51
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
52
|
Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, Tsubokawa N, Rios J, Martin AS, Dickson MA, Qin LX, Socci ND, Singer S. Rb and p53-Deficient Myxofibrosarcoma and Undifferentiated Pleomorphic Sarcoma Require Skp2 for Survival. Cancer Res 2020; 80:2461-2471. [PMID: 32161142 DOI: 10.1158/0008-5472.can-19-1269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) are highly genetically complex soft tissue sarcomas. Up to 50% of patients develop distant metastases, but current systemic therapies have limited efficacy. MFS and UPS have recently been shown to commonly harbor copy number alterations or mutations in the tumor suppressor genes RB1 and TP53. As these alterations have been shown to engender dependence on the oncogenic protein Skp2 for survival of transformed cells in mouse models, we sought to examine its function and potential as a therapeutic target in MFS/UPS. Comparative genomic hybridization and next-generation sequencing confirmed that a significant fraction of MFS and UPS patient samples (n = 94) harbor chromosomal deletions and/or loss-of-function mutations in RB1 and TP53 (88% carry alterations in at least one gene; 60% carry alterations in both). Tissue microarray analysis identified a correlation between absent Rb and p53 expression and positive expression of Skp2. Downregulation of Skp2 or treatment with the Skp2-specific inhibitor C1 revealed that Skp2 drives proliferation of patient-derived MFS/UPS cell lines deficient in both Rb and p53 by degrading p21 and p27. Inhibition of Skp2 using the neddylation-activating enzyme inhibitor pevonedistat decreased growth of Rb/p53-negative patient-derived cell lines and mouse xenografts. These results demonstrate that loss of both Rb and p53 renders MFS and UPS dependent on Skp2, which can be therapeutically exploited and could provide the basis for promising novel systemic therapies for MFS and UPS. SIGNIFICANCE: Loss of both Rb and p53 renders myxofibrosarcoma and undifferentiated pleomorphic sarcoma dependent on Skp2, which could provide the basis for promising novel systemic therapies.See related commentary by Lambert and Jones, p. 2437.
Collapse
Affiliation(s)
- George Z Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tomoyo Okada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Young-Mi Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Yawei Shen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Norifumi Tsubokawa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jordan Rios
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel S Martin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nicholas D Socci
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
53
|
Hirano T, Shinsato Y, Tanabe K, Higa N, Kamil M, Kawahara K, Yamamoto M, Minami K, Shimokawa M, Arigami T, Yanagita S, Matushita D, Uenosono Y, Ishigami S, Kijima Y, Maemura K, Kitazono I, Tanimoto A, Furukawa T, Natsugoe S. FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis 2020; 9:13. [PMID: 32029704 PMCID: PMC7005035 DOI: 10.1038/s41389-020-0190-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 02/01/2023] Open
Abstract
Considering the poor prognosis of most advanced cancers, prevention of invasion and metastasis is essential for disease control. Ras homologous (Rho) guanine exchange factors (GEFs) and their signaling cascade could be potential therapeutic targets in advanced cancers. We conducted in silico analyses of The Cancer Genome Atlas expression data to identify candidate Rho-GEF genes showing aberrant expression in advanced gastric cancer and found FERM, Rho/ArhGEF, and pleckstrin domain protein 1 (FARP1) expression is related to poor prognosis. Analyses in 91 clinical advanced gastric cancers of the relationship of prognosis and pathological factors with immunohistochemical expression of FARP1 indicated that high expression of FARP1 is significantly associated with lymphatic invasion, lymph metastasis, and poor prognosis of the patients (P = 0.025). In gastric cancer cells, FARP1 knockdown decreased cell motility, whereas FARP1 overexpression promoted cell motility and filopodium formation via CDC42 activation. FARP1 interacted with integrin β5, and a potent integrin αvβ5 inhibitor (SB273005) prevented cell motility in only high FARP1-expressing gastric cancer cells. These results suggest that the integrin αvβ5-FARP1-CDC42 axis plays a crucial role in gastric cancer cell migration and invasion. Thus, regulatory cascade upstream of Rho can be a specific and promising target of advanced cancer treatment.
