51
|
Quan C, Wu Z, Xiong J, Li M, Fu Y, Su J, Wang Y, Ning L, Zhang D, Xie N. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation. Exp Hematol Oncol 2023; 12:100. [PMID: 38037159 PMCID: PMC10687910 DOI: 10.1186/s40164-023-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.
Collapse
Affiliation(s)
- Chuntao Quan
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology, Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Zhijie Wu
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Juan Xiong
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Manqing Li
- Public Health School of Sun Yat-Sen University, Guangzhou, 510182, People's Republic of China
| | - Yu Fu
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, 518035, People's Republic of China
| | - Jiaying Su
- Laboratory Department, Shenzhen Baoan People's Hospital, Second Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Yue Wang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Deju Zhang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
52
|
Kim S, Armand J, Safonov A, Zhang M, Soni RK, Schwartz G, McGuinness JE, Hibshoosh H, Razavi P, Kim M, Chandarlapaty S, Yang HW. Sequential activation of E2F via Rb degradation and c-Myc drives resistance to CDK4/6 inhibitors in breast cancer. Cell Rep 2023; 42:113198. [PMID: 37865915 PMCID: PMC10757862 DOI: 10.1016/j.celrep.2023.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) are key therapeutic agents in the management of metastatic hormone-receptor-positive breast cancer. However, the emergence of drug resistance limits their long-term efficacy. Here, we show that breast cancer cells develop CDK4/6i resistance via a sequential two-step process of E2F activation. This process entails retinoblastoma (Rb)-protein degradation, followed by c-Myc-mediated amplification of E2F transcriptional activity. CDK4/6i treatment halts cell proliferation in an Rb-dependent manner but dramatically reduces Rb-protein levels. However, this reduction in Rb levels insufficiently induces E2F activity. To develop CDK4/6i resistance, upregulation or activating mutations in mitogenic or hormone signaling are required to stabilize c-Myc levels, thereby augmenting E2F activity. Our analysis of pre-treatment tumor samples reveals a strong correlation between c-Myc levels, rather than Rb levels, and poor therapeutic outcomes after CDK4/6i treatment. Moreover, we propose that proteasome inhibitors can potentially reverse CDK4/6i resistance by restoring Rb levels.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Mimi Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Rajesh K Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Gary Schwartz
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Julia E McGuinness
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
53
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
54
|
André F, Su F, Solovieff N, Hortobagyi G, Chia S, Neven P, Bardia A, Tripathy D, Lu YS, Lteif A, Taran T, Babbar N, Slamon D, Arteaga CL. Pooled ctDNA analysis of MONALEESA phase III advanced breast cancer trials. Ann Oncol 2023; 34:1003-1014. [PMID: 37673211 DOI: 10.1016/j.annonc.2023.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The phase III MONALEESA trials tested the efficacy and safety of the cyclin-dependent kinase (CDK)4/6 inhibitor ribociclib with different endocrine therapy partners as first- or second-line treatment of hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer (ABC). Using the largest pooled biomarker dataset of the CDK4/6 inhibitor ribociclib in ABC to date, we identified potential biomarkers of response to ribociclib. PATIENTS AND METHODS Baseline circulating tumour DNA from patients in the MONALEESA trials was assessed using next-generation sequencing. An analysis of correlation between gene alteration status and progression-free survival (PFS) was carried out to identify potential biomarkers of response to ribociclib. RESULTS Multiple frequently altered genes were identified. Alterations in ERBB2, FAT3, FRS2, MDM2, SFRP1, and ZNF217 were associated with a greater PFS benefit with ribociclib versus placebo. Patients with high tumour mutational burden (TMB) and with ANO1, CDKN2A/2B/2C, and RB1 alterations exhibited decreased sensitivity to ribociclib versus placebo. CONCLUSIONS Although exploratory, these results provide insight into alterations associated with the improved response to ribociclib treatment and may inform treatment sequencing in patients with actionable alterations following progression on CDK4/6 inhibitors. Validation of potential biomarkers identified here and development of prospective trials testing their clinical utility are warranted. CLINICALTRIALS GOV IDENTIFIERS NCT01958021, NCT02422615, NCT02278120.
Collapse
Affiliation(s)
- F André
- Department of Medical Oncology and INSERM U981, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France.
| | - F Su
- Novartis Pharmaceuticals, East Hanover
| | - N Solovieff
- Novartis Institutes for BioMedical Research, Cambridge
| | - G Hortobagyi
- The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Chia
- British Columbia Cancer Agency, Vancouver, Canada
| | - P Neven
- Multidisciplinary Breast Centre, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - A Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - D Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Y-S Lu
- National Taiwan University Hospital, Taipei, Taiwan
| | - A Lteif
- Novartis Pharmaceuticals, East Hanover
| | - T Taran
- Novartis Pharma AG, Basel, Switzerland
| | - N Babbar
- Novartis Pharmaceuticals, East Hanover
| | - D Slamon
- David Geffen School of Medicine at UCLA, Los Angeles
| | - C L Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, USA
| |
Collapse
|
55
|
Agostinetto E, Ignatiadis M. ctDNA as a predictive biomarker in advanced breast cancer: Lessons from the MONALEESA studies. Ann Oncol 2023; 34:955-959. [PMID: 37996168 DOI: 10.1016/j.annonc.2023.09.3111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/25/2023] Open
Affiliation(s)
- E Agostinetto
- Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - M Ignatiadis
- Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
56
|
Navarro-Yepes J, Kettner NM, Rao X, Bishop CS, Bui TN, Wingate HF, Raghavendra AS, Wang Y, Wang J, Sahin AA, Meric-Bernstam F, Hunt KK, Damodaran S, Tripathy D, Keyomarsi K. Abemaciclib Is Effective in Palbociclib-Resistant Hormone Receptor-Positive Metastatic Breast Cancers. Cancer Res 2023; 83:3264-3283. [PMID: 37384539 PMCID: PMC10592446 DOI: 10.1158/0008-5472.can-23-0705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cyclin-dependent kinases 4/6 inhibitor (CDK4/6i) plus endocrine therapy (ET) is standard of care for patients with hormone receptor (HR)-positive, HER2-negative metastatic breast cancer (MBC). However, resistance to CDK4/6is plus ET remains a clinical problem with limited therapeutic options following disease progression. Different CDK4/6is might have distinct mechanisms of resistance, and therefore using them sequentially or targeting their differentially altered pathways could delay disease progression. To understand pathways leading to resistance to the CDK4/6is palbociclib and abemaciclib, we generated multiple in vitro models of palbociclib-resistant (PR) and abemaciclib-resistant (AR) cell lines as well as in vivo patient-derived xenografts (PDX) and ex vivo PDX-derived organoids (PDxO) from patients who progressed on CDK4/6i. PR and AR breast cancer cells exhibited distinct transcriptomic and proteomic profiles that sensitized them to different classes of inhibitors; PR cells upregulated G2-M pathways and responded to abemaciclib, while AR cells upregulated mediators of the oxidative phosphorylation pathway (OXPHOS) and responded to OXPHOS inhibitors. PDX and organoid models derived from patients with PR breast cancer remained responsive to abemaciclib. Resistance to palbociclib while maintaining sensitivity to abemaciclib was associated with pathway-specific transcriptional activity but was not associated with any individual genetic alterations. Finally, data from a cohort of 52 patients indicated that patients with HR-positive/HER2-negative MBC who progressed on palbociclib-containing regimens can exhibit a meaningful overall clinical benefit from abemaciclib-based therapy when administered after palbociclib. These findings provide the rationale for clinical trials evaluating the benefit of abemaciclib treatment following progression on a prior CDK4/6i. SIGNIFICANCE Palbociclib-resistant breast cancers respond to abemaciclib and express pathway-specific signatures of sensitivity, providing a biomarker-driven therapeutic option for patients with metastatic breast cancer following disease progression on cyclin-dependent kinases 4/6 inhibitors.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole M. Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassandra Santaella Bishop
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah F. Wingate
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
57
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
58
|
Villa F, Crippa A, Pelizzoni D, Ardizzoia A, Scartabellati G, Corbetta C, Cipriani E, Lavitrano M, Ardizzoia A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int J Mol Sci 2023; 24:14427. [PMID: 37833875 PMCID: PMC10572355 DOI: 10.3390/ijms241914427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.
Collapse
Affiliation(s)
- Federica Villa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Crippa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Davide Pelizzoni
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Giulia Scartabellati
- Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Department of Medical and Surgical Specialties, Medical Oncology, University of Brescia, 25121 Brescia, Italy
| | - Cristina Corbetta
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Eleonora Cipriani
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Antonio Ardizzoia
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| |
Collapse
|
59
|
Kalinsky K, Accordino MK, Chiuzan C, Mundi PS, Sakach E, Sathe C, Ahn H, Trivedi MS, Novik Y, Tiersten A, Raptis G, Baer LN, Oh SY, Zelnak AB, Wisinski KB, Andreopoulou E, Gradishar WJ, Stringer-Reasor E, Reid SA, O'Dea A, O'Regan R, Crew KD, Hershman DL. Randomized Phase II Trial of Endocrine Therapy With or Without Ribociclib After Progression on Cyclin-Dependent Kinase 4/6 Inhibition in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer: MAINTAIN Trial. J Clin Oncol 2023; 41:4004-4013. [PMID: 37207300 DOI: 10.1200/jco.22.02392] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
PURPOSE Cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) with endocrine therapy (ET) improves progression-free survival (PFS) and overall survival (OS) in hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Although preclinical and clinical data demonstrate a benefit in changing ET and continuing a CDK4/6i at progression, no randomized prospective trials have evaluated this approach. METHODS In this investigator-initiated, phase II, double-blind placebo-controlled trial in patients with HR+/HER2- MBC whose cancer progressed during ET and CDK4/6i, participants switched ET (fulvestrant or exemestane) from ET used pre-random assignment and randomly assigned 1:1 to the CDK4/6i ribociclib versus placebo. PFS was the primary end point, defined as time from random assignment to disease progression or death. Assuming a median PFS of 3.8 months with placebo, we had 80% power to detect a hazard ratio (HR) of 0.58 (corresponding to a median PFS of at least 6.5 months with ribociclib) with 120 patients randomly assigned using a one-sided log-rank test and significance level set at 2.5%. RESULTS Of the 119 randomly assigned participants, 103 (86.5%) previously received palbociclib and 14 participants received ribociclib (11.7%). There was a statistically significant PFS improvement for patients randomly assigned to switched ET plus ribociclib (median, 5.29 months; 95% CI, 3.02 to 8.12 months) versus switched ET plus placebo (median, 2.76 months; 95% CI, 2.66 to 3.25 months) HR, 0.57 (95% CI, 0.39 to 0.85); P = .006. At 6 and 12 months, the PFS rate was 41.2% and 24.6% with ribociclib, respectively, compared with 23.9% and 7.4% with placebo. CONCLUSION In this randomized trial, there was a significant PFS benefit for patients with HR+/HER2- MBC who switched ET and received ribociclib compared with placebo after previous CDK4/6i and different ET.
