazole and sodium perchlorate goitrogen treatment. Development and progression of thyroid tumors were monitored by using ultrasound imaging, followed by detailed histological and immunohistochemical evaluation. Gene expression analysis was performed on selected tumor samples by using RNA-Seq and quantitative RT-PCR. Results: In mice treated with goitrogen, the first thyroid cancers appeared at 6 months of age, reaching 86% penetrance by the age of 12 months, while a similar rate (71%) of tumor occurrence in mice on regular diet was observed by 18 months of age. Histological examination revealed well-differentiated papillary thyroid carcinomas (PTC) (n = 26), PDTC (n = 21), and ATC (n = 8) that frequently coexisted in the same thyroid gland. The tumors were frequently lethal and associated with the development of lung metastasis in 24% of cases. Histological and immunohistochemical characteristics of these cancers recapitulated tumors seen in humans. Detailed analysis of PDTC revealed two tumor types with distinct cell morphology and immunohistochemical characteristics, designated as PDTC type 1 (PDTC1) and type 2 (PDTC2). Gene expression analysis showed that PDTC1 tumors retained higher expression of thyroid differentiation genes including Tg and Slc5a5 (Nis) as compared with PDTC2 tumors. Conclusions: In this study, we generated a new mouse model of multistep thyroid cancer dedifferentiation with evidence of progression from PTC to PDTC and ATC. Further, PDTC in these mice showed two distinct histologic appearances correlated with levels of expression of thyroid differentiation and iodine metabolism genes, suggesting a possibility of existence of two PDTC types with different functional characteristics and potential implication for therapeutic approaches to these tumors.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase/genetics
- Animals
- Antithyroid Agents/toxicity
- Calmodulin-Binding Proteins/genetics
- Cell Dedifferentiation/genetics
- Cell Differentiation/genetics
- Disease Models, Animal
- Disease Progression
- Membrane Proteins/genetics
- Methimazole/toxicity
- Mice
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Perchlorates/toxicity
- RNA-Seq
- Sodium Compounds/toxicity
- Symporters/genetics
- Thyroglobulin/genetics
- Thyroid Cancer, Papillary/chemically induced
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Carcinoma, Anaplastic/chemically induced
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/chemically induced
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
| | - Susan L. Rominski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincenzo Condello
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Hong Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Address correspondence to: Yuri E. Nikiforov, MD, PhD, Department of Pathology, University of Pittsburgh, CLB Room 8031, 3477 Euler Way, Pittsburgh, PA 15213
| |
Collapse
|
60
|
The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling. Oncogene 2019; 38:6370-6381. [PMID: 31312020 PMCID: PMC6756068 DOI: 10.1038/s41388-019-0883-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Inactivation of the tumor suppressor NF2/merlin underlies neurofibromatosis type 2 (NF2) and some sporadic tumors. Previous studies have established that merlin mediates contact inhibition of proliferation; however, the exact mechanisms remain obscure and multiple pathways have been implicated. We have previously reported that merlin inhibits Ras and Rac activity during contact inhibition, but how merlin regulates Ras activity has remained elusive. Here we demonstrate that merlin can directly interact with both Ras and p120RasGAP (also named RasGAP). While merlin does not increase the catalytic activity of RasGAP, the interactions with Ras and RasGAP may fine-tune Ras signaling. In vivo, loss of RasGAP in Schwann cells, unlike the loss of merlin, failed to promote tumorigenic growth in an orthotopic model. Therefore, modulation of Ras signaling through RasGAP likely contributes to, but is not sufficient to account for, merlin’s tumor suppressor activity. Our study provides new insight into the mechanisms of merlin-dependent Ras regulation and may have additional implications for merlin-dependent regulation of other small GTPases.
Collapse
|
61
|
Negrón-Pérez VM, Hansen PJ. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol Reprod 2019; 98:170-183. [PMID: 29228123 DOI: 10.1093/biolre/iox172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
The morula-stage embryo is transformed into a blastocyst composed of epiblast, hypoblast, and trophectoderm (TE) through mechanisms that, in the mouse, involve the Hippo signaling and mitogen-activated kinase (MAPK) pathways. Using the cow as an additional model, we tested the hypotheses that TE and hypoblast differentiation were regulated by the Hippo pathway regulators, yes-associated protein 1 (YAP1) and angiomotin (AMOT), and MAPK kinase 1/2 (MAPK1/2). The presence of YAP1 and CDX2 in the nucleus and cytoplasm of MII oocytes and embryos was evaluated by immunofluorescence labeling. For both molecules, localization changed from cytoplasmic to nuclear as development advanced. Inhibition of YAP1 activity, either by verteporfin or a YAP1 targeting GapmeR, reduced the percent of zygotes that became blastocysts, the proportion of blastocysts that hatched and numbers of CDX2+ cells in blastocysts. Moreover, the YAP1-targeting GapmeR altered expression of 15 of 91 genes examined in the day 7.5 blastocyst. Treatment of embryos with an AMOT targeting GapmeR did not affect blastocyst development or hatching but altered expression of 16 of 91 genes examined at day 7.5 and reduced the number of CDX2+ nuclei and YAP1+ nuclei in blastocysts at day 8.5 of development. Inhibition of MAPK1/2 with PD0325901 did not affect blastocyst development but increased the number of epiblast cells. Results indicate a role for YAP1 and AMOT in function of TE in the bovine blastocyst. YAP1 can also affect function of the epiblast and hypoblast, and MAPK signaling is important for inner cell mass differentiation by reducing epiblast numbers.
Collapse
Affiliation(s)
- Verónica M Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
62
|
You MH, Jeon MJ, Kim TY, Kim WB, Shong YK, Kim WG. Expression of NF2 Modulates the Progression of BRAFV600E Mutated Thyroid Cancer Cells. Endocrinol Metab (Seoul) 2019; 34:203-212. [PMID: 31257748 PMCID: PMC6599905 DOI: 10.3803/enm.2019.34.2.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We previously reported the frequent neurofibromatosis 2 (NF2) gene mutations in anaplastic thyroid cancers in association with the BRAFV600E mutation. We aimed to investigate the role of NF2 in thyroid cancer with BRAF mutation. METHODS To identify the function of NF2 in thyroid cancers, we investigated the changes in cell proliferation, colon formation, migration and invasion of thyroid cancer cells (8505C, BHT101, and KTC-1) with BRAFV600E mutation after overexpression and knock-down of NF2. We also examined how cell proliferation changed when NF2 was mutagenized. Human NF2 expression in papillary thyroid carcinoma (PTC) was analyzed using the The Cancer Genome Atlas (TCGA) data. RESULTS First, NF2 was overexpressed in 8505C and KTC-1 cells. Compared to control, NF2 overexpressed group of both thyroid cancer cells showed significant inhibition in cell proliferation and colony formation. These results were also confirmed by cell migration and invasion assay. After knock-down of NF2 in 8505C cells, there were no significant changes in cell proliferation and colony formation, compared with the control group. However, after mutagenized S288* and Q470* sites of NF2 gene, the cell proliferation increased compared to NF2 overexpression group. In the analysis of TCGA data, the mRNA expression of NF2 was significantly decreased in PTCs with lateral cervical lymph node (LN) metastasis compared with PTCs without LN metastasis. CONCLUSION Our study suggests that NF2 might play a role as a tumor suppressor in thyroid cancer with BRAF mutation. More studies are needed to elucidate the mechanism how NF2 acts in thyroid cancer with BRAF mutation.