Collapse
Affiliation(s)
- Takuro Hirano
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshinari Shinsato
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nayuta Higa
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Muhammad Kamil
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kentaro Minami
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiko Shimokawa
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Onco-Biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigehiro Yanagita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Daisuke Matushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshikazu Uenosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sumiya Ishigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Onco-Biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
54
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
55
|
Gkountakos A, Pilotto S, Mafficini A, Vicentini C, Simbolo M, Milella M, Tortora G, Scarpa A, Bria E, Corbo V. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis 2019; 39:971-980. [PMID: 29955840 DOI: 10.1093/carcin/bgy086] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Genomic alterations affecting components of the mechanistic target of rapamycin (mTOR) pathway are found rather frequently in cancers, suggesting that aberrant pathway activity is implicated in oncogenesis of different tumor types. mTOR functions as the core catalytic kinase of two distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which control numerous vital cellular processes. There is growing evidence indicating that Rictor, an essential subunit of the mTORC2 complex, is inappropriately overexpressed across numerous cancer types and this is associated with poor survival. To date, the candidate mechanisms responsible for aberrant Rictor expression described in cancer are two: (i) gene amplification and (ii) epigenetic regulation, mainly by microRNAs. Moreover, different mTOR-independent Rictor-containing complexes with oncogenic role have been documented, revealing alternative routes of Rictor-driven tumorigenesis, but simultaneously, paving the way for identifying novel biomarkers and therapeutic targets. Here, we review the main preclinical and clinical data regarding the role of Rictor in carcinogenesis and metastatic behavior as well as the potentiality of its alteration as a target.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Pilotto
- Medical Oncology Section, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Andrea Mafficini
- ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Michele Simbolo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Milella
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology Section, Department of Medicine, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| | - Emilio Bria
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.,ARC-NET Applied Research on Cancer Center, University of Verona, Verona, Italy
| |
Collapse
|
56
|
Hu Q, Zhou S, Hu X, Zhang H, Huang S, Wang Y. Systematic screening identifies a 2-gene signature as a high-potential prognostic marker of undifferentiated pleomorphic sarcoma/myxofibrosarcoma. J Cell Mol Med 2019; 24:1010-1021. [PMID: 31742892 PMCID: PMC6933343 DOI: 10.1111/jcmm.14814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/29/2019] [Accepted: 10/27/2019] [Indexed: 02/05/2023] Open
Abstract
The Cancer Genome Atlas (TCGA) Research Network confirmed that undifferentiated pleomorphic sarcoma (UPS) and myxofibrosarcoma (MFS) share a high level of genomic similarities and fall into a single spectrum of tumour. However, no molecular prognostic biomarkers have been identified in UPS/MFS. In this study, by extracting data from TCGA-Sarcoma (SARC), we explored relapse-related genes, their prognostic value and possible mechanisms of the dysregulations. After systematic screening, ITGA10 and PPP2R2B were included to construct a 2-gene signature. The 2-gene signature had an AUC value of 0.83 and had an independent prognostic value in relapse-free survival (RFS) (HR: 2.966, 95%CI: 1.995-4.410 P < .001), and disease-specific survival (DSS) (HR: 2.283, 95%CI: 1.358-3.835, P = .002), as a continuous variable. Gene-level copy number alterations (CNAs) were irrelevant to their dysregulation. Two CpG sites (cg15585341 and cg04126335) around the promoter of ITGA10 showed strong negative correlations with ITGA10 expression (Pearson's r < -0.6). Transcript preference was observed in PPP2R2B expression. The methylation of some CpG sites in two gene body regions showed at least moderate positive correlations (Pearson's r > .4) with PPP2R2B expression. Besides, the 2-gene signature showed a moderate negative correlation with CD4 + T cell infiltration. High-level CD4 + T cell infiltration and neutrophil infiltration were associated with significantly better RFS. Based on these findings, we infer that the 2-gene signature might be a potential prognostic marker in patients with UPS/MFS. Considering the potential benefits of immunotherapy for UPS/MFS patients, it is imperative to explore the predictive value of this signature in immunotherapeutic responses in the future.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hua Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Saponara M, Indio V, Pizzi C, Serban ED, Urbini M, Astolfi A, Paolisso P, Suarez SM, Nannini M, Pacini D, Agostini V, Leone O, Ambrosini V, Tarantino G, Fanti S, Niro F, Buia F, Attinà D, Pantaleo MA. Successful multidisciplinary clinical approach and molecular characterization by whole transcriptome sequencing of a cardiac myxofibrosarcoma: A case report. World J Clin Cases 2019; 7:3018-3026. [PMID: 31624749 PMCID: PMC6795718 DOI: 10.12998/wjcc.v7.i19.3018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cardiac tumors are rare and complex entities. Surgery represents the cornerstone of therapy, while the role of adjuvant treatment remains unclear and, in case of relapse or metastatic disease, the prognosis is very poor. Lack of prospective, randomized clinical trials hinders the generation of high level evidence for the optimal diagnostic workup and multimodal treatment of cardiac sarcomas. Herein, we describe the multidisciplinary clinical management and molecular characterization of a rare case of cardiac myxofibrosarcoma in an elderly woman.