Collapse
Affiliation(s)
| | | | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY
| | | | | | - Claire Sathe
- Columbia University Irving Medical Center, New York, NY
| | - Heejoon Ahn
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY
| | | | - Yelena Novik
- New York University Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Amy Tiersten
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - George Raptis
- Zucker School of Medicine-Northwell Cancer Institute, Lake Success NY
| | - Lea N Baer
- State University of New York at Stony Brook, Stony Brook, NY
| | - Sun Y Oh
- Montefiore Medical Center, Bronx, NY
| | | | | | | | - William J Gradishar
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| | | | - Sonya A Reid
- Vanderbilt University Medical Center, Nashville, TN
| | - Anne O'Dea
- University of Kansas Medical Center, Westwood, KS
| | - Ruth O'Regan
- University of Rochester Medical Center, Rochester, NY
| | | | | |
Collapse
|
60
|
Hopcroft L, Wigmore EM, Williamson SC, Ros S, Eberlein C, Moss JI, Urosevic J, Carnevalli LS, Talbot S, Bradshaw L, Blaker C, Gunda S, Owenson V, Hoffmann S, Sutton D, Jones S, Goodwin RJA, Willis BS, Rooney C, de Bruin EC, Barry ST. Combining the AKT inhibitor capivasertib and SERD fulvestrant is effective in palbociclib-resistant ER+ breast cancer preclinical models. NPJ Breast Cancer 2023; 9:64. [PMID: 37543694 PMCID: PMC10404292 DOI: 10.1038/s41523-023-00571-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.
Collapse
Affiliation(s)
| | - Eleanor M Wigmore
- Early Data Science, Oncology Data Science, AstraZeneca, Cambridge, UK
| | | | - Susana Ros
- Bioscience Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | - Sara Talbot
- Bioscience Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | - Simon T Barry
- Bioscience Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
61
|
Lee JS, Hackbart H, Cui X, Yuan Y. CDK4/6 Inhibitor Resistance in Hormone Receptor-Positive Metastatic Breast Cancer: Translational Research, Clinical Trials, and Future Directions. Int J Mol Sci 2023; 24:11791. [PMID: 37511548 PMCID: PMC10380517 DOI: 10.3390/ijms241411791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, has revolutionized the treatment landscape for hormone receptor-positive breast cancer. These agents have demonstrated significant clinical benefits in terms of both progression-free survival and overall survival. However, resistance to CDK4/6 inhibitors remains a challenge, limiting their long-term efficacy. Understanding the complex mechanisms driving resistance is crucial for the development of novel therapeutic strategies and the improvement of patient outcomes. Translational research efforts, such as preclinical models and biomarker studies, offer valuable insight into resistance mechanisms and may guide the identification of novel combination therapies. This review paper aims to outline the reported mechanisms underlying CDK4/6 inhibitor resistance, drawing insights from both clinical data and translational research in order to help direct the future of treatment for hormone receptor-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hannah Hackbart
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yuan Yuan
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
62
|
Park YH, Im SA, Park K, Wen J, Lee KH, Choi YL, Lee WC, Min A, Bonato V, Park S, Ram S, Lee DW, Kim JY, Lee SK, Lee WW, Lee J, Kim M, Kim HS, Weinrich SL, Ryu HS, Kim TY, Dann S, Kim YJ, Fernandez DR, Koh J, Wang S, Park SY, Deng S, Powell E, Ravi RK, Bienkowska J, Rejto PA, Park WY, Kan Z. Longitudinal multi-omics study of palbociclib resistance in HR-positive/HER2-negative metastatic breast cancer. Genome Med 2023; 15:55. [PMID: 37475004 PMCID: PMC10360358 DOI: 10.1186/s13073-023-01201-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance. METHODS Tissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival. RESULTS Novel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C. CONCLUSIONS We identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET. TRIAL REGISTRATION ClinicalTrials.gov, NCT03401359. The trial was posted on 18 January 2018 and registered prospectively.
Collapse
Affiliation(s)
- Yeon Hee Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Wen
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Kyung-Hun Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Won-Chul Lee
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Ahrum Min
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Seri Park
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sripad Ram
- Drug Safety R&D, Pfizer Inc, San Diego, CA, USA
| | - Dae-Won Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Kyeong Lee
- Research Center for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Won-Woo Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jisook Lee
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Miso Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | - Han Suk Ryu
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Yong Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Stephen Dann
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Yu-Jin Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Jiwon Koh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Shuoguo Wang
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Song Yi Park
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Eric Powell
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | | | | | - Paul A Rejto
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Woong-Yang Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Zhengyan Kan
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA.
| |
Collapse
|
63
|
Hammond T, Sage J. Monitoring the Cell Cycle of Tumor Cells in Mouse Models of Human Cancer. Cold Spring Harb Perspect Med 2023; 13:a041383. [PMID: 37460156 PMCID: PMC10691483 DOI: 10.1101/cshperspect.a041383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell division is obligatory to tumor growth. However, both cancer cells and noncancer cells in tumors can be found in distinct stages of the cell cycle, which may inform the growth potential of these tumors, their propensity to metastasize, and their response to therapy. Hence, it is of utmost importance to monitor the cell cycle of tumor cells. Here we discuss well-established methods and new genetic advances to track the cell cycle of tumor cells in mouse models of human cancer. We also review recent genetic studies investigating the role of the cell-cycle machinery in the growth of tumors in vivo, with a focus on the machinery regulating the G1/S transition of the cell cycle.
Collapse
Affiliation(s)
- Taylar Hammond
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Biology, and Stanford University, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
64
|
Zhu Z, Zhu Q. Differences in metabolic transport and resistance mechanisms of Abemaciclib, Palbociclib, and Ribociclib. Front Pharmacol 2023; 14:1212986. [PMID: 37475713 PMCID: PMC10354263 DOI: 10.3389/fphar.2023.1212986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) play a crucial role in cancer treatment, particularly in breast cancer, and their mechanism of drug resistance is a topic of global interest in research. Hence, it is vital to comprehend the distinctions between various CDK4/6i, including their mechanisms of action and resistance mechanisms. This article aims to summarize the metabolic and transport variations as well as the differences in resistance among the three FDA-approved CDK4/6 inhibitors: Abemaciclib, Palbociclib, and Ribociclib. It also aims to discuss how these differences impact the effectiveness and safety of anticancer drugs. It was conducted in March 2023 to search PubMed, Embase, and Web of Science for literature related to this topic. Despite all being CDK4/6i, differences in their metabolism and transport were found, which are related to their chemical structure. Moreover, there are variations in preclinical pharmacology, pharmacokinetics, and clinical safety and efficacy of the different inhibitors. Genetic mutations, drug tolerance, and other factors may influence CDK4/6 resistance mechanisms. Currently, the resistance mechanisms differences of the three drugs remain largely unknown, and there are differences in the resistance mechanisms among them, necessitating further exploration and research.
Collapse
Affiliation(s)
- Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
65
|
Neves Rebello Alves L, Dummer Meira D, Poppe Merigueti L, Correia Casotti M, do Prado Ventorim D, Ferreira Figueiredo Almeida J, Pereira de Sousa V, Cindra Sant'Ana M, Gonçalves Coutinho da Cruz R, Santos Louro L, Mendonça Santana G, Erik Santos Louro T, Evangelista Salazar R, Ribeiro Campos da Silva D, Stefani Siqueira Zetum A, Silva Dos Reis Trabach R, Imbroisi Valle Errera F, de Paula F, de Vargas Wolfgramm Dos Santos E, Fagundes de Carvalho E, Drumond Louro I. Biomarkers in Breast Cancer: An Old Story with a New End. Genes (Basel) 2023; 14:1364. [PMID: 37510269 PMCID: PMC10378988 DOI: 10.3390/genes14071364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the second most frequent cancer in the world. It is a heterogeneous disease and the leading cause of cancer mortality in women. Advances in molecular technologies allowed for the identification of new and more specifics biomarkers for breast cancer diagnosis, prognosis, and risk prediction, enabling personalized treatments, improving therapy, and preventing overtreatment, undertreatment, and incorrect treatment. Several breast cancer biomarkers have been identified and, along with traditional biomarkers, they can assist physicians throughout treatment plan and increase therapy success. Despite the need of more data to improve specificity and determine the real clinical utility of some biomarkers, others are already established and can be used as a guide to make treatment decisions. In this review, we summarize the available traditional, novel, and potential biomarkers while also including gene expression profiles, breast cancer single-cell and polyploid giant cancer cells. We hope to help physicians understand tumor specific characteristics and support decision-making in patient-personalized clinical management, consequently improving treatment outcome.