Collapse
Affiliation(s)
- Mi Hyeon You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
63
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
64
|
Zhang X, Li F, Cui Y, Liu S, Sun H. Mst1 overexpression combined with Yap knockdown augments thyroid carcinoma apoptosis via promoting MIEF1-related mitochondrial fission and activating the JNK pathway. Cancer Cell Int 2019; 19:143. [PMID: 31139020 PMCID: PMC6530088 DOI: 10.1186/s12935-019-0860-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cancer cell viability is strongly modulated by the Hippo pathway, which includes mammalian STE20-like protein kinase 1 (Mst1) and yes-associated protein (Yap). Although the roles of Mst1 and Yap in thyroid carcinoma cell death have been fully addressed, no study has determined whether differential modification of Mst1 and Yap could further suppress thyroid carcinoma progression. The aim of our study was to explore the antiapoptotic effects exerted by combined Mst1 overexpression and Yap knockdown in thyroid carcinoma MDA-T32 cells in vitro. Methods Mst1 adenovirus and Yap shRNA were transfected into MDA-T32 cells to overexpress Mst1 and inhibit Yap, respectively. Cell viability and death were determined via an MTT assay, a TUNEL assay and western blotting. Mitochondrial function, mitochondrial fission and pathway studies were performed via western blotting and immunofluorescence. Results The results of our study showed that combined Mst1 overexpression and Yap knockdown further augmented MDA-T32 cell death by mediating mitochondrial damage. In addition, cancer cell migration and proliferation were suppressed by combined Mst1 overexpression and Yap knockdown. At the molecular level, mitochondrial membrane potential, ATP production, respiratory function, and caspase-9-related apoptosis were activated by combined Mst1 overexpression and Yap knockdown. Further, we found that fatal mitochondrial fission was augmented by combined Mst1 overexpression and Yap knockdown in a manner dependent on the JNK-MIEF1 pathway. Inhibition of JNK-MIEF1 pathway activity abolished the proapoptotic effects exerted by Mst1/Yap on MDA-T32 cells. Conclusions Taken together, our data suggest that Mst1 activation and Yap inhibition coordinate to augment thyroid cancer cell death by controlling the JNK-MIEF1-mitochondria pathway, suggesting that differential regulation of the core Hippo pathway components is potentially a novel therapeutic tool for the treatment of thyroid cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0860-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Yeqing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Shuang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Haichen Sun
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| |
Collapse
|
65
|
Litan A, Li Z, Tokhtaeva E, Kelly P, Vagin O, Langhans SA. A Functional Interaction Between Na,K-ATPase β 2-Subunit/AMOG and NF2/Merlin Regulates Growth Factor Signaling in Cerebellar Granule Cells. Mol Neurobiol 2019; 56:7557-7571. [PMID: 31062247 DOI: 10.1007/s12035-019-1592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
The Na,K-ATPase, consisting of a catalytic α-subunit and a regulatory β-subunit, is a ubiquitously expressed ion pump that carries out the transport of Na+ and K+ across the plasma membranes of most animal cells. In addition to its pump function, Na,K-ATPase serves as a signaling scaffold and a cell adhesion molecule. Of the three β-subunit isoforms, β1 is found in almost all tissues, while β2 expression is mostly restricted to brain and muscle. In cerebellar granule cells, the β2-subunit, also known as adhesion molecule on glia (AMOG), has been linked to neuron-astrocyte adhesion and granule cell migration, suggesting its role in cerebellar development. Nevertheless, little is known about molecular pathways that link the β2-subunit to its cellular functions. Using cerebellar granule precursor cells, we found that the β2-subunit, but not the β1-subunit, negatively regulates the expression of a key activator of the Hippo/YAP signaling pathway, Merlin/neurofibromin-2 (NF2). The knockdown of the β2-subunit resulted in increased Merlin/NF2 expression and affected downstream targets of Hippo signaling, i.e., increased YAP phosphorylation and decreased expression of N-Ras. Further, the β2-subunit knockdown altered the kinetics of epidermal growth factor receptor (EGFR) signaling in a Merlin-dependent mode and impaired EGF-induced reorganization of the actin cytoskeleton. Therefore, our studies for the first time provide a functional link between the Na,K-ATPase β2-subunit and Merlin/NF2 and suggest a role for the β2-subunit in regulating cytoskeletal dynamics and Hippo/YAP signaling during neuronal differentiation.
Collapse
Affiliation(s)
- Alisa Litan
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Zhiqin Li
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Elmira Tokhtaeva
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Patience Kelly
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Olga Vagin
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
| |
Collapse
|
66
|
Calses PC, Crawford JJ, Lill JR, Dey A. Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities. Trends Cancer 2019; 5:297-307. [DOI: 10.1016/j.trecan.2019.04.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
|
67
|
Yang LX, Wu J, Guo ML, Zhang Y, Ma SG. Suppression of long non-coding RNA TNRC6C-AS1 protects against thyroid carcinoma through DNA demethylation of STK4 via the Hippo signalling pathway. Cell Prolif 2019; 52:e12564. [PMID: 30938030 PMCID: PMC6536409 DOI: 10.1111/cpr.12564] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023] Open
Abstract
Objectives Thyroid carcinoma (TC) represents a malignant neoplasm affecting the thyroid. Current treatment strategies include the removal of part of the thyroid; however, this approach is associated with a significant risk of developing hypothyroidism. In order to adequately understand the expression profiles of TNRC6C‐AS1 and STK4 and their potential functions in TC, an investigation into their involvement with Hippo signalling pathway and the mechanism by which they influence TC apoptosis and autophagy were conducted. Methods A microarray analysis was performed to screen differentially expressed lncRNAs associated with TC. TC cells were employed to evaluate the role of TNRC6C‐AS1 by over‐expression or silencing means. The interaction of TNRC6C‐AS1 with methylation of STK4 promoter was evaluated to elucidate its ability to elicit autophagy, proliferation and apoptosis. Results TNRC6C‐AS1 was up‐regulated while STK4 was down‐regulated, where methylation level was elevated. STK4 was verified as a target gene of TNRC6C‐AS1, which was enriched by methyltransferase. Methyltransferase’s binding to STK4 increased expression of its promoter. Over‐expressed TNRC6C‐AS1 inhibited STK4 by promoting STK4 methylation and reducing the total protein levels of MST1 and LATS1/2. The phosphorylation of YAP1 phosphorylation was decreased, which resulted in the promotion of SW579 cell proliferation and tumorigenicity. Conclusion Based on our observations, we subsequently confirmed the anti‐proliferative, pro‐apoptotic and pro‐autophagy capabilities of TNRC6C‐AS1 through STK4 methylation via the Hippo signalling pathway in TC.