CASE SUMMARY A 73-year-old woman presented signs and symptoms of acute left-sided heart failure. Imaging examination revealed a large, left atrial mass. With suspicion of a myxoma, she underwent surgery, and symptoms were promptly relieved. Histology showed a cardiac myxofibrosarcoma, a rare histotype of cardiac sarcoma. Eight months later, disease unfortunately relapsed, and after a multidisciplinary discussion, a chemotherapy with doxorubicin and then gemcitabine was started, achieving partial radiologic and complete metabolic response, which was maintained up to 2 years and is still present. This report is focused on the entire clinical path of our patient from diagnosis to follow-up, through surgery and strategies adopted at relapse. Moreover, due to their rarity, very little is known about the molecular landscape of myxofibrosarcomas. Thus, we also performed and described preliminary genome analysis of the tumor tissue to get further insight on mechanisms involved in tumor growth, and to possibly unveil new clinically actionable targets.
CONCLUSION We report a case of cardiac myxofibrosarcoma that achieved a very good prognosis due to an integrated surgical, cardiac and oncologic treatment strategy.
Collapse
Affiliation(s)
- Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, Medical Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna 40138, Italy
| | - Carmine Pizzi
- Department of Specialized, Experimental and Diagnostic Medicine, Cardiology and Transplantation Unit, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Elena-Daniela Serban
- Department of Pathology, Cardiovascular Pathology Unit, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Milena Urbini
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna 40138, Italy
| | - Annalisa Astolfi
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna 40138, Italy
| | - Pasquale Paolisso
- Department of Specialized, Experimental and Diagnostic Medicine, Cardiology and Transplantation Unit, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Sofia Martin Suarez
- Departments of Cardiovascular Surgery and Transplantation, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Medical Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Davide Pacini
- Departments of Cardiovascular Surgery and Transplantation, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Valentina Agostini
- Department of Pathology, Cardiovascular Pathology Unit, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Ornella Leone
- Department of Pathology, Cardiovascular Pathology Unit, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Valentina Ambrosini
- Department of Specialized, Experimental and Diagnostic Medicine, Nuclear Medicine Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Giuseppe Tarantino
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna 40138, Italy
| | - Stefano Fanti
- Department of Specialized, Experimental and Diagnostic Medicine, Nuclear Medicine Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Fabio Niro
- Department of Specialized, Experimental and Diagnostic Medicine, Radiology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Francesco Buia
- Department of Specialized, Experimental and Diagnostic Medicine, Radiology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Domenico Attinà
- Department of Specialized, Experimental and Diagnostic Medicine, Radiology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Medical Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
- “Giorgio Prodi” Cancer Research Center, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
58
|
Munksgaard Thorén M, Chmielarska Masoumi K, Krona C, Huang X, Kundu S, Schmidt L, Forsberg-Nilsson K, Floyd Keep M, Englund E, Nelander S, Holmqvist B, Lundgren-Åkerlund E. Integrin α10, a Novel Therapeutic Target in Glioblastoma, Regulates Cell Migration, Proliferation, and Survival. Cancers (Basel) 2019; 11:cancers11040587. [PMID: 31027305 PMCID: PMC6521287 DOI: 10.3390/cancers11040587] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022] Open
Abstract
New, effective treatment strategies for glioblastomas (GBMs), the most malignant and invasive brain tumors in adults, are highly needed. In this study, we investigated the potential of integrin α10β1 as a therapeutic target in GBMs. Expression levels and the role of integrin α10β1 were studied in patient-derived GBM tissues and cell lines. The effect of an antibody–drug conjugate (ADC), an integrin α10 antibody conjugated to saporin, on GBM cells and in a xenograft mouse model was studied. We found that integrin α10β1 was strongly expressed in both GBM tissues and cells, whereas morphologically unaffected brain tissues showed only minor expression. Partial or no overlap was seen with integrins α3, α6, and α7, known to be expressed in GBM. Further analysis of a subpopulation of GBM cells selected for high integrin α10 expression demonstrated increased proliferation and sphere formation. Additionally, siRNA-mediated knockdown of integrin α10 in GBM cells led to decreased migration and increased cell death. Furthermore, the ADC reduced viability and sphere formation of GBM cells and induced cell death both in vitro and in vivo. Our results demonstrate that integrin α10β1 has a functional role in GBM cells and is a novel, potential therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
| | | | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Xiaoli Huang
- Xintela AB, Medicon Village, SE-223 81 Lund, Sweden.