Collapse
Affiliation(s)
- Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Diego do Prado Ventorim
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (Ifes), Cariacica 29150-410, ES, Brazil
| | - Jucimara Ferreira Figueiredo Almeida
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Valdemir Pereira de Sousa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Marllon Cindra Sant'Ana
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Rahna Gonçalves Coutinho da Cruz
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, ES, Brazil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, ES, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória 29027-502, ES, Brazil
| | - Rhana Evangelista Salazar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Danielle Ribeiro Campos da Silva
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Raquel Silva Dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
| | - Flávia Imbroisi Valle Errera
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Eldamária de Vargas Wolfgramm Dos Santos
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, RJ, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, ES, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória 29047-105, ES, Brazil
| |
Collapse
|
66
|
Nair NU, Greninger P, Zhang X, Friedman AA, Amzallag A, Cortez E, Sahu AD, Lee JS, Dastur A, Egan RK, Murchie E, Ceribelli M, Crowther GS, Beck E, McClanaghan J, Klump-Thomas C, Boisvert JL, Damon LJ, Wilson KM, Ho J, Tam A, McKnight C, Michael S, Itkin Z, Garnett MJ, Engelman JA, Haber DA, Thomas CJ, Ruppin E, Benes CH. A landscape of response to drug combinations in non-small cell lung cancer. Nat Commun 2023; 14:3830. [PMID: 37380628 PMCID: PMC10307832 DOI: 10.1038/s41467-023-39528-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xiaohu Zhang
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Adam A Friedman
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eliane Cortez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Das Sahu
- University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Joo Sang Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Anahita Dastur
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina K Egan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen Murchie
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Erin Beck
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | | | | | | | - Leah J Damon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Ho
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela Tam
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sam Michael
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Zina Itkin
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | | | - Daniel A Haber
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
67
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
68
|
Brett JO, Dubash TD, Johnson GN, Niemierko A, Mariotti V, Kim LS, Xi J, Pandey A, Dunne S, Nasrazadani A, Lloyd MR, Kambadakone A, Spring LM, Micalizzi DS, Onozato ML, Che D, Nayar U, Brufsky A, Kalinsky K, Ma CX, O'Shaughnessy J, Han HS, Iafrate AJ, Ryan LY, Juric D, Moy B, Ellisen LW, Maheswaran S, Wagle N, Haber DA, Bardia A, Wander SA. A Gene Panel Associated With Abemaciclib Utility in ESR1-Mutated Breast Cancer After Prior Cyclin-Dependent Kinase 4/6-Inhibitor Progression. JCO Precis Oncol 2023; 7:e2200532. [PMID: 37141550 PMCID: PMC10530719 DOI: 10.1200/po.22.00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 05/06/2023] Open
Abstract
PURPOSE For patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC), first-line treatment is endocrine therapy (ET) plus cyclin-dependent kinase 4/6 inhibition (CDK4/6i). After disease progression, which often comes with ESR1 resistance mutations (ESR1-MUT), which therapies to use next and for which patients are open questions. An active area of exploration is treatment with further CDK4/6i, particularly abemaciclib, which has distinct pharmacokinetic and pharmacodynamic properties compared with the other approved CDK4/6 inhibitors, palbociclib and ribociclib. We investigated a gene panel to prognosticate abemaciclib susceptibility in patients with ESR1-MUT MBC after palbociclib progression. METHODS We examined a multicenter retrospective cohort of patients with ESR1-MUT MBC who received abemaciclib after disease progression on ET plus palbociclib. We generated a panel of CDK4/6i resistance genes and compared abemaciclib progression-free survival (PFS) in patients without versus with mutations in this panel (CDKi-R[-] v CDKi-R[+]). We studied how ESR1-MUT and CDKi-R mutations affect abemaciclib sensitivity of immortalized breast cancer cells and patient-derived circulating tumor cell lines in culture. RESULTS In ESR1-MUT MBC with disease progression on ET plus palbociclib, the median PFS was 7.0 months for CDKi-R(-) (n = 17) versus 3.5 months for CDKi-R(+) (n = 11), with a hazard ratio of 2.8 (P = .03). In vitro, CDKi-R alterations but not ESR1-MUT induced abemaciclib resistance in immortalized breast cancer cells and were associated with resistance in circulating tumor cells. CONCLUSION For ESR1-MUT MBC with resistance to ET and palbociclib, PFS on abemaciclib is longer for patients with CDKi-R(-) than CDKi-R(+). Although a small and retrospective data set, this is the first demonstration of a genomic panel associated with abemaciclib sensitivity in the postpalbociclib setting. Future directions include testing and improving this panel in additional data sets, to guide therapy selection for patients with HR+/HER2- MBC.
Collapse
Affiliation(s)
- Jamie O. Brett
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Taronish D. Dubash
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Andrzej Niemierko
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | | | - Leslie S.L. Kim
- Baylor University Medical Center Charles A. Sammons Cancer Center, Texas Oncology, Dallas, TX
| | - Jing Xi
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - Apurva Pandey
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Siobhan Dunne
- Baylor University Medical Center Charles A. Sammons Cancer Center, Texas Oncology, Dallas, TX
| | - Azadeh Nasrazadani
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Maxwell R. Lloyd
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Avinash Kambadakone
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Laura M. Spring
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Douglas S. Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Maristela L. Onozato
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Dante Che
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Utthara Nayar
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Adam Brufsky
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kevin Kalinsky
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Emory University Winship Cancer Institute, Atlanta, GA
| | - Cynthia X. Ma
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - Joyce O'Shaughnessy
- Baylor University Medical Center Charles A. Sammons Cancer Center, Texas Oncology, Dallas, TX
| | | | - Anthony J. Iafrate
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Lianne Y. Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Nikhil Wagle
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daniel A. Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Seth A. Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
69
|
Davis AA, Luo J, Zheng T, Dai C, Dong X, Tan L, Suresh R, Ademuyiwa FO, Rigden C, Rearden TP, Clifton K, Weilbaecher K, Frith A, Tandra PK, Summa T, Haas B, Thomas S, Hernandez-Aya LF, Peterson LL, Wang X, Luo SJ, Zhou K, Du P, Jia S, King BL, Krishnamurthy J, Ma CX. Genomic Complexity Predicts Resistance to Endocrine Therapy and CDK4/6 Inhibition in Hormone Receptor-Positive (HR+)/HER2-Negative Metastatic Breast Cancer. Clin Cancer Res 2023; 29:1719-1729. [PMID: 36693175 PMCID: PMC10150240 DOI: 10.1158/1078-0432.ccr-22-2177] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Clinical biomarkers to identify patients unlikely to benefit from CDK4/6 inhibition (CDK4/6i) in combination with endocrine therapy (ET) are lacking. We implemented a comprehensive circulating tumor DNA (ctDNA) analysis to identify genomic features for predicting and monitoring treatment resistance. EXPERIMENTAL DESIGN ctDNA was isolated from 216 plasma samples collected from 51 patients with hormone receptor-positive (HR+)/HER2-negative (HER2-) metastatic breast cancer (MBC) on a phase II trial of palbociclib combined with letrozole or fulvestrant (NCT03007979). Boosted whole-exome sequencing (WES) was performed at baseline and clinical progression to evaluate genomic alterations, mutational signatures, and blood tumor mutational burden (bTMB). Low-pass whole-genome sequencing was performed at baseline and serial timepoints to assess blood copy-number burden (bCNB). RESULTS High bTMB and bCNB were associated with lack of clinical benefit and significantly shorter progression-free survival (PFS) compared with patients with low bTMB or low bCNB (all P < 0.05). Dominant APOBEC signatures were detected at baseline exclusively in cases with high bTMB (5/13, 38.5%) versus low bTMB (0/37, 0%; P = 0.0006). Alterations in ESR1 were enriched in samples with high bTMB (P = 0.0005). There was a high correlation between bTMB determined by WES and bTMB determined using a 600-gene panel (R = 0.98). During serial monitoring, an increase in bCNB score preceded radiographic progression in 12 of 18 (66.7%) patients. CONCLUSIONS Genomic complexity detected by noninvasive profiling of bTMB and bCNB predicted poor outcomes in patients treated with ET and CDK4/6i and identified early disease progression before imaging. Novel treatment strategies including immunotherapy-based combinations should be investigated in this population.
Collapse
Affiliation(s)
- Andrew A. Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health Science, Department of Surgery, Biostatistics Shared Resource, Washington University in St. Louis, Missouri
| | | | - Chao Dai
- Predicine, Inc., Hayward, California
| | | | - Lu Tan
- Predicine, Inc., Hayward, California
| | - Rama Suresh
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Foluso O. Ademuyiwa
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Caron Rigden
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Timothy P. Rearden
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Katherine Clifton
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Katherine Weilbaecher
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Ashley Frith
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Pavan K. Tandra
- Division of Oncology/Hematology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tracy Summa
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Brittney Haas
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Shana Thomas
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Leonel F. Hernandez-Aya
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | - Lindsay L. Peterson
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| | | | | | | | - Pan Du
- Predicine, Inc., Hayward, California
| | | | | | - Jairam Krishnamurthy
- Division of Oncology/Hematology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cynthia X. Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
70
|
Patel JR, Banjara B, Ohemeng A, Davidson AM, Boué SM, Burow ME, Tilghman SL. Novel Therapeutic Combination Targets the Growth of Letrozole-Resistant Breast Cancer through Decreased Cyclin B1. Nutrients 2023; 15:1632. [PMID: 37049472 PMCID: PMC10097176 DOI: 10.3390/nu15071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
As breast cancer cells transition from letrozole-sensitive to letrozole-resistant, they over-express epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), and human epidermal growth factor receptor 2 (HER2) while acquiring enhanced motility and epithelial-to-mesenchymal transition (EMT)-like characteristics that are attenuated and reversed by glyceollin treatment, respectively. Interestingly, glyceollin inhibits the proliferation and tumor progression of triple-negative breast cancer (TNBC) and estrogen-independent breast cancer cells; however, it is unlikely that a single phytochemical would effectively target aromatase-inhibitor (AI)-resistant metastatic breast cancer in the clinical setting. Since our previous report indicated that the combination of lapatinib and glyceollin induced apoptosis in hormone-dependent AI-resistant breast cancer cells, we hypothesized that combination therapy would also be beneficial for hormone independent letrozole-resistant breast cancer cells (LTLT-Ca) compared to AI-sensitive breast cancer cells (AC-1) by decreasing the expression of proteins associated with proliferation and cell cycle progression. While glyceollin + lapatinib treatment caused comparable inhibitory effects on the proliferation and migration in both cell lines, combination treatment selectively induced S and G2/M phase cell cycle arrest of the LTLT-Ca cells, which was mediated by decreased cyclin B1. This phenomenon may represent a unique opportunity to design novel combinatorial therapeutic approaches to target hormone-refractory breast tumors.