Collapse
Affiliation(s)
- Liu-Xue Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ji Wu
- Department of Thyroid and Breast Surgery, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China.,Department of Thyroid and Breast Surgery, Nanjing Drum Tower Hospital, Suqian, China
| | - Man-Li Guo
- Department of Endocrinology and Metabolism, Suqian People's Hospital, Nanjing Drum Tower Hospital, Suqian, China
| | - Yong Zhang
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, China.,Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China
| | - Shao-Gang Ma
- Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China.,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
68
|
Ibrahimpasic T, Ghossein R, Shah JP, Ganly I. Poorly Differentiated Carcinoma of the Thyroid Gland: Current Status and Future Prospects. Thyroid 2019; 29:311-321. [PMID: 30747050 PMCID: PMC6437626 DOI: 10.1089/thy.2018.0509] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poorly differentiated thyroid cancer (PDTC) is a rare but clinically highly significant entity because it accounts for most fatalities from non-anaplastic follicular cell-derived thyroid cancer. Due to the relative rarity of the disease and heterogeneous diagnostic criteria, studies on PDTC have been limited. In light of the evolution of ultra-deep next-generation sequencing technologies and through correlation of clinicopathologic and genomic characteristics of PDTC, an improved understanding of the biology of PDTC has been facilitated. Here, the diagnostic criteria, clinicopathologic characteristics, management, and outcomes in PDTC, as well as genomic drivers in PDTC reported in recent next-generation sequencing studies, are reviewed. In addition, future prospects in improving the outcomes in PDTC patients are reviewed. SUMMARY PDTC patients tend to present with adverse clinicopathologic characteristics: older age, male predominance, advanced locoregional disease, and distant metastases. Surgery with clearance of all gross disease can achieve satisfactory locoregional control. However, the majority of PDTC patients die of distant disease. Five-year disease-specific survival for PDTC patients has been reported at 66%. On multivariate analysis, reported predictors of poor survival in PDTC patients have been older age (>45 years), T4a pathological stage, extrathyroidal extension, high mitotic rate, tumor necrosis, and distant metastasis at presentation. BRAFV600E or RAS mutations (27% and 24% of cases, respectively) remain mutually exclusive main drivers in PDTC. TERT promoter mutations represent the most common alteration in PDTC (40%). Mutation in translation initiation factor EIF1AX (11%) and tumor suppressor TP53 (16%) have also been reported in PDTC. High rates of novel mutations (MED12 and RBM10) have been reported in fatal PDTC (15% and 12%, respectively). Chromosome 1q gains represent the most common arm-level alterations in PDTC, and those patients show worse survival rates. Chromosome 22q losses are also found in PDTC and show strong association with RAS mutation. CONCLUSIONS These new insights into the clinicopathologic and molecular characteristics of PDTC, together with further advancement in ultra-deep sequencing technologies, will be conducive in narrowing the focus in order to develop novel targeted therapies and improve the outcomes in PDTC patients.
Collapse
Affiliation(s)
- Tihana Ibrahimpasic
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jatin P. Shah
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Address correspondence to: Ian Ganly, MD, PhD, Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
69
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
70
|
Isfort I, Cyra M, Elges S, Kailayangiri S, Altvater B, Rossig C, Steinestel K, Grünewald I, Huss S, Eßeling E, Mikesch JH, Hafner S, Simmet T, Wozniak A, Schöffski P, Larsson O, Wardelmann E, Trautmann M, Hartmann W. SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma. Clin Cancer Res 2019; 25:3718-3731. [DOI: 10.1158/1078-0432.ccr-17-3553] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/02/2018] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
|
71
|
Yu C, Zhang L, Luo D, Yan F, Liu J, Shao S, Zhao L, Jin T, Zhao J, Gao L. MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid 2018; 28:1627-1641. [PMID: 30244634 PMCID: PMC6308293 DOI: 10.1089/thy.2017.0626] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: MiR-146b has been reported to be overexpressed in papillary thyroid cancer (PTC) tissues and associated with aggressive PTC. MiR-146b is regarded as a relevant diagnostic marker for this type of cancer. MiR-146b-5p has been confirmed to increase cell proliferation by repressing SMAD4. However, detailed functional analysis of another mature form of miR-146b, miR-146b-3p, has not been carried out. This study aimed to identify the differential expression of miR-146b-5p and miR-146b-3p in more aggressive PTC associated with lymph node metastasis, and further elucidate the contribution and mechanism of miR-146b-3p in the process of PTC metastasis. Methods: Expression of miR-146b-5p and miR-146b-3p was assessed in formalin-fixed paraffin-embedded tissue samples from PTC patients, and the relationship with lymph node metastasis was analyzed. A variety of PTC cells, including BHP10-3, BHP10-3SCmice, and K1 cells, were cultured and treated with miR-146b-5p or miR-146b-3p mimics/inhibitors. The cell migration and invasion abilities were characterized by the real-time cell analyzer assay and Transwell™ assay. PTC xenograft models were used to examine the effect of miR-146b-3p on PTC metastatic ability in vivo. Direct downstream targets of miR-146b-3p were analyzed by luciferase reporter assay and Western blotting. The mechanism by which miR-146b-3p affects cell metastasis was further characterized by co-transfection with merlin, the protein product of the NF2 gene. Results: MiR-146b-5p and miR-146b-3p expression was significantly higher in thyroid cancer tissues and cell lines than in normal thyroid tissue and cells. Moreover, expression of miR-146b-5p and miR-146b-3p was further increased in thyroid metastatic nodes than in thyroid cancer. After overexpression of miR-146b-5p or miR-146b-3p in BHP10-3 or K1 cells, PTC migration and invasion were increased. Notably, miR-146b-3p increased cell migration and invasion more obviously than did miR-146b-5p. Overexpression of miR-146b-3p also significantly promoted PTC tumor metastasis in vivo. Luciferase reporter assay results revealed that NF2 is a downstream target of miR-146b-3p in PTC cells, as miR-146b-3p bound directly to the 3' untranslated region of NF2, thus reducing protein levels of NF2. Overexpression of merlin reversed the enhanced aggressive effects of miR-146b-3p. Conclusions: Overexpression of miR-146b-5p and miR-146b-3p is associated with PTC metastasis. MiR-146b-3p enhances cell invasion and metastasis more obviously than miR-146b-5p through the suppression of the NF2 gene. These findings suggest a potential diagnostic and therapeutic value of these miRNAs in PTC metastasis.
Collapse
Affiliation(s)
- Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Address correspondence to: Chunxiao Yu, PhD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| | - Li Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Third Hospital, Shandong, P.R. China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- School of Medicine, Shandong University, Shandong, P.R. China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Tong Jin
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Shandong, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
- Ling Gao, PhD, MD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| |
Collapse
|
72
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
73
|
Szlachta K, Kuscu C, Tufan T, Adair SJ, Shang S, Michaels AD, Mullen MG, Fischer NL, Yang J, Liu L, Trivedi P, Stelow EB, Stukenberg PT, Parsons JT, Bauer TW, Adli M. CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response. Nat Commun 2018; 9:4275. [PMID: 30323222 PMCID: PMC6189038 DOI: 10.1038/s41467-018-06676-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Predicting the response and identifying additional targets that will improve the efficacy of chemotherapy is a major goal in cancer research. Through large-scale in vivo and in vitro CRISPR knockout screens in pancreatic ductal adenocarcinoma cells, we identified genes whose genetic deletion or pharmacologic inhibition synergistically increase the cytotoxicity of MEK signaling inhibitors. Furthermore, we show that CRISPR viability scores combined with basal gene expression levels could model global cellular responses to the drug treatment. We develop drug response evaluation by in vivo CRISPR screening (DREBIC) method and validated its efficacy using large-scale experimental data from independent experiments. Comparative analyses demonstrate that DREBIC predicts drug response in cancer cells from a wide range of tissues with high accuracy and identifies therapeutic vulnerabilities of cancer-causing mutations to MEK inhibitors in various cancer types. Predicting the response to chemotherapy is a major goal of cancer research. Here the authors use CRISPR knockout screens in pancreatic ductal adenocarcinoma cells to identify deletions synergistic with MEK inhibitors.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Sara J Adair
- Department of Surgery, University of Virginia School of Medicine, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Alex D Michaels
- Department of Surgery, University of Virginia School of Medicine, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - Matthew G Mullen
- Department of Surgery, University of Virginia School of Medicine, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - Natasha Lopes Fischer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Jiekun Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Limin Liu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Prasad Trivedi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Edward B Stelow
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - J Thomas Parsons
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA
| | - Todd W Bauer
- Department of Surgery, University of Virginia School of Medicine, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 JPA, Pinn Hall, Charlottesville, VA, 22908, USA.