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Marcus Floyd Keep
- Department of Neurosurgery, Sanford Brain and Spine Institute, Fargo, ND 58103, USA; Department of Surgery, School of Medicine, University of North Dakota, Fargo, ND 58102, USA.
| | - Elisabet Englund
- Neuropathology Lab, Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Bo Holmqvist
- ImaGene-iT AB, Medicon Village, SE-223 81 Lund, Sweden.
| | | |
Collapse
|
59
|
Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019; 35:347-367. [PMID: 30889378 PMCID: PMC6684107 DOI: 10.1016/j.ccell.2019.01.007] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.
Collapse
Affiliation(s)
- Jonathan Cooper
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Filippo G Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of Genitourinary Cancers, UT MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
60
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
61
|
Characterization and Drug Sensitivity of a New High-Grade Myxofibrosarcoma Cell Line. Cells 2018; 7:cells7110186. [PMID: 30366467 PMCID: PMC6262427 DOI: 10.3390/cells7110186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Myxofibrosarcoma (MFS) belongs to the group of sarcoma tumors, which represent only 1% of the totality of adult tumors worldwide. Thus, given the rare nature of this cancer, this makes the availability of MFS cell lines difficult. In an attempt to partially fill this gap, we immortalized a primary culture of MFS (IM-MFS-1) and compared the cell morphology with patient’s tumor tissue. IM-MFS-1 was genetically characterized through a Comparative Genomic Hybridization (CGH) array and the mesenchymal phenotype was evaluated using Polymerase chain reaction (PCR) and immunofluorescence staining. Drug sensitivity for MFS therapies was monitored over time in cultures. We confirmed the conservation of the patient’s tumor cell morphology and of the mesenchymal phenotype. Conversely, the synthesis and expression of CD109, a TGFβ co-receptor used to facilitate the diagnosis of high-grade MFS diagnosis, was maintained constant until high cancer cell line passages. The CGH array revealed a complex karyotype with cytogenetic alterations that include chromosome regions associated with genes involved in tumor processes. Cytotoxicity assays show drug sensitivity constantly increased during the culture passages until a plateau was reached. In conclusion, we established and characterized a new MFS cell line that can be used for future preclinical and molecular studies on soft tissue sarcomas.
Collapse
|
62
|
mTOR inhibitor INK128 attenuates systemic lupus erythematosus by regulating inflammation-induced CD11b +Gr1 + cells. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1-13. [PMID: 30292636 DOI: 10.1016/j.bbadis.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by systemic chronic inflammation that can affect multiple major organ systems. Although the etiology of SLE is known to involve a variety of factors such as the environment, random factors and genetic susceptibility, the exact role of CD11b+Gr1+ myeloid cells in lupus progression is not fully understood. Myeloid-derived CD11b+Gr1+ cells are thought to be a heterogeneous group of immature myeloid cells with immune function. Some studies have reported that CD11b+Gr1+ cells and the activation of mTOR pathway are involved in the pathogenesis of systemic lupus erythematosus (SLE). However, it is still not clarified about the mechanism of influence of lupus microenvironment and mTOR signaling on CD11b+Gr1+ cells. In the present study, we found that the percentage of CD11b+Gr1+ cells increased prior to the abnormal changes of Th17, Treg, T and B cells during lupus development. TLR7 and IFN-α signaling synergized to promote CD11b+Gr1+ cell accumulation in an mTOR-dependent manner. Moreover, compared to a traditional mTOR inhibitor, INK128 inhibited more effectively the disease activity via regulating CD11b+Gr1+ cell expansion and functions. Furthermore, TLR7/IFN-α-modified CD11b+Gr1+ cells promoted unbalance of Th17/Tregs and were inclined to differentiate into macrophages via the mTOR pathway. In conclusion, CD11b+Gr1+ cells increased in the early stages of the lupus progression and mTOR pathway was critical for CD11b+Gr1+ cells in lupus development, suggesting the changes of inflammation-induced CD11b+Gr1+ cells initate lupus development. We also provide evidence for the first time that INK128, a second generation mTOR inhibitor, has a good therapeutic action on lupus development by regulating CD11b+Gr1+ cells.