Collapse
Affiliation(s)
- Jankiben R. Patel
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Bipika Banjara
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Afia Ohemeng
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - A. Michael Davidson
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Stephen M. Boué
- Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Syreeta L. Tilghman
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
71
|
Stanciu IM, Parosanu AI, Orlov-Slavu C, Iaciu IC, Popa AM, Olaru CM, Pirlog CF, Vrabie RC, Nitipir C. Mechanisms of Resistance to CDK4/6 Inhibitors and Predictive Biomarkers of Response in HR+/HER2-Metastatic Breast Cancer-A Review of the Literature. Diagnostics (Basel) 2023; 13:diagnostics13050987. [PMID: 36900131 PMCID: PMC10000620 DOI: 10.3390/diagnostics13050987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The latest and newest discoveries for advanced and metastatic hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer are the three cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i) in association with endocrine therapy (ET). However, even if this treatment revolutionized the world and continued to be the first-line treatment choice for these patients, it also has its limitations, caused by de novo or acquired drug resistance which leads to inevitable progression after some time. Thus, an understanding of the overview of the targeted therapy which represents the gold therapy for this subtype of cancer is essential. The full potential of CDK4/6i is yet to be known, with many trials ongoing to expand their utility to other breast cancer subtypes, such as early breast cancer, and even to other cancers. Our research establishes the important idea that resistance to combined therapy (CDK4/6i + ET) can be due to resistance to endocrine therapy, to treatment with CDK4/6i, or to both. Individuals' responses to treatment are based mostly on genetic features and molecular markers, as well as the tumor's hallmarks; therefore, a future perspective is represented by personalized treatment based on the development of new biomarkers, and strategies to overcome drug resistance to combinations of ET and CDK4/6 inhibitors. The aim of our study was to centralize the mechanisms of resistance, and we believe that our work will have utility for everyone in the medical field who wants to deepen their knowledge about ET + CDK4/6 inhibitors resistance.
Collapse
Affiliation(s)
- Ioana-Miruna Stanciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
- Correspondence: ; Tel.: +40-725-683-118
| | - Cristina Orlov-Slavu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ion Cristian Iaciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ana Maria Popa
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Mihaela Olaru
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Florina Pirlog
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Radu Constantin Vrabie
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
72
|
Zhu X, Xu X, Zhang L, Yang X. Carboxypeptidase vitellogenic like facilitates resistance to CDK4/6 inhibitors in breast cancer. Thorac Cancer 2023; 14:983-991. [PMID: 36825764 PMCID: PMC10101830 DOI: 10.1111/1759-7714.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Inhibitors of cyclin-dependent kinase 4 and 6 (CDK4/6) are targeted therapeutic drugs for breast cancer treatment. The mechanism of resistance to these inhibitors requires further investigation. METHODS We used bioinformatics to screen differentially expressed genes between cells that were susceptible and resistant to CDK4/6 inhibitors. Quantitative real-time PCR (qRT-PCR) was used to identify gene expressions in different cell lines. Cell viability, colony formation, cell cycle, and apoptosis assays were used to evaluate the effect of carboxypeptidase vitellogenic like (CPVL) on breast cancer cells under the condition of CDK4/6 inhibitors. Gene set enrichment analysis (GSEA) suggested the potential regulatory pathway of CPVL in breast cancer. Xenograft formation assay was conducted in nude mice to study the role of CPVL in vivo. RESULTS Based on bioinformatics analysis and qRT-PCR, CPVL was identified more abundantly in cells that were resistant than sensitive to CDK4/6 inhibitors. Overexpressed or knocked down CPVL regulated the effects of CDK4/6 inhibitors in resistant cell lines. GSEA showed that resistance might be induced by CPVL through altered phosphatase and tensin homolog (PTEN)-related pathways. Our findings showed that CPVL negatively regulates PTEN to impact the anticancer effects of CDK4/6 inhibitors in vitro and in vivo. CONCLUSION CPVL might be a key factor in regulating breast cancer resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhang
- Department of Outpatient Service, 986th Hospital Affiliated to Air Force Medical University, Xi'an, China
| | - Xuhui Yang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, China.,Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| |
Collapse
|
73
|
Abu-Khalaf MM, Alex Hodge K, Hatzis C, Baldelli E, El Gazzah E, Valdes F, Sikov WM, Mita MM, Denduluri N, Murphy R, Zelterman D, Liotta L, Dunetz B, Dunetz R, Petricoin EF, Pierobon M. AKT/mTOR signaling modulates resistance to endocrine therapy and CDK4/6 inhibition in metastatic breast cancers. NPJ Precis Oncol 2023; 7:18. [PMID: 36797347 PMCID: PMC9935518 DOI: 10.1038/s41698-023-00360-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Endocrine therapy (ET) in combination with CDK4/6 inhibition is routinely used as first-line treatment for HR+/HER2- metastatic breast cancer (MBC) patients. However, 30-40% of patients quickly develop disease progression. In this open-label multicenter clinical trial, we utilized a hypothesis-driven protein/phosphoprotein-based approach to identify predictive markers of response to ET plus CDK4/6 inhibition in pre-treatment tissue biopsies. Pathway-centered signaling profiles were generated from microdissected tumor epithelia and surrounding stroma/immune cells using the reverse phase protein microarray. Phosphorylation levels of the CDK4/6 downstream substrates Rb (S780) and FoxM1 (T600) were higher in patients with progressive disease (PD) compared to responders (p = 0.02). Systemic PI3K/AKT/mTOR activation in tumor epithelia and stroma/immune cells was detected in patients with PD. This activation was not explained by underpinning genomic alterations alone. As the number of FDA-approved targeted compounds increases, functional protein-based signaling analyses may become a critical component of response prediction and treatment selection for MBC patients.
Collapse
Affiliation(s)
- Maysa M. Abu-Khalaf
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | - K. Alex Hodge
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Elisa Baldelli
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Emna El Gazzah
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Frances Valdes
- grid.419791.30000 0000 9902 6374Sylvester Comprehensive Cancer Center (UM SCCC), University of Miami, Miami, FL USA
| | - William M. Sikov
- grid.241223.4Women and Infants Hospital of Rhode Island, Providence, RI USA
| | - Monica M. Mita
- grid.50956.3f0000 0001 2152 9905Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Neelima Denduluri
- grid.492966.60000 0004 0481 8256Virginia Cancer Specialists, Fairfax, VA USA
| | - Rita Murphy
- grid.415231.00000 0004 0577 7855Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA USA
| | | | - Lance Liotta
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | | | - Rick Dunetz
- grid.490989.5Side Out Foundation, Fairfax, VA USA
| | - Emanuel F. Petricoin
- grid.22448.380000 0004 1936 8032School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA USA
| | - Mariaelena Pierobon
- School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
74
|
Prabhu SA, Moussa O, Gonçalves C, LaPierre JH, Chou H, Huang F, Richard VR, Ferruzo PYM, Guettler EM, Soria-Bretones I, Kirby L, Gagnon N, Su J, Silvester J, Krisna SS, Rose AAN, Sheppard KE, Cescon DW, Mallette FA, Zahedi RP, Borchers CH, Del Rincon SV, Miller WH. Inhibition of the MNK1/2-eIF4E Axis Augments Palbociclib-Mediated Antitumor Activity in Melanoma and Breast Cancer. Mol Cancer Ther 2023; 22:192-204. [PMID: 36722142 DOI: 10.1158/1535-7163.mct-22-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
Aberrant cell-cycle progression is characteristic of melanoma, and CDK4/6 inhibitors, such as palbociclib, are currently being tested for efficacy in this disease. Despite the promising nature of CDK4/6 inhibitors, their use as single agents in melanoma has shown limited clinical benefit. Herein, we discovered that treatment of tumor cells with palbociclib induces the phosphorylation of the mRNA translation initiation factor eIF4E. When phosphorylated, eIF4E specifically engenders the translation of mRNAs that code for proteins involved in cell survival. We hypothesized that cancer cells treated with palbociclib use upregulated phosphorylated eIF4E (phospho-eIF4E) to escape the antitumor benefits of this drug. Indeed, we found that pharmacologic or genetic disruption of MNK1/2 activity, the only known kinases for eIF4E, enhanced the ability of palbociclib to decrease clonogenic outgrowth. Moreover, a quantitative proteomics analysis of melanoma cells treated with combined MNK1/2 and CDK4/6 inhibitors showed downregulation of proteins with critical roles in cell-cycle progression and mitosis, including AURKB, TPX2, and survivin. We also observed that palbociclib-resistant breast cancer cells have higher basal levels of phospho-eIF4E, and that treatment with MNK1/2 inhibitors sensitized these palbociclib-resistant cells to CDK4/6 inhibition. In vivo we demonstrate that the combination of MNK1/2 and CDK4/6 inhibition significantly increases the overall survival of mice compared with either monotherapy. Overall, our data support MNK1/2 inhibitors as promising drugs to potentiate the antineoplastic effects of palbociclib and overcome therapy-resistant disease.