| |
Collapse
|
74
|
Krishnamoorthy GP, Davidson NR, Leach SD, Zhao Z, Lowe SW, Lee G, Landa I, Nagarajah J, Saqcena M, Singh K, Wendel HG, Dogan S, Tamarapu PP, Blenis J, Ghossein RA, Knauf JA, Rätsch G, Fagin JA. EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discov 2018; 9:264-281. [PMID: 30305285 DOI: 10.1158/2159-8290.cd-18-0606] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
Translation initiation is orchestrated by the cap binding and 43S preinitiation complexes (PIC). Eukaryotic initiation factor 1A (EIF1A) is essential for recruitment of the ternary complex and for assembling the 43S PIC. Recurrent EIF1AX mutations in papillary thyroid cancers are mutually exclusive with other drivers, including RAS. EIF1AX mutations are enriched in advanced thyroid cancers, where they display a striking co-occurrence with RAS, which cooperates to induce tumorigenesis in mice and isogenic cell lines. The C-terminal EIF1AX-A113splice mutation is the most prevalent in advanced thyroid cancer. EIF1AX-A113splice variants stabilize the PIC and induce ATF4, a sensor of cellular stress, which is co-opted to suppress EIF2α phosphorylation, enabling a general increase in protein synthesis. RAS stabilizes c-MYC, an effect augmented by EIF1AX-A113splice. ATF4 and c-MYC induce expression of amino acid transporters and enhance sensitivity of mTOR to amino acid supply. These mutually reinforcing events generate therapeutic vulnerabilities to MEK, BRD4, and mTOR kinase inhibitors. SIGNIFICANCE: Mutations of EIF1AX, a component of the translation PIC, co-occur with RAS in advanced thyroid cancers and promote tumorigenesis. EIF1AX-A113splice drives an ATF4-induced dephosphorylation of EIF2α, resulting in increased protein synthesis. ATF4 also cooperates with c-MYC to sensitize mTOR to amino acid supply, thus generating vulnerability to mTOR kinase inhibitors. This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natalie R Davidson
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven D Leach
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gina Lee
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Iňigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Nagarajah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasanna P Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Blenis
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunnar Rätsch
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
75
|
Kitajima S, Asahina H, Chen T, Guo S, Quiceno LG, Cavanaugh JD, Merlino AA, Tange S, Terai H, Kim JW, Wang X, Zhou S, Xu M, Wang S, Zhu Z, Thai TC, Takahashi C, Wang Y, Neve R, Stinson S, Tamayo P, Watanabe H, Kirschmeier PT, Wong KK, Barbie DA. Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS. Cancer Cell 2018; 34:439-452.e6. [PMID: 30205046 PMCID: PMC6422029 DOI: 10.1016/j.ccell.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Despite extensive efforts, oncogenic KRAS remains resistant to targeted therapy. Combined downstream RAL-TBK1 and MEK inhibition induces only transient lung tumor shrinkage in KRAS-driven genetically engineered mouse models (GEMMs). Using the sensitive KRAS;LKB1 (KL) mutant background, we identify YAP1 upregulation and a therapy-induced secretome as mediators of acquired resistance. This program is reversible, associated with H3K27 promoter acetylation, and suppressed by BET inhibition, resensitizing resistant KL cells to TBK1/MEK inhibition. Constitutive YAP1 signaling promotes intrinsic resistance in KRAS;TP53 (KP) mutant lung cancer. Intermittent treatment with the BET inhibitor JQ1 thus overcomes resistance to combined pathway inhibition in KL and KP GEMMs. Using potent and selective TBK1 and BET inhibitors we further develop an effective therapeutic strategy with potential translatability to the clinic.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- AMP-Activated Protein Kinases
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- HEK293 Cells
- Humans
- Immunity, Innate/drug effects
- Insulin-Like Growth Factor I/immunology
- Insulin-Like Growth Factor I/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Transcription Factors
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hajime Asahina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; First Department of Medicine, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sujuan Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Laura Gutierrez Quiceno
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jillian D Cavanaugh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ashley A Merlino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shoichiro Tange
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Xiaoen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Man Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zehua Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yujin Wang
- Gilead Sciences, Foster City, CA 94404, USA
| | | | | | - Pablo Tamayo
- Moores Cancer Center and School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hideo Watanabe
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul T Kirschmeier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
76
|
Xu W, Yang Z, Xie C, Zhu Y, Shu X, Zhang Z, Li N, Chai N, Zhang S, Wu K, Nie Y, Lu N. PTEN lipid phosphatase inactivation links the hippo and PI3K/Akt pathways to induce gastric tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:198. [PMID: 30134988 PMCID: PMC6104022 DOI: 10.1186/s13046-018-0795-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Background Phosphatase and tensin homolog (PTEN) is an important tumor suppressor gene, and its encoded protein has activities of both a protein phosphatase and a lipid phosphatase. However, the substitution effect of protein phosphatase activity remains unclear. PI3K/Akt is the most common pathway negatively regulated by PTEN. The Hippo and PI3K/Akt pathways have a joint effect in regulating cell proliferation and apoptosis. Therefore, how PTEN lipid phosphatase inactivation contributes to the occurrence and development of gastric cancer and the potential role of the Hippo and PI3K/Akt pathways in PTEN lipid phosphatase inactivation mediated gastric tumorigenesis remain to be explored. Methods Immunohistochemical staining was performed to detect the expression of p-PTEN and YAP in a gastric cancer tissue microarray. Stable cell lines expressing a wild-type or dominant-negative mutant PTEN were established. The proliferation and migration of stable cells were detected by MTT, BrdU, and colony-formation, transwell assay and high content analysis in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the Hippo and Akt signaling pathways were detected by western blot. Nuclear-cytoplasm separation, immunofluorescence and coimmunoprecipitation analyses were conducted to explore the dysregulation of Hippo in the stable cell lines. Results PTEN lipid phosphatase inactivation strongly promoted the proliferation and migration of gastric cancer cells in vitro and tumor growth in vivo. A immunohistochemical analysis of gastric cancer tissues revealed a significant correlation between phosphorylated PTEN and nuclear YAP expression, and both were determined to be independent prognostic factors for gastric cancer. Mechanistically, PTEN lipid phosphatase inactivation abolished the MOB1-LATS1/2 interaction, decreased YAP phosphorylation and finally promoted YAP nuclear translocation, which enhanced the synergistic effect of YAP-TEAD, thus inducing cell proliferation and migration. Moreover, PTEN lipid phosphatase inactivation promoted the PI3K/Akt pathway, and disruption of YAP-TEAD-driven transcription decreased the activation of Akt in a dose-dependent manner. Conclusions Taken together, our findings indicate that PTEN lipid phosphatase inactivation links the Hippo and PI3K/Akt pathways to promote gastric tumorigenesis and cancer development. Electronic supplementary material The online version of this article (10.1186/s13046-018-0795-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhe Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Na Chai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Song Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