Collapse
|
63
|
Abstract
While cancer cell proliferation depends on access to extracellular nutrients, inadequate tumour perfusion means that glucose, amino acids and lipids are often in short supply. To overcome this obstacle to growth, cancer cells utilize multiple scavenging strategies, obtaining macromolecules from the microenvironment and breaking them down in the lysosome to produce substrates for ATP generation and anabolism. Recent studies have revealed four scavenging pathways that support cancer cell proliferation in low-nutrient environments: scavenging of extracellular matrix proteins via integrins, receptor-mediated albumin uptake and catabolism, macropinocytic consumption of multiple components of the tumour microenvironment and the engulfment and degradation of entire live cells via entosis. New evidence suggests that blocking these pathways alone or in combination could provide substantial benefits to patients with incurable solid tumours. Both US Food and Drug Administration (FDA)-approved drugs and several agents in preclinical or clinical development shut down individual or multiple scavenging pathways. These therapies may increase the extent and durability of tumour growth inhibition and/or prevent the development of resistance when used in combination with existing treatments. This Review summarizes the evidence suggesting that scavenging pathways drive tumour growth, highlights recent advances that define the oncogenic signal transduction pathways that regulate scavenging and considers the benefits and detriments of therapeutic strategies targeting scavenging that are currently under development.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
64
|
Li X, Zhang X, Pan Y, Shi G, Ren J, Fan H, Dou H, Hou Y. mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus. Acta Biochim Biophys Sin (Shanghai) 2018; 50:888-896. [PMID: 30060081 DOI: 10.1093/abbs/gmy088] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Inflammasomes are protein complexes responsible for the release of IL-1 family cytokines, and they play critical roles in immunity and inflammation. The best-characterized inflammasome, the NOD-like receptor protein 3 (NLRP3) inflammasome, is involved in the development of multiple autoimmune diseases. However, the underlying mechanisms of abnormal NLRP3 inflammasome activation in systemic lupus erythematosus (SLE) remain elusive. Here, western blot analysis was used to detect the level of NLRP3 components and mTORC1/2 substrate in the kidney tissues from B6.MRL-FASlpr/J lupus mice and C57BL/6 mice, and the results showed that mammalian target of rapamycin (mTOR) complex 1/2 (mTORC1/2) and the NLRP3 inflammasome were hyperactivated in B6.MRL-FASlpr/J lupus mice. The inhibition of mTOR by INK128, a novel mTORC1/2 inhibitor, suppressed LPS/ATP and LPS/nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) in vitro. INK128 decreased both the mRNA and protein levels of NLRP3 in an NF-κB-independent manner. Moreover, we reported for the first time that the inhibition of mTOR suppressed mitochondrial reactive oxygen species (ROS) production in BMDMs stimulated by an NLRP3 agonist. Furthermore, N-acetyl-L-cysteine, a ROS inhibitor, decreased NLRP3 expression, and rotenone, a robust ROS inducer, partially reversed the inhibitory effect of INK128 on NLRP3. These results demonstrated that mTOR regulated the activation of the NLRP3 inflammasome at least partially via ROS-induced NLRP3 expression. Importantly, in vivo data demonstrated that INK128 treatment prominently attenuated lupus nephritis and suppressed NLRP3 inflammasome activation in B6.MRL-FASlpr/J lupus mice. Taken together, our results suggest that activation of mTOR/ROS/NLRP3 signaling may contribute to the development of SLE.