Collapse
Affiliation(s)
- Sathyen A Prabhu
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Omar Moussa
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | - Judith H LaPierre
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Hsiang Chou
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Fan Huang
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Pault Y M Ferruzo
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | - Isabel Soria-Bretones
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Kirby
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Natascha Gagnon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jie Su
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
| | - Jennifer Silvester
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - April A N Rose
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Karen E Sheppard
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Frédérick A Mallette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Rene P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Sonia V Del Rincon
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- McGill Centre for Translational Research in Cancer, McGill University, Montréal, Québec, Canada
| |
Collapse
|
75
|
Boccarelli A, Del Buono N, Esposito F. Cluster of resistance-inducing genes in MCF-7 cells by estrogen, insulin, methotrexate and tamoxifen extracted via NMF. Pathol Res Pract 2023; 242:154347. [PMID: 36738509 DOI: 10.1016/j.prp.2023.154347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Breast cancer has become a leading cause of death for women as the economy has grown and the number of women in the labor force has increased. Several biomarkers with diagnostic, prognostic, and therapeutic implications for breast cancer have been identified in studies, leading to therapeutic advances. Resistance, on the other hand, is one of clinical practice's limitations. In this paper, we use Nonnegative Matrix Factorization to automatically extract two gene signatures from gene expression profiles of wild-type and resistance MCF-7 cells, which were then investigated further using pathways analysis and proved useful in relating resistance pathways to breast cancer regardless of the stimulus that caused it. A few extracted genes (including MAOA, IL4I1, RRM2, DUT, NME4, and SUMO3) represent new elements in the functional network for resistance in MCF-7 ER+ breast cancer. As a result of this research, a better understanding of how resistance occurs or the pathways that contribute to it may allow more effective therapies to be developed.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Precision and Regenerative Medicine and Polo Jonico, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via Edoardo Orabona 4, 70125 Bari, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
76
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
77
|
Zhang LP, Yang X, Zheng W, Feng KX, Li H. Exploration of chemotherapy-free regimen after multi-line chemotherapy-induced renal impairment in recurrent ovarian cancer: Case report and literature review. Front Oncol 2023; 12:1031045. [PMID: 36741732 PMCID: PMC9892535 DOI: 10.3389/fonc.2022.1031045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Platinum-based combination chemotherapy is recommended first choice for relapsed ovarian cancer. However, many of the chemotherapeutic agents are nephrotoxic and can promote kidney dysfunction, which affect the efficacy of cancer treatment and the survival of the patient. There is a need to explore long-term treatments of chemotherapy-free regimen of chronic kidney disease in recurrent ovarian cancer. Case presentation A 41-year-old female patient was presented with stage IIIC well-differentiated ovarian serous papillary adenocarcinoma in 2009. The patient had recurrence of platinum resistance after secondary cytoreductive surgery, and it was difficult to continue chemotherapy after multiple lines of chemotherapy due to myelosuppression, renal impairment and other factors. The patient accepted Niraparib-based treatment regimen after multi-line chemotherapy-induced stage 4 chronic kidney disease. Niraparib combined with anlotinib achieved median PFS of 11 months, disease re-progression, and the patient was switched to niraparib combined with letrozole from October 2021. No evidence of tumor progression was observed till date and the renal toxicity is acceptable. Conclusions In patients with relapsed ovarian cancer, treatment becomes increasingly challenging to subsequent therapies because of renal impairment and emerging drug resistance. Niraparib-based treatment regimen may be a good choice for patients with well-differentiated serous adenocarcinoma of the ovary who are intolerant to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Hu Li
- Department of Gynecology, Guangzhou Panyu Central Hospital, Panyu Cancer Institute, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Mao Y, Lv M, Wang Y, Cao W, Li W. Hormone receptor-positive, HER2-negative, metastatic breast cancer responded well to abemaciclib and exemestane after palbociclib and fulvestrant failure: A case report and literature review. Front Oncol 2023; 12:1022913. [PMID: 36698413 PMCID: PMC9869123 DOI: 10.3389/fonc.2022.1022913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
There is uncertainty regarding the usefulness of CDK4/6-inhibitor-based therapy for hormone receptor positive (HR+), human epidermal grow factor receptor 2 negative (HER2-), metastatic breast cancer (MBC), when CDK4/6 inhibitor treatment had previously failed. Furthermore, a biomarker for abemaciclib resistance has not been identified. Herein, we reported outcomes for an HR+/HER2- MBC patient diagnosed with multiple myeloma and treated with abemaciclib and exemestane, who had cancer progression after treatment with palbociclib and fulvestrant. Thalidomide was used in conjunction with all treatments. The patient had a good response to abemaciclib and exemestane, with progression-free survival much longer than previously reported. PIK3CA and TP53 mutations were identified after cancer progression following abemaciclib treatment. It is unclear whether thalidomide increased the effectiveness of abemaciclib. Whether benefit can be derived by the use of PI3K inhibitors, after cancer progression, requires further investigation, and this may be best accomplished by the use of next-generation sequencing.
Collapse
|
79
|
Marra A, Trapani D, Ferraro E, Curigliano G. Mechanisms of Endocrine Resistance in Hormone Receptor-Positive Breast Cancer. Cancer Treat Res 2023; 188:219-235. [PMID: 38175348 DOI: 10.1007/978-3-031-33602-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) accounts for approximately 70% of all breast invasive tumors. Endocrine therapy (ET) represents the standard treatment for HR + BC. Most patients, however, eventually develop resistance to ET, which limits their effectiveness and poses a major challenge for the management of HR + BC. Several mechanisms that contribute to ET resistance have been described. One of the most common mechanisms is the upregulation of alternative signaling pathways that can bypass estrogen dependency, such as activation of the PI3K/Akt/mTOR as well as mitogen-activated protein kinase (MAPK) and the insulin-like growth factor 1 receptor (IGF-1R) pathways. Another common mechanism of endocrine resistance is the acquisition of activating mutations of ESR1, which encodes for the estrogen receptor, that lead to structural changes of the receptor, prevent the binding to anti-estrogen drugs and result in constitutive activation of the receptor, even in the absence of estrogens. Epigenetic changes, such as DNA methylation and histone modifications, can also contribute to ET resistance by altering the expression of genes that are involved in estrogen signaling. Understanding the mechanisms of resistance to ET is crucial for the development of new therapies that can overcome resistance and improve outcomes for patients with HR + BC.
Collapse
Affiliation(s)
- Antonio Marra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.
| | - Dario Trapani
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Emanuela Ferraro
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| |
Collapse
|
80
|
Ma XB, Wang Y, Jia YJ, Liu YJ, Tian YQ, Liu Y, Hou GQ, Xu YC, Liu HM. Upregulation of PIK3IP1 monitors the anti-cancer activity of PI3Kα inhibitors in gastric cancer cells. Biochem Pharmacol 2023; 207:115380. [PMID: 36521557 DOI: 10.1016/j.bcp.2022.115380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Gastric cancer remains one of the most malignant cancers in the world. The target-based drugs approved by FDA for gastric cancer treatment include only three targets and benefit a small portion of gastric cancer patients. PIK3CA, a confirmed oncogene, mutates in 7-25% gastric cancer patients. PI3Kα inhibitor BYL719 has been approved for treating specific breast cancer. However, there is no comprehensive study about PI3Kα inhibitor in gastric cancer. In this study, we found pharmacological inhibition or knockdown of PI3Kα effectively inhibited the proliferation of partial gastric cancer cells. Then, we systematically explored the potential biomarkers for predicting or monitoring treatment response according to previous reports and found that basal expression of several receptor tyrosine kinases were related with the sensitivity of gastric cancer cells to BYL719. Next, RNA-seq technique was utilized and showed that BYL719 inhibited Myc targets V2 gene set in sensitive gastric cancer cells, and western blotting further verified that c-Myc was only inhibited in sensitive gastric cancer cells. More importantly, we firstly found BYL719 significantly elevated the expression of PIK3IP1 in sensitive gastric cancer cells, which was also observed in NCI-N87 cell derived xenograft mice models. Meanwhile, knockdown of PIK3IP1 partially rescued the cell growth inhibited by BYL719 in sensitive gastric cancer cells, suggesting the important role of PIK3IP1 in the antitumor activity of BYL719. In conclusion, our study provides biological evidence that PI3Kα is a promising target in specific gastric cancer and the elevation of PIK3IP1 could supply as a biomarker that monitoring treatment response.
Collapse
Affiliation(s)
- Xu-Bin Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Yang Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Jie Jia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ya-Jie Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Qi Tian
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Gui-Qin Hou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Yi-Chao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| |
Collapse
|
81
|
Histology-based survival outcomes in hormone receptor-positive metastatic breast cancer treated with targeted therapies. NPJ Breast Cancer 2022; 8:131. [PMID: 36539444 PMCID: PMC9768132 DOI: 10.1038/s41523-022-00499-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The addition of targeted therapies (TT) to endocrine therapy (ET) has improved the outcomes of patients with HR-positive, HER2-negative metastatic breast cancer (mBC). However, it is unknown whether patients with invasive lobular carcinoma (ILC) or mixed invasive ductal and lobular carcinoma (mixed) histologies experience the same magnitude of benefit from this therapy as those with invasive ductal carcinoma (IDC). We aim to determine whether patients with IDC, ILC, and mixed HR+/HER2- mBC derive similar benefit from the addition of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is), mammalian target of rapamycin inhibitor (mTORi), and phosphoinositide 3-kinase inhibitor (PI3Ki) to ET in HR+/HER2- mBC. We conducted an observational, population-based investigation using data from the MD Anderson prospectively collected database. We conducted a histology-based analysis of progression-free survival (PFS) and overall survival (OS) durations in 3784 patients with HR+/HER2- mBC who were treated with TT plus ET between January 1, 2010, and December 31, 2021. Out of the 3784 patients, 2975 were included in the final analysis. Of these, 2249 received CDK4/6is (81% IDC, 15% ILC, and 4% mixed), 1027 received everolimus (82% IDC, 14% ILC, and 4% mixed) and 49 received alpelisib (81% IDC and 19% ILC). The addition of targeted therapy to ET did not result in statistically significant differences in PFS or OS duration among patients with IDC, ILC, and mixed HR+/HER2- mBC. We concluded that for patients with HR+/HER2- mBC, the addition of TT to ET leads to a similar magnitude of benefit, irrespective of histology.
Collapse
|
82
|
Pang J, Li H, Sheng Y. CDK4/6 inhibitor resistance: A bibliometric analysis. Front Oncol 2022; 12:917707. [PMID: 36530984 PMCID: PMC9752919 DOI: 10.3389/fonc.2022.917707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/17/2022] [Indexed: 07/22/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) 4/6 inhibitors are a type of cell cycle regulation that prevents cell proliferation by blocking retinoblastoma protein (Rb) phosphorylation in the G1 to S phase transition. CDK 4/6 inhibitors are currently used mainly in patients with hormone receptor-positive/human epidermal growth factor receptor 2 (HER2) negative breast cancer in combination with endocrine therapy. However, primary or acquired resistance to drugs severely affect drug efficacy. Our study aims at summarizing and visualizing the current research direction and development trend of CDK4/6 inhibitor resistance to provide clinicians and research power with a summary of the past and ideas for the future. Methods The Web of Science Core Collection and PubMed was searched for all included articles on CDK4/6 inhibitor resistance for bibliometric statistics and graph plotting. The metrological software and graphing tools used were R language version 4.2.0, Bibliometrix 4.0.0, Vosviewer 1.6.18, GraphPad Prism 9, and Microsoft Excel 2019. Results A total of 1278 English-language articles related to CDK4/6 inhibitor resistance were included in the Web of Science core dataset from 1996-2022, with an annual growth rate of14.56%. In PubMed, a total of 1123 articles were counted in the statistics, with an annual growth rate of 17.41% Cancer Research is the most included journal (102/1278, 7.98%) with an impact factor of 13.312 and is the Q1 of the Oncology category of the Journal Citation Reports. Professor Malorni Luca from Italy is probably the most contributing author in the current field (Publications 21/1278, 1.64%), while Prof. Turner Nicholas C from the USA is perhaps the most authoritative new author in the field of CDK4/6 inhibitor resistance (Total Citations2584, M-index 1.429). The main research efforts in this field are currently focused on Palbociclib and Abemaciclib. Studies on drug resistance mechanisms or post-drug resistance therapies focus on MEK inhibitors and related pathways, PI3K-AKT-MTOR pathways or inhibitors, EGFR-related pathways, EGFR inhibitors, TKI inhibitors, MAPK pathways and inhibitors, and so on. Conclusion This study provides researchers with a reliable basis and guidance for finding authoritative references, understanding research trends, and mining research neglect directions.