77
|
Li D, Wang Q, Li N, Zhang S. miR‑205 targets YAP1 and inhibits proliferation and invasion in thyroid cancer cells. Mol Med Rep 2018; 18:1674-1681. [PMID: 29845281 DOI: 10.3892/mmr.2018.9074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑205 (miR‑205) has been reported to be downregulated, and serves critical roles in the pathogenesis and progression of several types of cancer, including breast, prostate and lung cancer. However, the underlying mechanism of miR‑205 in thyroid cancer remains unclear. In the present study, it was demonstrated that the expression of miR‑205 was reduced in thyroid cancer tissues compared with non‑cancer tissues. In addition, miR‑205‑knockdown models in the BHT‑101 cell line and ectopic expression models in the 8505‑C cell line were used to measure the biological functions of miR‑205. The results indicated that miR‑205 inhibited certain aspects of thyroid cancer, including cell proliferation, migration and invasion. Furthermore, Yes‑associated protein 1 (YAP1) was identified as a target gene of miR‑205 and its expression was negatively correlated with that of miR‑205 in thyroid cancer tissues. Depletion of YAP1 partially reduced the anti‑miR‑205‑induced cell growth and invasion. The results of the present study suggested that the tumor suppressive functions of miR‑205 via targeting YAP1 could be a novel target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Dewei Li
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Qiang Wang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Ning Li
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Shuilong Zhang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
78
|
Untch BR, Dos Anjos V, Garcia-Rendueles MER, Knauf JA, Krishnamoorthy GP, Saqcena M, Bhanot UK, Socci ND, Ho AL, Ghossein R, Fagin JA. Tipifarnib Inhibits HRAS-Driven Dedifferentiated Thyroid Cancers. Cancer Res 2018; 78:4642-4657. [PMID: 29760048 DOI: 10.1158/0008-5472.can-17-1925] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
Of the three RAS oncoproteins, only HRAS is delocalized and inactivated by farnesyltransferase inhibitors (FTI), an approach yet to be exploited clinically. In this study, we treat mice bearing Hras-driven poorly differentiated and anaplastic thyroid cancers (Tpo-Cre/HrasG12V/p53flox/flox ) with the FTI tipifarnib. Treatment caused sustained tumor regression and increased survival; however, early and late resistance was observed. Adaptive reactivation of RAS-MAPK signaling was abrogated in vitro by selective RTK (i.e., EGFR, FGFR) inhibitors, but responses were ineffective in vivo, whereas combination of tipifarnib with the MEK inhibitor AZD6244 improved outcomes. A subset of tumor-bearing mice treated with tipifarnib developed acquired resistance. Whole-exome sequencing of resistant tumors identified a Nf1 nonsense mutation and an activating mutation in Gnas at high allelic frequency, supporting the on-target effects of the drug. Cell lines modified with these genetic lesions recapitulated tipifarnib resistance in vivo This study demonstrates the feasibility of targeting Ras membrane association in cancers in vivo and predicts combination therapies that confer additional benefit.Significance: Tipifarnib effectively inhibits oncogenic HRAS-driven tumorigenesis and abrogating adaptive signaling improves responses. NF1 and GNAS mutations drive acquired resistance to Hras inhibition, supporting the on-target effects of the drug. Cancer Res; 78(16); 4642-57. ©2018 AACR.
Collapse
Affiliation(s)
- Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vanessa Dos Anjos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Umeshkumar K Bhanot
- Pathology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas D Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
79
|
Fan Z, Xia H, Xu H, Ma J, Zhou S, Hou W, Tang Q, Gong Q, Nie Y, Bi F. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma. Biomed Pharmacother 2018; 103:147-156. [PMID: 29649630 DOI: 10.1016/j.biopha.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
High expression levels of CD44 and YAP have been identified as poor prognostic factors in hepatocellular carcinoma (HCC). However, the mechanistic relationship between CD44 and YAP during HCC tumorigenesis remains largely unknown. To investigate the mutual regulation between standard CD44 (CD44S) and YAP1 in HCC cell lines and tissue samples, CD44S and YAP1 expression in 40 pairs of tumor samples and matched distal normal tissues from HCC patients was examined by immunohistochemical staining. High expression of either CD44S or YAP1 was associated with a younger age and worse pathology grade. In addition, high levels of CD44S and YAP1 were associated with increased vascular invasion and more severe liver cirrhosis, respectively. CD44S expression was positively correlated with YAP1 expression in these HCC tissues. In vitro experiments suggested that CD44S could positively regulate the expression of YAP1 and its target genes via the PI3K/Akt pathway in HCC cells. Moreover, CD44S is regulated by the YAP1/TEAD axis. These results reveal a novel positive feedback loop involving CD44S and YAP1, in which CD44S functions as both an upstream regulator and a downstream effector of YAP1 in HCC. This feedback loop might constitute a broadly conserved module for regulating cell proliferation and invasion during HCC tumorigenesis. Blocking this positive feedback loop that involves CD44S and YAP1 might represent a new approach for HCC treatment.
Collapse
Affiliation(s)
- Zhenhai Fan
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Key Laboratory of Cell Engineering of Guizhou, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 573003, PR China
| | - Hongwei Xia
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huanji Xu
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ji Ma
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China; Department of Breast Surgery, Lanzhou General Hospital of PLA, Lanzhou, Gansu, 730000, PR China
| | - Sheng Zhou
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wanting Hou
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qiulin Tang
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi'an, Shanxi, 710032, PR China
| | - Feng Bi
- Department of Medical Oncology and Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
80
|
Liao T, Wei WJ, Wen D, Hu JQ, Wang Y, Ma B, Cao YM, Xiang J, Guan Q, Chen JY, Sun GH, Zhu YX, Li DS, Ji QH. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway. J Cancer 2018; 9:1329-1336. [PMID: 29721041 PMCID: PMC5929076 DOI: 10.7150/jca.21915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023] Open
Abstract
Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC.