Collapse
Affiliation(s)
- Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xuefang Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
65
|
Shi G, Li D, Ren J, Li X, Wang T, Dou H, Hou Y. mTOR inhibitor INK128 attenuates dextran sodium sulfate-induced colitis by promotion of MDSCs on Treg cell expansion. J Cell Physiol 2018; 234:1618-1629. [PMID: 30132862 DOI: 10.1002/jcp.27032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has shown that mammalian target of rapamycin (mTOR) pathway and myeloid-derived suppressor cells (MDSCs) are involved in pathogenesis of inflammatory bowel diseases (IBDs). INK128 is a novel mTOR kinase inhibitor in clinical development. However, the exact roles of MDSCs and INK128 in IBD are unclear. Here, we showed that the INK128 treatment enhanced the resistance of mice to dextran sodium sulfate (DSS)-induced colitis and inhibited the differentiation of MDSCs into macrophages. Moreover, interferon (IFN)-α level was elevated in INK128-treated colitis mice. When stimulated with IFN-α in vitro, MDSCs showed a superior immunosuppression activity. Of note, the regulatory T cells (Tregs) increased but Th1 cells decreased in INK128-treated colitis mice. These results indicate that mTOR inhibitor INK128 attenuates DSS-induced colitis via Treg expansion promoted by MDSCs. Our work provides a new evidence that INK128 is potential to be a therapeutic drug on DSS-induced colitis via regulating MDSCs as well as maintaining Treg expansion.
Collapse
Affiliation(s)
- Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xiaojing Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, China
| |
Collapse
|
66
|
Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res 2018; 78:3101-3111. [PMID: 29858187 PMCID: PMC6004249 DOI: 10.1158/0008-5472.can-18-0619] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Rac and Cdc42 are small GTPases that have been linked to multiple human cancers and are implicated in epithelial to mesenchymal transition, cell-cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic transformation. With the exception of the P29S driver mutation in melanoma, Rac and Cdc42 are not generally mutated in cancer, but are overexpressed (gene amplification and mRNA upregulation) or hyperactivated. Rac and Cdc42 are hyperactivated via signaling through oncogenic cell surface receptors, such as growth factor receptors, which converge on the guanine nucleotide exchange factors that regulate their GDP/GTP exchange. Hence, targeting Rac and Cdc42 represents a promising strategy for precise cancer therapy, as well as for inhibition of bypass signaling that promotes resistance to cell surface receptor-targeted therapies. Therefore, an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors. In this review, we focus on the role of Rac and Cdc42 in cancer and summarize the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents. Cancer Res; 78(12); 3101-11. ©2018 AACR.
Collapse
Affiliation(s)
- María Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
67
|
Widemann BC, Italiano A. Biology and Management of Undifferentiated Pleomorphic Sarcoma, Myxofibrosarcoma, and Malignant Peripheral Nerve Sheath Tumors: State of the Art and Perspectives. J Clin Oncol 2017; 36:160-167. [PMID: 29220302 DOI: 10.1200/jco.2017.75.3467] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Undifferentiated pleomorphic sarcomas, myxofibrosarcomas, and malignant peripheral nerve sheath tumors are characterized by complex genomic characteristics and aggressive clinical behavior. Recent advances in the understanding of the pathogenesis of these tumors may allow for the development of more-effective innovative therapeutic strategies, including immunotherapies. This review describes the current knowledge of the epidemiology, clinical presentation, treatment, and pathogenesis of these tumors and highlights ongoing and future research.
Collapse
Affiliation(s)
- Brigitte C Widemann
- Brigitte C. Widemann, National Cancer Institute, Bethesda, MD; and Antoine Italiano, Institut Bergonié and University of Bordeaux, Bordeaux, France
| | - Antoine Italiano
- Brigitte C. Widemann, National Cancer Institute, Bethesda, MD; and Antoine Italiano, Institut Bergonié and University of Bordeaux, Bordeaux, France
| |
Collapse
|
68
|
Expanded molecular profiling of myxofibrosarcoma reveals potentially actionable targets. Mod Pathol 2017; 30:1698-1709. [PMID: 28776571 DOI: 10.1038/modpathol.2017.94] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/08/2017] [Accepted: 06/18/2017] [Indexed: 12/13/2022]
Abstract