Collapse
Affiliation(s)
| | | | - Yuan Sheng
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
83
|
Papadimitriou MC, Pazaiti A, Iliakopoulos K, Markouli M, Michalaki V, Papadimitriou CA. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119346. [PMID: 36030016 DOI: 10.1016/j.bbamcr.2022.119346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Selective CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, have been approved in combination with hormone therapy for the treatment of patients with HR+, HER2-negative advanced or metastatic breast cancer (mBC). Despite their promising activity, approximately 10 % of patients have de novo resistance, while the rest of them will develop acquired resistance after 24-28 months when used as first-line therapy and after a shorter period when used as second-line therapy. Various mechanisms of resistance to CDK4/6 inhibitors have been described, including cell cycle-related mechanisms, such as RB loss, p16 amplification, CDK6 or CDK4 amplification, and cyclin E-CDK2 amplification. Other bypass mechanisms involve the activation of FGFR or PI3K/AKT/mTOR pathways. Identifying the different mechanisms by which resistance to CDK4/6 inhibitors occurs may help to design new treatment strategies to improve patient outcomes. This review presents the currently available knowledge on the mechanisms of resistance to CDK4/6 inhibitors, explores possible treatment strategies that could overcome this therapeutic problem, and summarizes relevant recent clinical trials.
Collapse
Affiliation(s)
- Marios C Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Anastasia Pazaiti
- Breast Clinic of Oncologic and Reconstructive Surgery, Metropolitan General Hospital, Leoforos Mesogeion 264, 155 62 Cholargos, Greece.
| | - Konstantinos Iliakopoulos
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Mariam Markouli
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Vasiliki Michalaki
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Christos A Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece.
| |
Collapse
|
84
|
Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, Cureton N, Staniszewska A, McEwen R, Fox M, Pilling J, Hopcroft P, Coker EA, Jaaks P, Garnett MJ, Isherwood B, Serra V, Davies BR, Barry ST, Lynch JT, Yusa K. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 2022; 41:5046-5060. [PMID: 36241868 PMCID: PMC9652152 DOI: 10.1038/s41388-022-02482-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kβ inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kβi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kβi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kβi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kβi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kβ/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kβi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kβi/AKTi sensitive and resistant breast tumours.
Collapse
Affiliation(s)
- Shanade Dunn
- Wellcome Sanger Institute, Cambridge, UK
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | - Jason Yu
- Wellcome Sanger Institute, Cambridge, UK
- Molecular Biology of Metabolism Lab, The Francis Crick Institute, London, UK
| | | | | | - Urs Yelland
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Robert McEwen
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Millie Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
85
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Huang J, Zheng L, Sun Z, Li J. CDK4/6 inhibitor resistance mechanisms and treatment strategies (Review). Int J Mol Med 2022; 50:128. [PMID: 36043521 PMCID: PMC9448295 DOI: 10.3892/ijmm.2022.5184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, the incidence rate of breast cancer has increased year by year, and it has become a major threat to the health of women globally. Among all breast cancer subtypes, the hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)− luminal subtype breast cancer is the most common form of breast cancer. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the hotspots in the field of targeted therapy for breast cancer, have proved to exhibit a good effect on patients with HR+/HER2− breast cancer in a number of clinical trials, but the problem of drug resistance is inevitable. At present, three specific CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have been approved by the USA Food and Drug Administration for the first-line treatment of HR+/HER2− breast cancer. The drug resistance mechanisms of CDK4/6 inhibitors can be divided into cell cycle-specific resistance and cell cycle non-specific resistance. With the discovery of the drug resistance mechanism of CDK4/6 inhibitors, various targeted strategies have been proposed. The present review mainly discusses the mechanism of CDK4/6 inhibitors, drug resistance mechanisms and treatment strategies after resistance.
Collapse
Affiliation(s)
- Jinyao Huang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Zheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
87
|
Mechanisms of Resistance to CDK4/6 Inhibitors in Hormone Receptor-Positive (HR +) Breast Cancer: Spotlight on Convergent CDK6 Upregulation and Immune Signaling. CURRENT BREAST CANCER REPORTS 2022. [DOI: 10.1007/s12609-022-00461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
88
|
Palafox M, Monserrat L, Bellet M, Villacampa G, Gonzalez-Perez A, Oliveira M, Brasó-Maristany F, Ibrahimi N, Kannan S, Mina L, Herrera-Abreu MT, Òdena A, Sánchez-Guixé M, Capelán M, Azaro A, Bruna A, Rodríguez O, Guzmán M, Grueso J, Viaplana C, Hernández J, Su F, Lin K, Clarke RB, Caldas C, Arribas J, Michiels S, García-Sanz A, Turner NC, Prat A, Nuciforo P, Dienstmann R, Verma CS, Lopez-Bigas N, Scaltriti M, Arnedos M, Saura C, Serra V. High p16 expression and heterozygous RB1 loss are biomarkers for CDK4/6 inhibitor resistance in ER + breast cancer. Nat Commun 2022; 13:5258. [PMID: 36071033 PMCID: PMC9452562 DOI: 10.1038/s41467-022-32828-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/17/2022] [Indexed: 12/27/2022] Open
Abstract
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Collapse
Affiliation(s)
- Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Laia Monserrat
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Meritxell Bellet
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mafalda Oliveira
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nusaibah Ibrahimi
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | - Leonardo Mina
- Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | | | - Andreu Òdena
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Capelán
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Analía Azaro
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Alejandra Bruna
- Preclinical Modelling of Pediatric Cancer Evolution Group, The Institute of Cancer Research, London, UK
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Hernández
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Faye Su
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Kui Lin
- Genentech, Inc., South San Francisco, California, USA
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Manchester, UK
| | | | - Joaquín Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
- Oncostat U1018, Inserm, University Paris-Saclay, Villejuif, France
| | | | | | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
- Department of Oncology, IOB Institute of Oncology, Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maurizio Scaltriti
- Departments of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Monica Arnedos
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Inserm Unit U981, Villejuif, France
| | - Cristina Saura
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
89
|
Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022; 11:2508. [PMID: 36010585 PMCID: PMC9406657 DOI: 10.3390/cells11162508] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT) and mechanistic target of rapamycin (mTOR) (PAM) pathways play important roles in breast tumorigenesis and confer worse prognosis in breast cancer patients. The inhibitors targeting three key nodes of these pathways, PI3K, AKT and mTOR, are continuously developed. For breast cancer patients to truly benefit from PAM pathway inhibitors, it is necessary to clarify the frequency and mechanism of abnormal alterations in the PAM pathway in different breast cancer subtypes, and further explore reliable biomarkers to identify the appropriate population for precision therapy. Some PI3K and mTOR inhibitors have been approved by regulatory authorities for the treatment of specific breast cancer patient populations, and many new-generation PI3K/mTOR inhibitors and AKT isoform inhibitors have also been shown to have good prospects for cancer therapy. This review summarizes the changes in the PAM signaling pathway in different subtypes of breast cancer, and the latest research progress about the biomarkers and clinical application of PAM-targeted inhibitors.
Collapse
Affiliation(s)
- Kunrui Zhu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanqi Wu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping He
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yu Fan
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaorong Zhong
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hong Zheng
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ting Luo
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
90
|
Van Baelen K, Geukens T, Maetens M, Tjan-Heijnen V, Lord CJ, Linn S, Bidard FC, Richard F, Yang WW, Steele RE, Pettitt SJ, Van Ongeval C, De Schepper M, Isnaldi E, Nevelsteen I, Smeets A, Punie K, Voorwerk L, Wildiers H, Floris G, Vincent-Salomon A, Derksen PWB, Neven P, Senkus E, Sawyer E, Kok M, Desmedt C. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol 2022; 33:769-785. [PMID: 35605746 DOI: 10.1016/j.annonc.2022.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Invasive lobular breast cancer (ILC) is the second most common type of breast cancer after invasive breast cancer of no special type (NST), representing up to 15% of all breast cancers. DESIGN Latest data on ILC are presented, focusing on diagnosis, molecular make-up according to the European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets (ESCAT) guidelines, treatment in the early and metastatic setting and ILC-focused clinical trials. RESULTS At the imaging level, magnetic resonance imaging-based and novel positron emission tomography/computed tomography-based techniques can overcome the limitations of currently used imaging techniques for diagnosing ILC. At the pathology level, E-cadherin immunohistochemistry could help improving inter-pathologist agreement. The majority of patients with ILC do not seem to benefit as much from (neo-)adjuvant chemotherapy as patients with NST, although chemotherapy might be required in a subset of high-risk patients. No differences in treatment efficacy are seen for anti-human epidermal growth factor receptor 2 (HER2) therapies in the adjuvant setting and cyclin-dependent kinases 4 and 6 inhibitors in the metastatic setting. The clinical utility of the commercially available prognostic gene expression-based tests is unclear for patients with ILC. Several ESCAT alterations differ in frequency between ILC and NST. Germline BRCA1 and PALB2 alterations are less frequent in patients with ILC, while germline CDH1 (gene coding for E-cadherin) alterations are more frequent in patients with ILC. Somatic HER2 mutations are more frequent in ILC, especially in metastases (15% ILC versus 5% NST). A high tumour mutational burden, relevant for immune checkpoint inhibition, is more frequent in ILC metastases (16%) than in NST metastases (5%). Tumours with somatic inactivating CDH1 mutations may be vulnerable for treatment with ROS1 inhibitors, a concept currently investigated in early and metastatic ILC. CONCLUSION ILC is a unique malignancy based on its pathological and biological features leading to differences in diagnosis as well as in treatment response, resistance and targets as compared to NST.