Collapse
Affiliation(s)
- Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Min Cao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia-Ying Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guo-Hua Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duan-Shu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
81
|
Liu H, Murphy CJ, Karreth FA, Emdal KB, White FM, Elemento O, Toker A, Wulf GM, Cantley LC. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discov 2018; 8:354-369. [PMID: 29203461 PMCID: PMC5907916 DOI: 10.1158/2159-8290.cd-17-0679] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancers (TNBC) are genetically characterized by aberrations in TP53 and a low rate of activating point mutations in common oncogenes, rendering it challenging in applying targeted therapies. We performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) to identify somatic genetic alterations in mouse models of TNBCs driven by loss of Trp53 alone or in combination with Brca1 Amplifications or translocations that resulted in elevated oncoprotein expression or oncoprotein-containing fusions, respectively, as well as frameshift mutations of tumor suppressors were identified in approximately 50% of the tumors evaluated. Although the spectrum of sporadic genetic alterations was diverse, the majority had in common the ability to activate the MAPK/PI3K pathways. Importantly, we demonstrated that approved or experimental drugs efficiently induce tumor regression specifically in tumors harboring somatic aberrations of the drug target. Our study suggests that the combination of WES and RNA-seq on human TNBC will lead to the identification of actionable therapeutic targets for precision medicine-guided TNBC treatment.Significance: Using combined WES and RNA-seq analyses, we identified sporadic oncogenic events in TNBC mouse models that share the capacity to activate the MAPK and/or PI3K pathways. Our data support a treatment tailored to the genetics of individual tumors that parallels the approaches being investigated in the ongoing NCI-MATCH, My Pathway Trial, and ESMART clinical trials. Cancer Discov; 8(3); 354-69. ©2017 AACR.See related commentary by Natrajan et al., p. 272See related article by Matissek et al., p. 336This article is highlighted in the In This Issue feature, p. 253.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Charles J Murphy
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kristina B Emdal
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Alex Toker
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, and Ludwig Center at Harvard, Boston, Massachusetts
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
82
|
Churg A, Hwang H, Tan L, Qing G, Taher A, Tong A, Bilawich AM, Dacic S. Malignant mesotheliomain situ. Histopathology 2018; 72:1033-1038. [DOI: 10.1111/his.13468] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/12/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Andrew Churg
- Department of Pathology; Vancouver General Hospital and University of British Columbia; Vancouver BC Canada
| | | | - Larry Tan
- Division of Thoracic Surgery; Faculty of Health Sciences; University of Manitoba; Winnipeg MB Canada
| | - Gefei Qing
- Department of Pathology; Faculty of Health Sciences; University of Manitoba; Winnipeg MB Canada
| | - Altaf Taher
- Department of Pathology; Memorial University of Newfoundland; St John's NF Canada
| | - Amy Tong
- Department of Medicine; Memorial University of Newfoundland; St John's NF Canada
| | - Ana M Bilawich
- Department of Radiology; Vancouver General Hospital and University of British Columbia; Vancouver BC Canada
| | - Sanja Dacic
- Department of Pathology; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
83
|
Sharif AA, Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 2018; 48:104-114. [PMID: 28579171 DOI: 10.1016/j.semcancer.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
84
|
Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu Z, Dai Y, Liu S, Yang CT, Li H, Hu B, Jablons DM, You L. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget 2018; 7:51922-51933. [PMID: 27409162 PMCID: PMC5239524 DOI: 10.18632/oncotarget.10458] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/17/2016] [Indexed: 12/29/2022] Open
Abstract
Yes-associated protein (YAP) is a main mediator of the Hippo pathway, which promotes cancer development. Here we show that YAP promotes resistance to erlotinib in human non-small cell lung cancer (NSCLC) cells. We found that forced YAP overexpression through YAP plasmid transfection promotes erlotinib resistance in HCC827 (exon 19 deletion) cells. In YAP plasmid-transfected HCC827 cells, GTIIC reporter activity and Hippo downstream gene expression of AREG and CTGF increased significantly (P<0.05), as did ERBB3 mRNA expression (P<0.05). GTIIC reporter activity, ERBB3 protein and mRNA expression all increased in HCC827 erlotinib-resistance (ER) cells compared to parental HCC827 cells. Inhibition of YAP by small interfering RNA (siRNA) increased the cytotoxicity of erlotinib to H1975 (L858R+T790M) cells. In YAP siRNA-transfected H1975 cells, GTIIC reporter activity and downstream gene expression of AREG and CTGF decreased significantly (P<0.05). Verteporfin, YAP inhibitor had an effect similar to that of YAP siRNA; it increased sensitivity of H1975 cells to erlotinib and in combination with erlotinib, synergistically reduced migration, invasion and tumor sphere formation abilities in H1975 cells. Our results indicate that YAP promotes erlotinib resistance in the erlotinib-sensitive NSCLC cell line HCC827. Inhibition of YAP by siRNA increases sensitivity of erlotinib-resistant NSCLC cell line H1975 to erlotinib.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Bin You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Wen-Qian Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Yu-Cheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
85
|
Celano M, Mignogna C, Rosignolo F, Sponziello M, Iannone M, Lepore SM, Lombardo GE, Maggisano V, Verrienti A, Bulotta S, Durante C, Di Loreto C, Damante G, Russo D. Expression of YAP1 in aggressive thyroid cancer. Endocrine 2018; 59:209-212. [PMID: 28120182 DOI: 10.1007/s12020-017-1240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Chiara Mignogna
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Roccelletta di Borgia, Borgia, 88021, Italy
| | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Giovanni Enrico Lombardo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Rome, 00161, Italy
| | - Carla Di Loreto
- Department of Medical and Biological Sciences, University of Udine, Udine, 33100, Italy
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, Udine, 33100, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy.
| |
Collapse
|
86
|
Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang Y, Chan G, Huang Z, Hu B, Li H, Jablons DM, You L. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget 2017; 8:114576-114587. [PMID: 29383103 PMCID: PMC5777715 DOI: 10.18632/oncotarget.23051] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a membrane protein on tumor cells that binds to the PD-1 receptor expressed on immune cells, leading to the immune escape of tumor cells. Yes-associated protein (YAP) is a main effector of the Hippo/YAP signaling pathway, which plays important roles in cancer development. Here we show that YAP regulates PD-L1 expression in human non-small cell lung cancer (NSCLC) cells. First, we investigated YAP and PD-L1 expression at the protein level in 142 NSCLC samples and 15 normal lung samples. In tumor tissue, immunohistochemistry showed positive staining for YAP and PD-L1, which correlated significantly (n = 142, r = 0.514, P < 0.001). Second, in cell lines that express high levels of PD-L1 (H460, SKLU-1, and H1299), the ratio of p-YAP/YAP was lower and GTIIC reporter activity of the Hippo pathway was higher than those in three cell lines expressing low levels of PD-L1 (A549, H2030, and PC9) (P < 0.05). Third, in the same three cell lines, inhibition of YAP by two small interfering RNAs (siRNAs) decreased the mRNA and protein level of PD-L1 (P < 0.05). Fourth, forced overexpression of the YAP gene rescued the PD-L1 mRNA and protein level after siRNA knockdown targeting 3′UTR of the endogenous YAP gene. Finally, chromatin immunoprecipitation (ChIP) assays using a YAP-specific monoclonal antibody resulted in the precipitation of PD-L1 enhancer region encompassing two putative TEAD binding sites. Our results indicate that YAP regulates the transcription of PD-L1 in NSCLC.
Collapse
Affiliation(s)
- Jinbai Miao
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Class of 2020, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhen Huang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital Medical University, Beijing, People's Republic of China
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
87
|
Giordano TJ. Genomic Hallmarks of Thyroid Neoplasia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:141-162. [PMID: 29083981 DOI: 10.1146/annurev-pathol-121808-102139] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomic landscape of thyroid cancers that are derived from follicular cells has been substantially elucidated through the coordinated application of high-throughput genomic technologies. Here, I review the common genetic alterations across the spectrum of thyroid neoplasia and present the resulting model of thyroid cancer initiation and progression. This model illustrates the striking correlation between tumor differentiation and overall somatic mutational burden, which also likely explains the highly variable clinical behavior and outcome of patients with thyroid cancers. These advances are yielding critical insights into thyroid cancer pathogenesis, which are being leveraged for the development of new diagnostic tools, prognostic and predictive biomarkers, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Thomas J Giordano
- Departments of Pathology and Internal Medicine, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
88
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
89
|
Abstract
Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.