Myxofibrosarcomas are morphologically heterogeneous soft tissue sarcomas lacking a specific immunohistochemical expression profile and recurrent genetic changes. The study was designed to gain further insights into the molecular landscape of myxofibrosarcomas by targeted re-sequencing of known cancer driver hotspot mutations and the analysis of genomewide somatic copy number alterations. A well-defined group of myxofibrosarcomas, including myxofibrosarcomas G1 (n=6), myxofibrosarcomas G3 (n=7), myxofibrosarcomas with morphologically heterogeneous and independently selectable G1 and G3 areas within a tumor (n=8), and myxofibrosarcomas G3 with subsequent tumor recurrence (n=1) or metastatic disease (n=3) were evaluated. Mutational analysis demonstrated mutations in TP53, PTEN, FGFR3, CDKN2A, and RB1. TP53 mutations were seen in 11 (44%) of patients and detected in myxofibrosarcomas G1, G3, with heterogeneous morphology and G3 with subsequent metastases in 1 patient (16%), 3 patients (42%), 2 patients (62.5%), and 3 patients (75%), respectively. Additional mutations were detected in 2 patients, intratumoral mutational heterogeneity in 1 patient. We observed a variety of copy number alterations typical for myxofibrosarcomas, with higher numbers in G3 compared with G1 myxofibrosarcomas. Cluster analysis revealed distinctive features especially in metastatic and recurrent disease. Focal alterations affected CDKN2A, CCND1, CCNE1, EGFR, EPHA3, EPHB1, FGFR1, JUN, NF1, RB1, RET, TP53, and additional novel amplifications in CCNE1, KIT, EGFR, RET, BRAF, NTRK2 were seen in G3 compared with the G1 tumor areas. The total number of focal events in G1 versus G3 tumors differed significantly (P=0.0014). TRIO and RICTOR co-amplification was seen in 8 (44%) G3 and 1 (10%) G1 myxofibrosarcomas and RICTOR amplification alone in 4 (40%) G1 myxofibrosarcomas. TRIO amplification was significantly (P=0.0218) higher in G3 myxofibrosarcomas indicating a late genetic event. These findings support the use of expanded molecular profiling in myxofibrosarcomas to detect drug-able targets to allow patients to participate in basket trials.
Collapse
|
69
|
Xu XL, Li Z, Liu A, Fan X, Hu DN, Qi DL, Chitty DW, Jia R, Qui J, Wang JQ, Sharaf J, Zou J, Weiss R, Huang H, Joseph WJ, Ng L, Rosen R, Shen B, Reid MW, Forrest D, Abramson DH, Singer S, Cobrinik D, Jhanwar SC. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells. Cancer Res 2017; 77:6838-6850. [PMID: 28972075 DOI: 10.1158/0008-5472.can-16-3299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York.,Zhongshan Ophthalmic Center, Zhongshan University, Guangzhou, P.R. China.,New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Zhengke Li
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Aihong Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David W Chitty
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Renbing Jia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianping Qui
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin Q Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jake Sharaf
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jun Zou
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rebecca Weiss
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hongyan Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Walter J Joseph
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Richard Rosen
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Mark W Reid
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - David H Abramson
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Cobrinik
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
70
|
Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, Isaksson A, Mertens F. Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 2017; 10:25. [PMID: 28652867 PMCID: PMC5483303 DOI: 10.1186/s13039-017-0325-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Atypical lipomatous tumor (ALT), well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) are cytogenetically characterized by near-diploid karyotypes with no or few other aberrations than supernumerary ring or giant marker chromosomes, although DDLS tend to have somewhat more complex rearrangements. In contrast, pleomorphic liposarcomas (PLS) have highly aberrant and heterogeneous karyotypes. The ring and giant marker chromosomes contain discontinuous amplicons, in particular including multiple copies of the target genes CDK4, HMGA2 and MDM2 from 12q, but often also sequences from other chromosomes. Results The present study presents a DDLS with an atypical hypertriploid karyotype without any ring or giant marker chromosomes. SNP array analyses revealed amplification of almost the entire 5p and discontinuous amplicons of 12q including the classical target genes, in particular CDK4. In addition, amplicons from 1q, 3q, 7p, 9p, 11q and 20q, covering from 2 to 14 Mb, were present. FISH analyses showed that sequences from 5p and 12q were scattered, separately or together, over more than 10 chromosomes of varying size. At RNA sequencing, significantly elevated expression, compared to myxoid liposarcomas, was seen for TRIO and AMACR in 5p and of CDK4, HMGA2 and MDM2 in 12q. Conclusions The observed pattern of scattered amplification does not show the characteristics of chromothripsis, but is novel and differs from the well known cytogenetic manifestations of amplification, i.e., double minutes, homogeneously staining regions and ring chromosomes. Possible explanations for this unusual distribution of amplified sequences might be the mechanism of alternative lengthening of telomeres that is frequently active in DDLS and events associated with telomere crisis. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0325-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Björn Viklund
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Vult von Steyern
- Department of Orthopedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anders Isaksson
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
71
|
|