Collapse
Affiliation(s)
- K Van Baelen
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - T Geukens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - M Maetens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - V Tjan-Heijnen
- Medical Oncology Department, Maastricht University Medical Center (MUMC), School of GROW, Maastricht, The Netherlands
| | - C J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S Linn
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Departments of Medical Oncology, Amsterdam, The Netherlands; Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - F-C Bidard
- Department of Medical Oncology, Institut Curie, UVSQ/Paris-Saclav University, Paris, France
| | - F Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - W W Yang
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R E Steele
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - C Van Ongeval
- Departments of Radiology, UZ Leuven, Leuven, Belgium
| | - M De Schepper
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Pathology, UZ Leuven, Leuven, Belgium
| | - E Isnaldi
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - A Smeets
- Surgical Oncology, UZ Leuven, Leuven, Belgium
| | - K Punie
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - L Voorwerk
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Wildiers
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - G Floris
- Pathology, UZ Leuven, Leuven, Belgium
| | | | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Neven
- Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - E Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - E Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - M Kok
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
91
|
Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam AB, Frolov MV, Merrill BJ, Raychaudhuri P. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer. Cancer Res 2022; 82:2458-2471. [PMID: 35583996 PMCID: PMC9258028 DOI: 10.1158/0008-5472.can-22-0410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
UNLABELLED The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eilidh O’Brien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria P. Zappia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B.M.M.K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
92
|
Howell SJ, Casbard A, Carucci M, Ingarfield K, Butler R, Morgan S, Meissner M, Bale C, Bezecny P, Moon S, Twelves C, Venkitaraman R, Waters S, de Bruin EC, Schiavon G, Foxley A, Jones RH. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative breast cancer (FAKTION): overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial. Lancet Oncol 2022; 23:851-864. [PMID: 35671774 PMCID: PMC9630162 DOI: 10.1016/s1470-2045(22)00284-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Capivasertib, an AKT inhibitor, added to fulvestrant, was previously reported to improve progression-free survival in women with aromatase inhibitor-resistant oestrogen receptor (ER)-positive, HER2-negative advanced breast cancer. The benefit appeared to be independent of the phosphoinositide 3-kinase (PI3K)/AKT/phosphatase and tensin homologue (PTEN) pathway alteration status of tumours, as ascertained using assays available at the time. Here, we report updated progression-free survival and overall survival results, and a prespecified examination of the effect of PI3K/AKT/PTEN pathway alterations identified by an expanded genetic testing panel on treatment outcomes. METHODS This randomised, multicentre, double-blind, placebo-controlled, phase 2 trial recruited postmenopausal adult women aged at least 18 years with ER-positive, HER2-negative, metastatic or locally advanced inoperable breast cancer and an Eastern Cooperative Oncology Group performance status of 0-2, who had relapsed or progressed on an aromatase inhibitor, from across 19 hospitals in the UK. Participants were randomly assigned (1:1) to receive intramuscular fulvestrant 500 mg (day 1) every 28 days (plus a 500 mg loading dose on day 15 of cycle 1) with either capivasertib 400 mg or matching placebo, orally twice daily on an intermittent weekly schedule of 4 days on and 3 days off, starting on cycle 1 day 15. Treatment continued until disease progression, unacceptable toxicity, loss to follow-up, or withdrawal of consent. Treatment was allocated by an interactive web-response system using a minimisation method (with a 20% random element) and the following minimisation factors: measurable or non-measurable disease, primary or secondary aromatase inhibitor resistance, PIK3CA status, and PTEN status. The primary endpoint was progression-free survival in the intention-to-treat population. Secondary endpoints shown in this Article were overall survival and safety in the intention-to-treat population, and the effect of tumour PI3K/AKT/PTEN pathway status identified by an expanded testing panel that included next-generation sequencing assays. Recruitment is complete. The trial is registered with ClinicalTrials.gov, number NCT01992952. FINDINGS Between March 16, 2015, and March 6, 2018, 183 participants were screened for eligibility and 140 (77%) were randomly assigned to receive fulvestrant plus capivasertib (n=69) or fulvestrant plus placebo (n=71). Median follow-up at the data cut-off of Nov 25, 2021, was 58·5 months (IQR 45·9-64·1) for participants treated with fulvestrant plus capivasertib and 62·3 months (IQR 62·1-70·3) for fulvestrant plus placebo. Updated median progression-free survival was 10·3 months (95% CI 5·0-13·4) in the group receiving fulvestrant plus capivasertib compared with 4·8 months (3·1-7·9) for fulvestrant plus placebo (adjusted hazard ratio [HR] 0·56 [95% CI 0·38-0·81]; two-sided p=0·0023). Median overall survival in the capivasertib versus placebo groups was 29·3 months (95% CI 23·7-39·0) versus 23·4 months (18·7-32·7; adjusted HR 0·66 [95% CI 0·45-0·97]; two-sided p=0·035). The expanded biomarker panel identified an expanded pathway-altered subgroup that contained 76 participants (54% of the intention-to-treat population). Median progression-free survival in the expanded pathway-altered subgroup for participants receiving capivasertib (n=39) was 12·8 months (95% CI 6·6-18·8) compared with 4·6 months (2·8-7·9) in the placebo group (n=37; adjusted HR 0·44 [95% CI 0·26-0·72]; two-sided p=0·0014). Median overall survival for the expanded pathway-altered subgroup receiving capivasertib was 38·9 months (95% CI 23·3-50·7) compared with 20·0 months (14·8-31·4) for those receiving placebo (adjusted HR 0·46 [95% CI 0·27-0·79]; two-sided p=0·0047). By contrast, there were no statistically significant differences in progression-free or overall survival in the expanded pathway non-altered subgroup treated with capivasertib (n=30) versus placebo (n=34). One additional serious adverse event (pneumonia) in the capivasertib group had occurred subsequent to the primary analysis. One death, due to atypical pulmonary infection, was assessed as possibly related to capivasertib treatment. INTERPRETATION Updated FAKTION data showed that capivasertib addition to fulvestrant extends the survival of participants with aromatase inhibitor-resistant ER-positive, HER2-negative advanced breast cancer. The expanded biomarker testing suggested that capivasertib predominantly benefits patients with PI3K/AKT/PTEN pathway-altered tumours. Phase 3 data are needed to substantiate the results, including in patients with previous CDK4/6 inhibitor exposure who were not included in the FAKTION trial. FUNDING AstraZeneca and Cancer Research UK.
Collapse
Affiliation(s)
- Sacha J Howell
- The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Angela Casbard
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | | | | | | | - Sian Morgan
- Cardiff and Vale University Health Board, Cardiff, UK
| | | | | | - Pavel Bezecny
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Sarah Moon
- University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, UK
| | - Chris Twelves
- University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | | | | | | | | | | | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Cardiff, UK.
| |
Collapse
|
93
|
Lee JS, Yost SE, Li SM, Cui Y, Frankel PH, Yuan YC, Schmolze D, Egelston CA, Guo W, Murga M, Chang H, Bosserman L, Yuan Y. Genomic Markers of CDK 4/6 Inhibitor Resistance in Hormone Receptor Positive Metastatic Breast Cancer. Cancers (Basel) 2022; 14:3159. [PMID: 35804935 PMCID: PMC9264913 DOI: 10.3390/cancers14133159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors are the standard of care for hormone receptor-positive metastatic breast cancer. This retrospective study reports on genomic biomarkers of CDK 4/6i resistance utilizing genomic data acquired through routine clinical practice. Patients with HR+ MBC treated with palbociclib, ribociclib, or abemaciclib and antiestrogen therapy were identified. Patients were grouped into early (<6 months); intermediate (6−24 months for 0−1 lines; 6−9 months for ≥2 lines); or late progressors (>24 months for 0−1 lines; >9 months PFS for ≥2 lines). NGS and RNA sequencing data were analyzed in association with PFS, and survival analysis was stratified by prior lines of chemotherapy. A total of 795 patients with HR+ MBC treated with CDK 4/6i were identified. Of these, 144 (18%) patients had genomic data and 29 (3.6%) had RNA data. Among the 109 patients who received CDK4/6i as 1st- or 2nd-line therapy, 17 genes showed associations with PFS (p-value ≤ 0.15 and HR ≥ 1.5 or HR < 0.5). Whole transcriptome RNAseq was analyzed for 24/109 (22%) patients with 0−1 prior lines of therapy and 56 genes associated with PFS (HR ≥ 4 or HR ≤ 0.25 and FDR ≤ 0.15). In this retrospective analysis, genomic biomarkers including FGFR1 amplification, PTEN loss, and DNA repair pathway gene mutations showed significant associations with shorter PFS for patients receiving CDK4/6 inhibitor therapy.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| | - Susan E. Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| | - Sierra Min Li
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.M.L.); (Y.C.); (P.H.F.)
| | - Yujie Cui
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.M.L.); (Y.C.); (P.H.F.)
| | - Paul H. Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.M.L.); (Y.C.); (P.H.F.)
| | - Yate-Ching Yuan
- Department of Computational Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Colt A. Egelston
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.A.E.); (W.G.)
| | - Weihua Guo
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.A.E.); (W.G.)
| | - Mireya Murga
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| | - Helen Chang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| | - Linda Bosserman
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (J.S.L.); (S.E.Y.); (M.M.); (H.C.); (L.B.)
| |
Collapse
|
94
|
Abu-Khalaf M, Wang C, Zhang Z, Luo R, Chong W, Silver DP, Fellin F, Jaslow R, Lopez A, Cescon T, Jiang W, Myers R, Wei Q, Li B, Cristofanilli M, Yang H. Genomic Aberrations in Circulating Tumor DNAs from Palbociclib-Treated Metastatic Breast Cancer Patients Reveal a Novel Resistance Mechanism. Cancers (Basel) 2022; 14:cancers14122872. [PMID: 35740538 PMCID: PMC9221535 DOI: 10.3390/cancers14122872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Previously undescribed molecular mechanisms of resistance will emerge with the increased use of cyclin-dependent kinase 4/6 inhibitors in clinical settings. To identify genomic aberrations in circulating tumor DNA associated with treatment resistance in palbociclib-treated metastatic breast cancer (MBC) patients, we collected 35 pre- and post-treatment blood samples from 16 patients with estrogen receptor-positive (ER+) MBC, including 9 with inflammatory breast cancer (IBC). Circulating cell-free DNAs (cfDNAs) were isolated for sequencing using a targeted panel of 91 genes. Our data showed that FBXW7 and CDK6 were more frequently altered in IBC than in non-IBC, whereas conversely, PIK3CA was more frequently altered in non-IBC than in IBC. The cfDNA samples collected at follow-up harbored more mutations than baseline samples. By analyzing paired samples, we observed a higher percentage of patients with mutations in RB1, CCNE1, FBXW7, EZH2, and ARID1A, but a lower proportion of patients with mutated TSC2 at the post-treatment stage when they developed progression. Moreover, acquisition of CCNE1 mutations or loss of TSC2 mutations after treatment initiation conferred an unfavorable prognosis. These data provide insights into the relevance of novel genomic alterations in cfDNA to palbociclib resistance in MBC patients. Future large-scale prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Maysa Abu-Khalaf
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
- Correspondence: (M.A.-K.); (H.Y.); Tel.: +1-215-503-1195 (M.A.-K.); +1-215-503-6521 (H.Y.)
| | - Chun Wang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Zhenchao Zhang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Rui Luo
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Weelic Chong
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Daniel P. Silver
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Frederick Fellin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Rebecca Jaslow
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - AnaMaria Lopez
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Terrence Cescon
- Department of Hematology Oncology, Reading Hospital, West Reading, PA 19611, USA;
| | - Wei Jiang
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Ronald Myers
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA; (Q.W.); (B.L.)