Collapse
Affiliation(s)
- Jian Campian
- All authors: Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- All authors: Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
90
|
Ibrahimpasic T, Xu B, Landa I, Dogan S, Middha S, Seshan V, Deraje S, Carlson DL, Migliacci J, Knauf JA, Untch B, Berger MF, Morris L, Tuttle RM, Chan T, Fagin JA, Ghossein R, Ganly I. Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin Cancer Res 2017. [PMID: 28634282 DOI: 10.1158/1078-0432.ccr-17-1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Patients with anaplastic thyroid cancer (ATC) have a very high death rate. In contrast, deaths from non-anaplastic thyroid (NAT) cancer are much less common. The genetic alterations in fatal NAT cancers have not been reported.Experimental Design: We performed next-generation sequencing of 410 cancer genes from 57 fatal NAT primary cancers. Results were compared with The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTCs) and to the genomic changes reported in ATC.Results: There was a very high prevalence of TERT promoter mutations, comparable with that of ATC, and these co-occurred with BRAF and RAS mutations. A high incidence of chromosome 1q gain was seen highlighting its importance in tumor aggressiveness. Two novel fusion genes DLG5-RET and OSBPL1A-BRAF were identified. There was a high frequency of mutations in MED12 and these were mutually exclusive to TERT promoter mutations and also to BRAF and RAS mutations. In addition, a high frequency of mutations in RBM10 was identified and these co-occurred with RAS mutations and PIK3CA mutations. Compared with the PTCs in TCGA, there were higher frequencies of mutations in TP53, POLE, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases.Conclusions: These data support a model, whereby fatal NAT cancers arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities. The high rate of TERT promoter mutations, MED12 mutations, RBM10 mutations, and chromosome 1q gain highlight their likely association with tumor virulence. Clin Cancer Res; 23(19); 5970-80. ©2017 AACR.
Collapse
Affiliation(s)
- Tihana Ibrahimpasic
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shyam Deraje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diane L Carlson
- Department of Pathology, Cleveland Clinic, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jocelyn Migliacci
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luc Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - R Michael Tuttle
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ian Ganly
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
91
|
Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 2017; 114:E4951-E4960. [PMID: 28584132 DOI: 10.1073/pnas.1702723114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Collapse
|
92
|
Azouzi N, Cailloux J, Cazarin JM, Knauf JA, Cracchiolo J, Al Ghuzlan A, Hartl D, Polak M, Carré A, El Mzibri M, Filali-Maltouf A, Al Bouzidi A, Schlumberger M, Fagin JA, Ameziane-El-Hassani R, Dupuy C. NADPH Oxidase NOX4 Is a Critical Mediator of BRAF V600E-Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxid Redox Signal 2017; 26:864-877. [PMID: 27401113 PMCID: PMC5444494 DOI: 10.1089/ars.2015.6616] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The BRAFV600E oncogene, reported in 40%-60% of papillary thyroid cancer (PTC), has an important role in the pathogenesis of PTC. It is associated with the loss of thyroid iodide-metabolizing genes, such as sodium/iodide symporter (NIS), and therefore with radioiodine refractoriness. Inhibition of mitogen-activated protein kinase (MAPK) pathway, constitutively activated by BRAFV600E, is not always efficient in resistant tumors suggesting that other compensatory mechanisms contribute to a BRAFV600E adaptive resistance. Recent studies pointed to a key role of transforming growth factor β (TGF-β) in BRAFV600E-induced effects. The reactive oxygen species (ROS)-generating NADPH oxidase NOX4, which is increased in PTC, has been identified as a new key effector of TGF-β in cancer, suggestive of a potential role in BRAFV600E-induced thyroid tumors. RESULTS Here, using two human BRAFV600E-mutated thyroid cell lines and a rat thyroid cell line expressing BRAFV600E in a conditional manner, we show that NOX4 upregulation is controlled at the transcriptional level by the oncogene via the TGF-β/Smad3 signaling pathway. Importantly, treatment of cells with NOX4-targeted siRNA downregulates BRAFV600E-induced NIS repression. Innovation and Conclusion: Our results establish a link between BRAFV600E and NOX4, which is confirmed by a comparative analysis of NOX4 expression in human (TCGA) and mouse thyroid cancers. Remarkably, analysis of human and murine BRAFV600E-mutated thyroid tumors highlights that the level of NOX4 expression is inversely correlated to thyroid differentiation suggesting that other genes involved in thyroid differentiation in addition to NIS might be silenced by a mechanism controlled by NOX4-derived ROS. This study opens a new opportunity to optimize thyroid cancer therapy. Antioxid. Redox Signal. 26, 864-877.
Collapse
Affiliation(s)
- Naïma Azouzi
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Jérémy Cailloux
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Juliana M Cazarin
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,5 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Jeffrey A Knauf
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Jennifer Cracchiolo
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Abir Al Ghuzlan
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Dana Hartl
- 2 Institut Gustave Roussy , Villejuif, France
| | - Michel Polak
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France .,9 Pediatric Endocrinology, Gynaecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades , AP-HP, Paris, France .,10 Université Paris Descartes-Sorbonne Paris Cité , Paris, France
| | - Aurore Carré
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France
| | - Mohammed El Mzibri
- 4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- 11 Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V , Rabat, Morocco
| | - Abderrahmane Al Bouzidi
- 12 Equipe de recherche en pathologie tumorale, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Morocco
| | - Martin Schlumberger
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - James A Fagin
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Rabii Ameziane-El-Hassani
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Corinne Dupuy
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| |
Collapse
|
93
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
94
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1193] [Impact Index Per Article: 149.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
95
|
Elvin JA, Gay LM, Ort R, Shuluk J, Long J, Shelley L, Lee R, Chalmers ZR, Frampton GM, Ali SM, Schrock AB, Miller VA, Stephens PJ, Ross JS, Frank R. Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration. Oncologist 2017; 22:416-421. [PMID: 28283584 DOI: 10.1634/theoncologist.2016-0310] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Uterine leiomyosarcoma (uLMS) responds poorly to conventional chemotherapeutic agents, and personalized therapies have yet to be systematically explored. Comprehensive genomic profiling (CGP) can identify therapeutic targets and provide insight into the biology of this highly aggressive tumor. We report a case of uLMS treated with the CGP-matched therapy palbociclib, a CDK4/6 inhibitor, with sustained clinical benefit in this rare and deadly malignancy. MATERIALS AND METHODS This study analyzed 279 clinically advanced/recurrent uLMS samples. Median patient age was 54 years (range, 23-83 years). DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections, and CGP was performed on hybridization-captured, adaptor ligation-based libraries for up to 405 cancer-related genes plus introns from up to 31 genes frequently rearranged in cancer. Sequencing data were analyzed for base pair substitutions, insertions/deletions, copy number alterations, and rearrangements. RESULTS CGP shows that 97.1% of uLMS harbor at least one alteration, and approximately 57% harbor alterations in one or more therapeutically targetable pathways. CDKN2A mutations that inactivate p16INK4a were identified in 11% of uLMS. We report the first demonstration of clinical benefit in response to palbociclib treatment for a uLMS patient with a CDKN2A mutation, resulting in disease stabilization and significant symptom reduction. CONCLUSION A patient with uLMS harboring a CDKN2A mutation experienced clinical benefit from treatment with palbociclib, and genomic analysis of 279 uLMS samples revealed that 19% of patients had mutations affecting the cyclin-dependent kinase (CDK) pathway. These observations provide a rationale for a clinical trial investigating treatment with CDK pathway inhibitors for uLMS harboring relevant genomic alterations. The Oncologist 2017;22:416-421Implications for Practice: Comprehensive genomic profiling (CGP) of individuals with uterine leiomyosarcoma (uLMS) indicates that nearly 20% of patients may harbor a mutation affecting the cyclin-dependent kinase (CDK) pathway. The case presented demonstrates that a CDK inhibitory drug may provide clinical benefit to such individuals. Given the lack of curative therapies for uLMS, CGP could be performed on all cases of advanced uLMS and a CDK inhibitor could be recommended (preferably as part of a clinical trial) for individuals harboring a mutation in the CDK pathway.