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA; (Q.W.); (B.L.)
| | - Massimo Cristofanilli
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (Z.Z.); (R.L.); (W.C.); (D.P.S.); (F.F.); (R.J.); (A.L.); (R.M.)
- Correspondence: (M.A.-K.); (H.Y.); Tel.: +1-215-503-1195 (M.A.-K.); +1-215-503-6521 (H.Y.)
| |
Collapse
|
95
|
Andrikopoulou A, Chatzinikolaou S, Panourgias E, Kaparelou M, Liontos M, Dimopoulos MA, Zagouri F. "The emerging role of capivasertib in breast cancer". Breast 2022; 63:157-167. [PMID: 35398754 PMCID: PMC9011110 DOI: 10.1016/j.breast.2022.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over 50% of breast tumors harbor alterations in one or more genes of the phosphatidylinositol 3-kinase (PI3K) pathway including PIK3CA mutations (31%), PTEN loss (34%), PTEN mutations (5%) and AKT1 mutations (3%). While PI3K and mTOR inhibitors are already approved in advanced breast cancer, AKT inhibitors have been recently developed as a new therapeutic approach. Capivasertib (AZD5363) is a novel, selective ATP-competitive pan-AKT kinase inhibitor that exerts similar activity against the three AKT isoforms, AKT1, AKT2, and AKT3. Preclinical studies demonstrated efficacy of capivasertib in breast cancer cell lines as a single agent or in combination with anti-HER2 agents and endocrine treatment, especially in tumors with PIK3CA or MTOR alterations. Phase I/II studies demonstrated greater efficacy when capivasertib was co-administered with paclitaxel, fulvestrant in hormone receptor (HR)-positive, HER2-negative breast cancer or olaparib. The recommended phase II dose of capivasertib as monotherapy was 480 mg bid on a 4-days-on, 3-days-off dosing schedule. Toxicity profile proved to be manageable with hyperglycemia (20–24%), diarrhea (14–17%) and maculopapular rash (11–16%) being the most common grade ≥3 adverse events. Ongoing Phase III trials of capivasertib in combination with fulvestrant (CAPItello-291), CDK4/6 inhibitor palbociclib (CAPItello-292) and paclitaxel (CAPItello- 290) will better clarify the therapeutic role of capivasertib in breast cancer. Phosphatidylinositol-3-kinase (PI3K)/Akt (PI3K/AKT) pathway is one of the most commonly altered pathways in breast cancer. Capivasertib (AZD5363) is a highly potent Akt kinase inhibitor with activity against the three isoforms AKT1, AKT2, and AKT3. Preclinical studies demonstrated efficacy of capivasertib either alone or in combination with anti-HER2 agents, chemotherapy and endocrine treatment. Dose-limiting toxicities include hyperglycemia (20–24%), diarrhea (14–17%) and maculopapular rash (11–16%). Capivasertib increased susceptibility to paclitaxel (PAKT, BEECH), fulvestrant (NCT01226316, FAKTION) or Olaparib (ComPAKT).
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | | | - Evangelia Panourgias
- Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Aretaieion hospital, 76, Vassilisis-Sofias Ave., 11528 Athens, Greece.
| | - Maria Kaparelou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| |
Collapse
|
96
|
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle. However, the effects of CDK4/6 inhibition are far more wide-reaching. New insights into their mechanisms of action have triggered identification of new therapeutic opportunities, including the development of novel combination regimens, expanded application to a broader range of cancers and use as supportive care to ameliorate the toxic effects of other therapies. Exploring these new opportunities in the clinic is an urgent priority, which in many cases has not been adequately addressed. Here, we provide a framework for conceptualizing the activity of CDK4/6 inhibitors in cancer and explain how this framework might shape the future clinical development of these agents. We also discuss the biological underpinnings of CDK4/6 inhibitor resistance, an increasingly common challenge in clinical oncology.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Johann S Bergholz
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jean J Zhao
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
97
|
Saugstad AA, Petry N, Hajek C. Pharmacogenetic Review: Germline Genetic Variants Possessing Increased Cancer Risk With Clinically Actionable Therapeutic Relationships. Front Genet 2022; 13:857120. [PMID: 35685436 PMCID: PMC9170921 DOI: 10.3389/fgene.2022.857120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
As our understanding of genomics and genetic testing continues to advance, the personalization of medical decision making is progressing simultaneously. By carefully crafting medical care to fit the specific needs of the individual, patients can experience better long-term outcomes, reduced toxicities, and improved healthcare experiences. Genetic tests are frequently ordered to help diagnose a clinical presentation and even to guide surveillance. Through persistent investigation, studies have begun to delineate further therapeutic implications based upon unique relationships with genetic variants. In this review, a pre-emptive approach is taken to understand the existing evidence of relationships between specific genetic variants and available therapies. The review revealed an array of diverse relationships, ranging from well-documented clinical approaches to investigative findings with potential for future application. Therapeutic agents identified in the study ranged from highly specific targeted therapies to agents possessing similar risk factors as a genetic variant. Working in conjunction with national standardized treatment approaches, it is critical that physicians appropriately consider these relationships when developing personalized treatment plans for their patients.
Collapse
Affiliation(s)
- Austin A. Saugstad
- Kansas City University, College of Osteopathic Medicine, Kansas City, MO, United States
- *Correspondence: Austin A. Saugstad,
| | - Natasha Petry
- Sanford Health Imagenetics, Sioux Falls, SD, United States
- Department of Pharmacy Practice, College of Health Professions, North Dakota State University, Fargo, ND, United States
| | - Catherine Hajek
- Sanford Health Imagenetics, Sioux Falls, SD, United States
- University of South Dakota, Sanford School of Medicine, Department of Internal Medicine, Sioux Falls, SD, United States
| |
Collapse
|
98
|
Chen CT, Ford JM. A Novel Framework for the Next Generation of Precision Oncology Targets. JAMA Oncol 2022; 8:974-976. [PMID: 35587343 DOI: 10.1001/jamaoncol.2022.0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christopher T Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - James M Ford
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
99
|
Tian Y, Wang J, Wen Q, Gao A, Huang A, Li R, Zhang Y, Su G, Sun Y. The Significance of Tumor Microenvironment Score for Breast Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5673810. [PMID: 35528180 PMCID: PMC9071896 DOI: 10.1155/2022/5673810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022]
Abstract
Purpose This study was designed to clarify the prognostic value of tumor microenvironment score and abnormal genomic alterations in TME for breast cancer patients. Method The TCGA-BRCA data were downloaded from TCGA and analyzed with R software. The results from analyses were further validated using the dataset from GSE96058, GSE124647, and GSE25066. Results After analyzing the TCGA data and verifying it with the GEO data, we developed a TMEscore model based on the TME infiltration pattern and validated it in 3273 breast cancer patients. The results suggested that our TMEscore model has high prognostic value. TME features with the TMEscore model can help to predict breast cancer patients' response to immunotherapy and provide new strategies for breast cancer treatment. Signature 24 was first found in breast cancer. In focal SCNAs, a total of 95 amplified genes and 169 deletion genes in the TMEscore high group were found to be significantly related to the prognosis of breast cancer patients, while 61 amplified genes and 174 deletion genes in the TMEscore low group were identified. LRRC48, CFAP69, and cg25726128 were first discovered and reported to be related to the survival of breast cancer patients. We identified specific mutation signatures that correlate with TMEscore and prognosis. Conclusion TMEscore model has high predictive value regarding prognosis and patients' response to immunotherapy. Signature 24 was first found in breast cancer. Specific mutation signatures that correlate with TMEscore and prognosis might be used for providing additional indicators for disease evaluation.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- Somatic Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250023, China
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Qing Wen
- Jinan Clinical Research Center of Shandong First Medical University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
| | - Alan Huang
- Department of Oncology, Jinan Central Hospital, The Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250013, China
| | - Ran Li
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Ye Zhang
- Department of Oncology, Jinan Central Hospital, Weifang Medical University, Weifang, 261053 Shandong, China
| | - Guohai Su
- Department of Cardiovascular Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 Shandong, China
- Phase I Clinical Trial Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250012, China
| |
Collapse
|
100
|
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res 2022; 24:17. [PMID: 35248122 PMCID: PMC8898415 DOI: 10.1186/s13058-022-01510-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are now an established standard of care for patients with advanced hormone receptor-positive breast cancer. The canonical mechanism underlying CDK4/6 inhibitor activity is the suppression of phosphorylation of the retinoblastoma tumor suppressor protein, which serves to prevent cancer cell proliferation. Recent data suggest that these agents induce other diverse effects within both tumor and stromal compartments, which serve to explain aspects of their clinical activity. Here, we review these phenomena and discuss how they might be leveraged in the development of novel CDK4/6 inhibitor-containing combination treatments. We also briefly review the various known mechanisms of acquired resistance in the clinical setting.
Collapse
Affiliation(s)
- April C Watt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shom Goel
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|