Collapse
Affiliation(s)
- Julia A Elvin
- Pathology Department, Foundation Medicine Inc., Cambridge, Massachusetts, USA
| | - Laurie M Gay
- Pathology Department, Foundation Medicine Inc., Cambridge, Massachusetts, USA
| | - Rita Ort
- Hematology and Oncology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| | - Joseph Shuluk
- Hematology and Oncology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| | - Jennifer Long
- Hematology and Oncology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| | - Lauren Shelley
- Hematology and Oncology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| | - Ronald Lee
- Radiology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| | - Zachary R Chalmers
- Clinical Genomics, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Garrett M Frampton
- Clinical Genomics, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Siraj M Ali
- Clinical Development, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Alexa B Schrock
- Clinical Development, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Vincent A Miller
- Clinical Development, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Philip J Stephens
- Clinical Genomics, Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Jeffrey S Ross
- Pathology Department, Foundation Medicine Inc., Cambridge, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany
| | - Richard Frank
- Hematology and Oncology, Norwalk Hospital, Western Connecticut Health Network, Norwalk, Connecticut, USA
| |
Collapse
|
96
|
Bassiri K, Ferluga S, Sharma V, Syed N, Adams CL, Lasonder E, Hanemann CO. Global Proteome and Phospho-proteome Analysis of Merlin-deficient Meningioma and Schwannoma Identifies PDLIM2 as a Novel Therapeutic Target. EBioMedicine 2017; 16:76-86. [PMID: 28126595 PMCID: PMC5474504 DOI: 10.1016/j.ebiom.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Loss or mutation of the tumour suppressor Merlin predisposes individuals to develop multiple nervous system tumours, including schwannomas and meningiomas, sporadically or as part of the autosomal dominant inherited condition Neurofibromatosis 2 (NF2). These tumours display largely low grade features but their presence can lead to significant morbidity. Surgery and radiotherapy remain the only treatment options despite years of research, therefore an effective therapeutic is required. Unbiased omics studies have become pivotal in the identification of differentially expressed genes and proteins that may act as drug targets or biomarkers. Here we analysed the proteome and phospho-proteome of these genetically defined tumours using primary human tumour cells to identify upregulated/activated proteins and/or pathways. We identified over 2000 proteins in comparative experiments between Merlin-deficient schwannoma and meningioma compared to human Schwann and meningeal cells respectively. Using functional enrichment analysis we highlighted several dysregulated pathways and Gene Ontology terms. We identified several proteins and phospho-proteins that are more highly expressed in tumours compared to controls. Among proteins jointly dysregulated in both tumours we focused in particular on PDZ and LIM domain protein 2 (PDLIM2) and validated its overexpression in several tumour samples, while not detecting it in normal cells. We showed that shRNA mediated knockdown of PDLIM2 in both primary meningioma and schwannoma leads to significant reductions in cellular proliferation. To our knowledge, this is the first comprehensive assessment of the NF2-related meningioma and schwannoma proteome and phospho-proteome. Taken together, our data highlight several commonly deregulated factors, and indicate that PDLIM2 may represent a novel, common target for meningioma and schwannoma. Proteome and phosphoproteome of Merlin-deficient schwannomas and meningiomas were analysed. Comparative studies highlighted several pathways relevant for therapeutic intervention. PDLIM2 was identified as a novel, commonly upregulated protein in both tumours. PDLIM2 knockdown led to a significant reduction in proliferation in both cell types.
Loss or mutation of the protein Merlin causes a genetic condition known as Neurofibromatosis 2 (NF2) characterised by the growth of schwannomas and meningiomas. We analysed several of these tumour samples and identified over 2000 proteins in comparative experiments between Merlin-deficient schwannoma and meningioma compared to normal controls. We identified PDZ and LIM domain protein 2 (PDLIM2) as overexpressed in both tumour types and further showed that knockdown of PDLIM2 leads to significant reductions in cellular proliferation. Taken together, our data highlight several deregulated signalling pathways, and indicate that PDLIM2 may represent a novel, common target for meningioma and schwannoma.
Collapse
Affiliation(s)
- Kayleigh Bassiri
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Sara Ferluga
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Vikram Sharma
- School of Biomedical and Healthcare Sciences, Plymouth University, Drakes Circus, Plymouth PL4 8AA, UK
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W6 8RP, UK
| | - Claire L Adams
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Drakes Circus, Plymouth PL4 8AA, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK.
| |
Collapse
|
97
|
Riesco-Eizaguirre G, Santisteban P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur J Endocrinol 2016; 175:R203-17. [PMID: 27666535 DOI: 10.1530/eje-16-0202] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy giving rise to one of the most indolent solid cancers, but also one of the most lethal. In recent years, systematic studies of the cancer genome, most importantly those derived from The Cancer Genome Altas (TCGA), have catalogued aberrations in the DNA, chromatin, and RNA of the genomes of thousands of tumors relative to matched normal cellular genomes and have analyzed their epigenetic and protein consequences. Cancer genomics is therefore providing new information on cancer development and behavior, as well as new insights into genetic alterations and molecular pathways. From this genomic perspective, we will review the main advances concerning some essential aspects of the molecular pathogenesis of thyroid cancer such as mutational mechanisms, new cancer genes implicated in tumor initiation and progression, the role of non-coding RNA, and the advent of new susceptibility genes in thyroid cancer predisposition. This look across these genomic and cellular alterations results in the reshaping of the multistep development of thyroid tumors and offers new tools and opportunities for further research and clinical development of novel treatment strategies.
Collapse
Affiliation(s)
- Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain Servicio de EndocrinologíaHospital Universitario de Móstoles, Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols" Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM)Madrid, Spain
| |
Collapse
|
98
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
99
|
Lazzari C, Verlicchi A, Gkountakos A, Pilotto S, Santarpia M, Chaib I, Ramirez Serrano JL, Viteri S, Morales-Espinosa D, Dazzi C, de Marinis F, Cao P, Karachaliou N, Rosell R. Molecular Bases for Combinatorial Treatment Strategies in Patients with KRAS Mutant Lung Adenocarcinoma and Squamous Cell Lung Carcinoma. Pulm Ther 2016. [DOI: 10.1007/s41030-016-0013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
100
|
Nicola J, Masini-Repiso A. Emerging Therapeutics for Radioiodide-Refractory Thyroid Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.6000/1927-7229.2016.05.02.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|